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Probabilit BasicsProbability Basics

• Sample space Ω: collection of all possible experimental outcomes
– E.g., If we look at (sample) a queue, the possible numbers of customers in 

the queue are {0 1 2 }the queue are {0,1,2,…}
– E.g., If we sense (sample) a room temperature, the possible outcomes are 

[-50, +50]
• Sample point ω: one outcome of a sampleSample point ω: one outcome of a sample

– E.g., The first sample point of the queue = 0;
– E.g., The first sample point of the temperature = -50 degree

• Event A: set of sample pointsEvent A: set of sample points
– E.g., Event A: queue is not empty = {1, 2, 3, …}
– E.g., Event B: the temperature is higher than 10 degree = [+10, +50]
– Propertiesp

• P[A] z 0 
• P[Ω] = 1
• If evnets A and B are mutually exclusive (i.e., A  I B  =  φ ),   then  …….    

P(A U B) = P(A) + P(B)P(A U B) = P(A) + P(B)



Random VariablesRandom Variables
• Random Variable X: a real-valued function that associate a real Random Variable X: a real valued function that associate a real 

number with the outcome of an experiment. (a real-valued function 
defined in the domain of Ω)

– E.g., X is the modular 10 of customer count in the queue (discrete)
– E.g., Y is the room temperature in Fahrenheit (continuous)

• A random variable X is usually characterized by probability 
distribution function (or probability density function, probability mass 
f nction)function)
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Normal (Gaussian) Distribution( )
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Exponential Distribution (1)p ( )
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Exponential Distribution (2)p ( )
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Markov property (= memoryless property):
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Suppose that X is the wait time for a event. Under the condition that the event 
does not occur for t (X>t), the distribution of further waiting is the same as it 
would be if no waiting time had passed. That is, the system does not remember 
that t time units have produced no event.
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E g Inter-arrival time of events with the average arrival rate λE.g., Inter arrival time of events with the average arrival rate λ.

E.g., Service time with the average service rate λ.



Poisson Distribution (1)( )
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Poisson Distribution (2)
• Examples

– Number of ob arrivals in a unit time

Poisson Distribution (2)

– Number of jobs completed in a unit time
• Property 1

– Sum of two Poisson random variables X and Y with the average rate of α and g
β, respectively, i.e. X+Y, is also a Poisson random variable with rate α + β.

• Property 2 (Equivalence with Exponential distribution)
– Consider a Poisson occurrence of events with the rate λ. Let, 0 < t1 < t2 < t3

b h i i f d l h i i l i< … be the successive occurrence times of events and let the interarrival times 
{τn} be defined by τ1= t1, τ2=t2-t1 … τk = tk-tk-1. Then the interarrival times {τn} 
are exponential random variables, each with mean 1/λ.

– ProofProof
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• For modeling a count, use a Poisson distribution. For modeling the time, 
use an exponential distribution.



Two Important Laws inTwo Important Laws in 
Probability Theory

• Central Limit Theorem
• Law of large numbersg



Central Limit TheoremCentral Limit Theorem

• If X1, X2, ..., Xn are IID (independent and 
identically distributed) random varibles withidentically distributed) random varibles with 
mean μ and variance σ2, then the sum of the 
random variables closely follow the normalrandom variables closely follow the normal 
distribution with mean nμ and variance nσ2 as 
n infinity, that is, y, s,

∞→∑ nnnXn as)(normal σμ ∞→∑ =
nnnX
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Example
• Suppose that on average one job is submitted

Example
Suppose that on average one job is submitted 
to a computer system each minute with 
standard deviation 0.5 and that the numbers of 
jobs submitted in the sequence of minutes are 
independent.

• What is the probability that more than 68 jobs 
are submitted in 64 minutes? 
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Law of Large Numbers
• Weak: If X1, X2, ..., Xn are IID (independent 
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Example
• In a computer lab, we observed the daily log-

Example
In a computer lab, we observed the daily log
on times of 100 users. The average of them is 
2hrs 25mins.

• What is the expected log-on time of a user in a 
day?y
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Stochastic process p
(= Random Process)

• Stochastic process
– When the probability distribution depends on time, it is p y p ,

better to use a sequence of random variables X(t) 
depending on time.

– E g : The number of customers in the queue hasE.g.: The number of customers in the queue has 
difference distributions at different times

– E.g.: The room temperature has different distribution at 
diff t tidifferent times.

– A stochastic process is a family of random variables, 
each of which is associated to a time instant t 
(continuous time parameter t, discrete time parameter n).

{ } processtimecontinuous:)( ⇒∈TttX{ }
{ } process  timediscrete ,2,1,0:

p)(
⇒= LnX n



Two important stochastic p
process

• Markov Process
• Birth-and-Death Process



Markov Process (1)Markov Process (1)
• A stochastic process {X(t), t in T} is a Markov p { ( ) }

process if for any set of times t1 < t2 < … < tn < tn+1
in the index set and any set of {x1, x2, …, xn+1} of 
n+1 states we haven+1 states, we have 

[ ]nnnn xtXxtXxtXxtXP ==== ++ )(,,)(,)(|)( 221111 L
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• That is, the future of the process depends only onThat is, the future of the process depends only on 
the present state and not upon the history of the 
process.

• Markov Chain: if its state space is discrete



Markov Process (2)Markov Process (2)

Type of time State Space
parameter Discrete                   Continuous

Di t ti Di t tiDiscrete Time Discrete time          Discrete time
Markov Chain       Markov Process

Continuous Time Continuous time     Continuous time
Markov Chain       Markov Process



Markov Process (3)Markov Process (3)
A di i M k Ch i i h i d b• A discrete-time Markov Chain is characterized by 
the one-step transition probability 

[ ] L,2,1,0,,,|1 ===+ jiniXjXP nn

• If the one step transition probabilities are• If the one-step transition probabilities are 
independent of n, such a Markov chain is said to 
have Stationary Transition Probability.  Pijy y ij
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Example 1Example 1
• Consider a sequence of Bernoulli trials in which the 

b bilit f h t i l i d f f ilprobability of success on each trial is p and of failure 
is q, where p+q=1 and 0<p<1. Let the state of the 
process at trial n be the number of uninterruptedprocess at trial n be the number of uninterrupted 
successes that have been completed at this point. For 
example, if the first 5 outcomes were SFSSF, we 

ld h X 1 X 0 X 1 X 2 d X 0would have X0=1, X1=0, X2=1, X3=2, and X4=0.

h i h i i b bili i ?• What is the state transition probability matrix?
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Example 2p
• Consider a communication system that transmits the 

digits 0 and 1 through several stages. At each stage 
th b bilit th t th di it ill b i dthe probability that the same digit will be received 
by the next stage, as transmitted, is 0.75. What is the 
probability that a 0 that is entered at the first stage isprobability that a 0 that is entered at the first stage is 
received as a 0 by the fifth stage?
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Birth-Death Process (1)Birth-Death Process (1)
• Consider a continuous time parameter stochastic process p p

{X(t), t z 0} with the discrete state space 0, 1, 2, ….
• X(t) = n means that the system is in state n at time t.
• This system is said a birth-death process if there exists non-

negative birth rate {λn, n=0,1,2…} and non-negative death 
rates {μn, n=1,2,3,…} such that
– 1. state changes are allowed only between n and n+1,

2 the transition probabilit from n to n+1 bet een time t and t+h is– 2. the transition probability from n to n+1 between time t and t+h is 
λnh+o(h),

– 3. the transition probability from n+1 to n between time t and t+h is 
μn+1h+o(h), and

– 4. the probability that, in the time interval from t to t+h, more than 
one transition occur is o(h)one transition occur is o(h).



Birth Death Process (2)Birth-Death Process (2)
λ0 λ1 λn-2

λn-1 λn λn+1

0 1 n-1 n n+1… …
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Birth-Death Process (3)e ocess ( )
• In general, finding the time-dependent solutions of a birth-death process 

is very difficult
• However, if Pn(t) approaches a constant value Pn as t infinite for each 

n, then we say that the system is in “statistical equilibrium”.

1 ,...2,1,0,

,...3,2,1,0

nPP

ng

n
n

n

n

μ
λ

+ ==

⇒==⇒

⇒

⎜⎜
⎝

⎛
+−=

+++−= ++−−

1100

1111

0
)(0
PP

PPP nnnnnnn

μλ
μλμλ

0110

1

PPPPP

n

λλλλ

μ +

⇒
⇒

⎜⎜
⎝

⎛
=−

−=− −−++

00011

1111

PP
PPPP nnnnnnnn

λμ
λμλμ

0
021

0
12

01
1

2

1
20

1

0
1

...

,...,,

PP

PPPPP

nn
n

λλλ
μμμμ

−−=

===

⎜⎜
⎛ =

−=
⎝

+

−− Then .Let 

1

11

0011

gg
PPg

nn

nnnnn λμ
μ

0
11...nn

n μμμ −

011010 ⎟
⎞

⎜
⎛∞

∑ L λλλλλλ

⎜⎜
⎝ = 01g

11,1
12

011

12

01

1

0
0210

0
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++=+++= −

=
∑ L

L
LL

μμμ
λλλ

μμ
λλ

μ
λ

n

n

n
n ppppp



Birth-Death Process (4)
• The Birth-Death Process is an example of the Continuous time Markov chain.
• A discrete time (h) Birth-Death process is an example of the Discrete time 

Markov chain. (Characterized by the one-step transition prob.)
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• The above probabilities are independent of time parameter t. By definition, the p p p y ,
discrete time Birth-Death process has “Stationary transition probabilities”. 
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Example
• Consider a computing server with NO waiting line. We assume a 

Poisson arrival with parameter λ and an exponential service time 
di ib i i hdistribution with parameter μ.

• What is the probability that the server is busy?
• The probability of an arrival in the interval (t t+h]• The probability of an arrival in the interval (t, t+h]
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Queueing System
Mean Arrival Rate

λ

Server 1

…source
τ

Inter Arrival Time

…Queue

Server cWq: time a customer 
spends in the queue 
before service begins

Nq: # of customers in
Ws: service time

Nq: # of customers in 
the queue

Ns: # of customers in 
the service facility

W: total time a customer spends in the system

N: # of customers in the systemN: # of customers in the system

• Kendall notation: A/B/c/K/m/Z
– A: inter-arrival time distribution
– B: service time distribution
– c: # of servers
– K: system capacity (queue length + c)
– m: the number in the population or source
– Z: queue discipline (FIFO, LCFS, PRI, etc.)



Analysis of Queueing SystemsAnalysis of Queueing Systems
• The queueing model fits well the birth-death process in q g p

general.
• Let N be a random variable that represents the number of 

customers in the system.
• Thus, the steady state probability is ….
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M/M/1 QueueingM/M/1 Queueing
• The number of arrivals follows the Poisson distribution
• The service time follows the Exponential distribution
• The number of servers is ONE
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M/M/1 QueueingM/M/1 Queueing
• L=E(N): Expected number of customers in the system
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• VAR(N): Variation of number of customers in the system
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• W: Average waiting time of a customer in the system• W: Average waiting time of a customer in the system
– Use Little’s Law



Little’s Law 
(by John D. C. Little)

WL λ= WL λ=
Avg. # of 
customers in 
th t

Customer 
arrival rate

Avg. time a 
customer spends 
i th tthe system in the system

Proof is difficult. See Stidham’s paper.



M/M/1 QueueingM/M/1 Queueing
• L=E(N): Expected number of customers in the system

dist.) geometric (see  
1
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• VAR(N): Variation of number of customers in the system
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• W: Average waiting time of a customer in the system• W: Average waiting time of a customer in the system
– Use Little’s Law
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M/M/1 QueueingM/M/1 Queueing
• Lq: Expected number of customers in the queueq p q
• Wq: Average waiting time of a customer in the queue
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M/M/1 QueueingM/M/1 Queueing



Example
• Traffic to a message switching center arrives in a random pattern (e.g., 

exponential distribution) at an average rate of 240 messages per minute. 
The line has a transmission rate of 800 characters per second TheThe line has a transmission rate of 800 characters per second. The 
message length distribution (including control characters) is 
approximately exponential with an average length of 176 characters.

• L, W, Lq, Wq?
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• What would be the average response time W, if the traffic rate into the 
center increased by 10%?
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M/M/1/K QueueingM/M/1/K Queueing
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M/M/1/K QueueingM/M/1/K Queueing
• L=E(N): Expected number of customers in the system
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• W: Average waiting time of a customer in the system
Use Little’s Law– Use Little s Law
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Example
• Traffic to a message switching center arrives in a random pattern (e.g., 

exponential distribution) at an average rate of 240 messages per minute. 
The line has a transmission rate of 800 characters per second TheThe line has a transmission rate of 800 characters per second. The 
message length distribution (including control characters) is 
approximately exponential with an average length of 176 characters.---

b f (  λ/ 0 88)same as before. (ρ = λ/μ =0.88)
• If we want to provide only the minimum number of message buffers 

required to guarantee than Prob(N=K) < 0.005, how many buffers q g ( ) , y
should be provided?
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• L, W, Lq, Wq?

sec)83.1.sec(62.1   ),33.7.(449.6 cfWcfL ==
)44.6.(573.5   ),61.1.sec(40.1 cfLcfWWW qsq ==−=


