
Intro to DB

CHAPTER 12
INDEXING & HASHING

Chapter 12: Indexing and Hashing

Basic Concepts
Ordered Indices
B+-Tree Index Files
B-Tree Index Files
Static Hashing
Dynamic Hashing
Comparison of Ordered Indexing and Hashing
Index Definition in SQL
Multiple-Key Accessp y

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 2

Basic Concepts

to speed up access to desired data
Search Key

attribute (or set of attributes) used to look up records in a file

I d filIndex file
consists of records (called index entries) of the form

h k i

Index files are typically much smaller than the original file

search-key pointer

Two basic kinds of indices:
Ordered indices: search keys are stored in sorted order
Hash indices: search keys are distributed uniformly across “buckets”
using a “hash function”.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 3

Index Evaluation Metrics

Access types supported
P i i ifi l f h kPoint queries: specific value for search key
Range queries: search key value falling in a specified range

TimeTime
Access time
Insertion time
Deletion time

Space overhead

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 4

Ordered Indices

Primary index
i d h h k ifi h i l d f h filindex whose search key specifies the sequential order of the file
also called clustering index

The search key of a primary index is usually but not necessarily theThe search key of a primary index is usually but not necessarily the
primary key.

Secondary index
an index whose search key specifies an order different from the sequential
order of the file
also called non clustering indexalso called non-clustering index

Index-sequential file
ordered sequential file with a primary indexordered sequential file with a primary index.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 5

Dense Index Files

Dense index— Index record appears for every search-key value
in the filein the file.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 6

Sparse Index Files

Sparse Index: contains index records for only some search-key values.
Appli ble hen re ords re seq enti ll ordered on se r h keApplicable when records are sequentially ordered on search-key
Less space and less maintenance overhead for insertions/deletions.
Generally slower than dense index for locating recordsGenerally slower than dense index for locating records.
Good tradeoff: sparse index with an index entry for every block in file,
corresponding to least search-key value in the block.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 7

Multilevel Index

If primary index does not fit in memory, access becomes
e pensi eexpensive.
Treat primary index kept on disk as a sequential file and
construct a sparse index on itconstruct a sparse index on it.

outer index – a sparse index of primary index
inner index – the primary index filep y

If outer index is still too large to fit in main memory, another
level of index can be created, and so on.
Indices at all levels must be updated on insertion or deletion
from the file.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 8

Multilevel Index (Cont.)

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 9

Secondary Index

Secondary index on balance field of account

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 10

Primary and Secondary Indices

Secondary indices have to be dense
Indices offer substantial benefits when searching for records.
When a file is modified, every index on the file must be updated

Updating indices imposes overhead on database modification

Sequential scan using primary index is efficient, but a sequential
i d i d i iscan using a secondary index is expensive

each record access may fetch a new block from disk

Index takes up spaceIndex takes up space

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 11

B+-Tree Index Files

B+-tree indices are an alternative to indexed-sequential files
Di d t f i d d ti l filDisadvantage of indexed-sequential files

performance degrades as file grows, since many overflow blocks get
created.
Periodic reorganization of entire file is required.

Advantage of B+-tree index files:
i ll i i lf i h ll l l h i h f fautomatically reorganizes itself with small, local, changes, in the face of

insertions and deletions.
Reorganization of entire file is not required to maintain performance.

(Minor) disadvantage of B+-trees:
extra insertion and deletion overhead, space overhead.

Ad f B+ i h di dAdvantages of B+-trees outweigh disadvantages
B+-trees are used extensively

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 12

B+-Tree Index Files (Cont.)

A B+-tree is a rooted tree satisfying the following properties:
All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between ⎡n/2⎤ and n
hildchildren.

A leaf node has between ⎡(n–1)/2⎤ and n–1 values
Special cases:

If the root is not a leaf, it has at least 2 children.
If th t i l f (th t i th th d i th t) itIf the root is a leaf (that is, there are no other nodes in the tree), it can
have between 0 and (n–1) values.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 13

B+-Tree Node Structure

Typical node

Ki are the search-key values
Pi are pointers to children (for non-leaf nodes) or pointers to records or
buckets of records (for leaf nodes).

The search-keys in a node are ordered
K1 < K2 < K3 < . . . < Kn–1

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 14

Leaf Nodes in B+-Trees

For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with
search ke al e K or to a b cket of pointers to file records

Properties of a leaf node:

search-key value Ki, or to a bucket of pointers to file records,
each record having search-key value Ki. Only need bucket
structure if search-key does not form a primary key.y d p y y
If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than Lj’s search-key valuesj y
Pn points to next leaf node in search-key order

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 15

Non-Leaf Nodes in B+-Trees

Non leaf nodes form a multi-level sparse index on the leaf nodes.
For a non leaf node ith m pointersFor a non-leaf node with m pointers:

All the search-keys in the subtree to which P1 points are less than K1

For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi points haveFor 2 ≤ i ≤ n 1, all the search keys in the subtree to which Pi points have
values greater than or equal to Ki–1 and less than Km–1

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 16

Example of a B+-tree

B+-tree for account file (n = 5)

Leaf nodes must have between 2 and 4 values
(⎡(n–1)/2⎤ and n –1 with n = 5)(⎡(n–1)/2⎤ and n –1, with n 5).
Non-leaf nodes other than root must have between 3 and 5
children (⎡(n/2⎤ and n with n =5).children (⎡(n/2⎤ and n with n 5).
Root must have at least 2 children.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 17

Observations about B+-trees

Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” closeclose blocks need not be physically close.
The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.
The B+-tree contains a relatively small number of levels

Level below root has at least 2* ⎡n/2⎤ values
N l l h l 2* ⎡ /2⎤ * ⎡ /2⎤ lNext level has at least 2* ⎡n/2⎤ * ⎡n/2⎤ values
.. etc.

If there are K search-key values in the file, the tree height is no more than
⎡ ⎤⎡ log⎡n/2⎤(K)⎤
thus searches can be conducted efficiently.

Insertions and deletions to the main file can be handledInsertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time
(as we shall see).

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 18

Queries on B+-Trees

Find all records with a search-key value of k.
N1. N=root

2. Repeat
1 Examine N for the smallest search-key value > k1. Examine N for the smallest search key value > k.
2. If such a value exists, assume it is Ki. Then set N = Pi

3. Otherwise k ≥ Kn–1. Set N = Pn

Until N is a leaf node

3. If for some i, key Ki = k follow pointer Pi to the desired record or bucket.
4 Else no record with search key value k exists4. Else no record with search-key value k exists.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 19

Queries on B+-Trees (Cont.)

If there are K search-key values in the file, the height of the tree
i n m r th n ⎡l (K)⎤is no more than ⎡log⎡n/2⎤(K)⎤.
A node is generally the same size as a disk block, typically 4
kilobyteskilobytes

and n is typically around 100 (40 bytes per index entry).

With 1 million search key values and n = 100With 1 million search key values and n 100
at most log50(1,000,000) = 4 nodes are accessed in a lookup.

Contrast this with a balanced binary free with 1 million searchContrast this with a balanced binary free with 1 million search
key values — around 20 nodes are accessed in a lookup

above difference is significant since every node access may need a disk I/O,
costing around 20 milliseconds

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 20

Insertion in B+-Trees

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer to the bucket.

3. If the search-key value is not present, then
1. add the record to the main file (and create a bucket if

necessary)
2. If there is room in the leaf node, insert (key-value, pointer)

pair in the leaf node
3 O h i li h d (l i h h (k l3. Otherwise, split the node (along with the new (key-value,

pointer) entry) as discussed in the next slide.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 21

Insertion in B+-Trees (cont.)

Splitting a leaf node:
take the n (search-key value pointer) pairs (including the one being inserted) intake the n (search-key value, pointer) pairs (including the one being inserted) in
sorted order. Place the first ⎡n/2⎤ in the original node, and the rest in a new node.
let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent
of the node being splitof the node being split.
If the parent is full, split it and propagate the split further up.

Splitting of nodes proceeds upwards till a node that is not full is found.
In the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on inserting Clearview
Next step: insert entry with (Downtown,pointer-to-new-node) into parent

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 22

Insertion in B+-Trees (cont.)

B+-Tree before and after insertion of “Clearview”

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 23

Insertion in B+-Trees (cont.)

Splitting a non-leaf node: when inserting (k,p) into an already full
internal node Ninternal node N

Copy N to an in-memory area M with space for n+1 pointers and n keys
Insert (k,p) into MInsert (k,p) into M
Copy P1,K1, …, K ⎡n/2⎤-1,P ⎡n/2⎤ from M back into node N
Copy P⎡n/2⎤+1,K ⎡n/2⎤+1,…,Kn,Pn+1 from M into newly allocated node N’
Insert (K ⎡n/2⎤,N’) into parent N

Read pseudocode in book!

Mianus

RedwoodDowntown Mianus Perryridge Downtown

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 24

Deletion on B+-Trees

Find the record to be deleted, and remove it from the main file
and from the b cket (if present)and from the bucket (if present)
Remove (search-key value, pointer) from the leaf node if there is
no bucket or if the bucket has become emptyno bucket or if the bucket has become empty
If the node has too few entries due to the removal, and the
entries in the node and a sibling fit into a single node thenentries in the node and a sibling fit into a single node, then
merge siblings:

Insert all the search-key values in the two nodes into a single node (the one g
on the left), and delete the other node.
Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node, from
its parent recursively using the above procedureits parent, recursively using the above procedure.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 25

Deletion on B+-Trees (cont.)

Otherwise, if the node has too few entries due to the removal,
b t the entries in the node and a sibling do not fit into a singlebut the entries in the node and a sibling do not fit into a single
node, then redistribute pointers:

Redistribute the pointers between the node and a sibling such that bothRedistribute the pointers between the node and a sibling such that both
have more than the minimum number of entries.
Update the corresponding search-key value in the parent of the node.

The node deletions may cascade upwards till a node which has
⎡n/2⎤ or more pointers is found.
If the root node has only one pointer after deletion, it is deleted
and the sole child becomes the root.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 26

Examples of B+-Tree Deletion

Deleting “Downtown” causes merging of under-full leaves
l f d b l f 3!leaf node can become empty only for n=3!

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 27

Before and after deleting “Downtown”

Examples of B+-Tree Deletion (Cont.)

Leaf with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.
As a result “Perryridge” node’s parent became underfull, and was merged with its
sibling

Value separating two nodes (at parent) moves into merged node
Entry deleted from parent

Root node then has only one child, and is deleted

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 28

Deletion of “Perryridge” from result of previous example

Examples of B+-Tree Deletion (Cont.)

Parent of leaf containing Perryridge became underfull, and borrowed a
pointer from its left siblingpointer from its left sibling
Search-key value in the parent’s parent changes as a result

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 29

Before and after deletion of “Perryridge” from earlier example

B+-Tree File Organization

Index file degradation problem is solved by using B+-Tree indices.
Data file degradation problem is solved by using B+-Tree File
Organization.
Th l f d i B+ fil i i dThe leaf nodes in a B+-tree file organization store records,
instead of pointers.
L f d till i d t b h lf f llLeaf nodes are still required to be half full

Since records are larger than pointers, the maximum number of records
that can be stored in a leaf node is less than the number of pointers in a p
nonleaf node.

Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B+-tree index.

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 30

B+-Tree File Organization (cont.)

Good space utilization important since records use more space
than pointersthan pointers.
To improve space utilization, involve more sibling nodes in
redistribution during splits and mergesredistribution during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where possible)
results in each node having at least ⎣2n/3⎦ entries

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 31

Ordered Indexing vs Hashing

Cost of periodic re-organization
S i h hi i > d i h hiStatic hashing is worst => dynamic hashing

Relative frequency of insertions and deletions
I i d i bl i i i h fIs it desirable to optimize average access time at the expense of
worst-case access time?
E t d t f iExpected type of queries:

Hashing is generally better at retrieving records having a specified value of
the key.y
If range queries are common, ordered indices are to be preferred

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 32

Index Definition in SQL

Create an index
i d <i d > < l i >create index <index-name> or <relation-name>

<attribute-list>)
E.g.: create index b-index on branch(branch-name)g ()

Use create unique index to indirectly specify and enforce the q y p y
condition that the search key is a candidate key.

Not really required if SQL unique integrity constraint is supported

To drop an index
drop index <index-name>

Original Slides:
© Silberschatz, Korth and Sudarshan

Intro to DB (2008-1)
Copyright © 2006 - 2008 by S.-g. Lee Chap 12 - 33

END OF CHAPTER 12

