Intro to DB

CHAPTER 12 INDEXING & HASHING

Chapter 12: Indexing and Hashing

- Basic Concepts
- Ordered Indices
- B+-Tree Index Files
- B-Tree Index Files
- Static Hashing
- Dynamic Hashing
- Comparison of Ordered Indexing and Hashing
- Index Definition in SQL
- Multiple-Key Access

Basic Concepts

- to speed up access to desired data
- Search Key
 - ^a attribute (or set of attributes) used to look up records in a file

Index file

consists of records (called index entries) of the form

search-key pointer

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".

Index Evaluation Metrics

- Access types supported
 - Point queries: specific value for search key
 - Range queries: search key value falling in a specified range
- Time
 - Access time
 - Insertion time
 - Deletion time
- Space overhead

Ordered Indices

Primary index

- index whose search key specifies the sequential order of the file
- also called clustering index
- The search key of a primary index is usually but not necessarily the primary key.

Secondary index

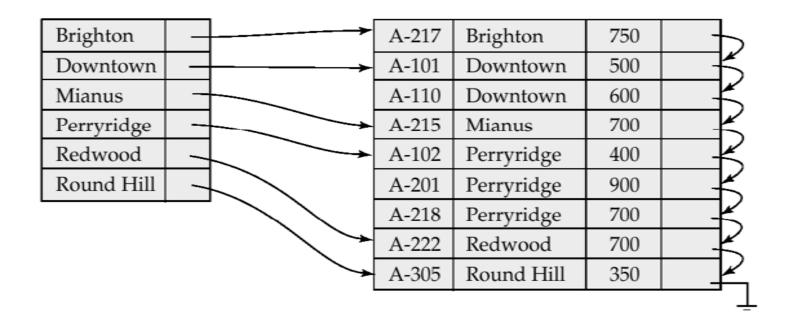
- an index whose search key specifies an order different from the sequential order of the file
- also called non-clustering index

Index-sequential file

ordered sequential file with a primary index.

Dense Index Files

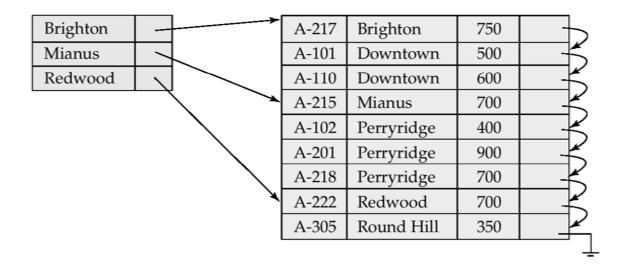
 Dense index — Index record appears for every search-key value in the file.



Sparse Index Files

Sparse Index: contains index records for only some search-key values.

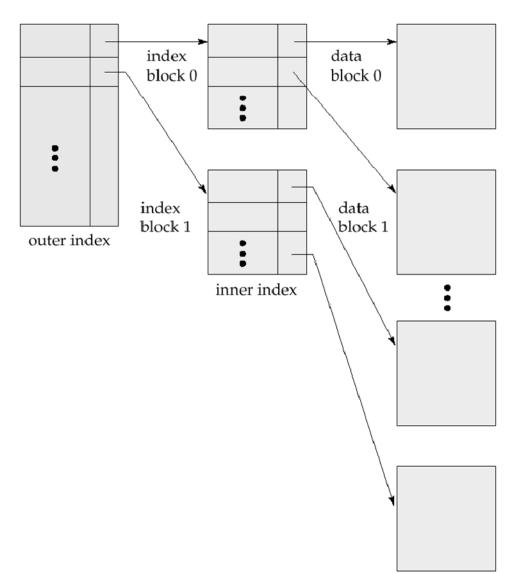
- Applicable when records are sequentially ordered on search-key
- Less space and less maintenance overhead for insertions/deletions.
- Generally slower than dense index for locating records.
- Good tradeoff: sparse index with an index entry for every block in file, corresponding to least search-key value in the block.



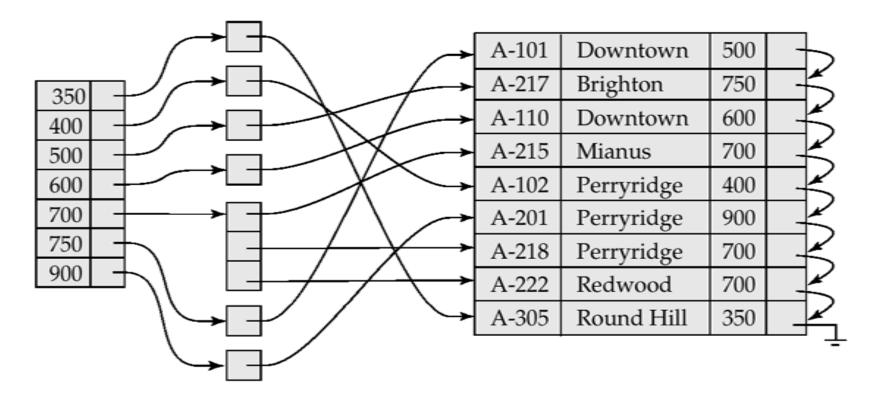
Multilevel Index

- If primary index does not fit in memory, access becomes expensive.
- Treat primary index kept on disk as a sequential file and construct a sparse index on it.
 - outer index a sparse index of primary index
 - inner index the primary index file
- If outer index is still too large to fit in main memory, another level of index can be created, and so on.
- Indices at all levels must be updated on insertion or deletion from the file.

Multilevel Index (Cont.)



Secondary Index



Secondary index on balance field of account

Primary and Secondary Indices

- Secondary indices have to be dense
- Indices offer substantial benefits when searching for records.
- When a file is modified, every index on the file must be updated
 - Updating indices imposes overhead on database modification
- Sequential scan using primary index is efficient, but a sequential scan using a secondary index is expensive
 - each record access may fetch a new block from disk
- Index takes up space

B⁺-Tree Index Files

B⁺-tree indices are an alternative to indexed-sequential files

- Disadvantage of indexed-sequential files
 - performance degrades as file grows, since many overflow blocks get created.
 - Periodic reorganization of entire file is required.
- Advantage of B⁺-tree index files:
 - automatically reorganizes itself with small, local, changes, in the face of insertions and deletions.
 - Reorganization of entire file is not required to maintain performance.
- (Minor) disadvantage of B⁺-trees:
 - extra insertion and deletion overhead, space overhead.
- Advantages of B⁺-trees outweigh disadvantages
 - B⁺-trees are used extensively

B⁺-Tree Index Files (Cont.)

A B⁺-tree is a rooted tree satisfying the following properties:

- All paths from root to leaf are of the same length
- Each node that is not a root or a leaf has between $\lceil n/2 \rceil$ and *n* children.
- A leaf node has between $\lceil (n-1)/2 \rceil$ and n-1 values
- Special cases:
 - If the root is not a leaf, it has at least 2 children.
 - If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (n-1) values.

B⁺-Tree Node Structure

Typical node

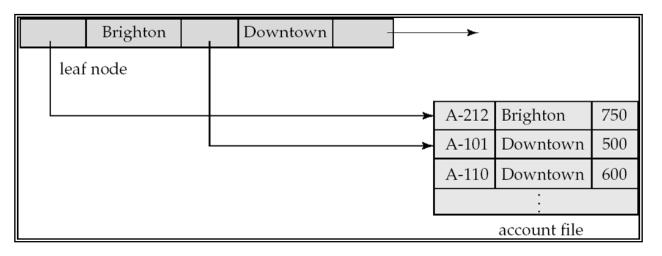
$$P_1 \qquad K_1 \qquad P_2 \qquad \dots \qquad P_{n-1} \qquad K_{n-1} \qquad P_n$$

- K_i are the search-key values
- P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes).
- The search-keys in a node are ordered

 $K_1 < K_2 < K_3 < \ldots < K_{n-1}$

Leaf Nodes in B⁺-Trees

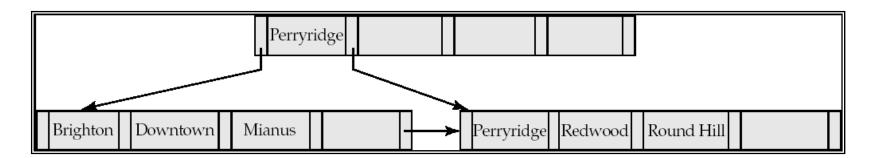
- For perties 2f, a leaf node pointer P_i either points to a file record with search-key value K_i , or to a bucket of pointers to file records, each record having search-key value K_i . Only need bucket structure if search-key does not form a primary key.
- If L_i, L_j are leaf nodes and i < j, L_i's search-key values are less than L_j's search-key values
- P_n points to next leaf node in search-key order



Non-Leaf Nodes in B⁺-Trees

- Non leaf nodes form a multi-level sparse index on the leaf nodes.
 For a non-leaf node with *m* pointers:
 - All the search-keys in the subtree to which P_1 points are less than K_1
 - For $2 \le i \le n-1$, all the search-keys in the subtree to which P_i points have values greater than or equal to K_{i-1} and less than K_{m-1}

Example of a B⁺-tree



B⁺-tree for *account* file (n = 5)

- Leaf nodes must have between 2 and 4 values ((n-1)/2) and n-1, with n = 5).
- Non-leaf nodes other than root must have between 3 and 5 children $(\lceil n/2 \rceil$ and *n* with n = 5).
- Root must have at least 2 children.

Observations about B⁺-trees

- Since the inter-node connections are done by pointers, "logically" close blocks need not be "physically" close.
- The non-leaf levels of the B⁺-tree form a hierarchy of sparse indices.
- The B⁺-tree contains a relatively small number of levels
 - Level below root has at least $2* \lceil n/2 \rceil$ values
 - Next level has at least $2* \lceil n/2 \rceil * \lceil n/2 \rceil$ values
 - .. etc.
 - If there are *K* search-key values in the file, the tree height is no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$
 - thus searches can be conducted efficiently.
- Insertions and deletions to the main file can be handled efficiently, as the index can be restructured in logarithmic time (as we shall see).

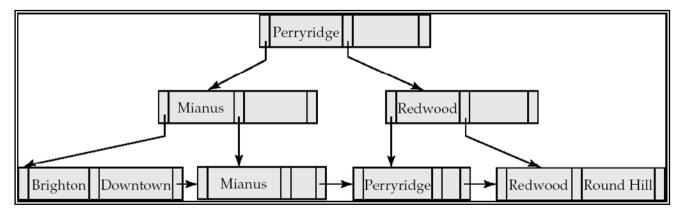
Queries on B⁺-Trees

Find all records with a search-key value of k.

- 1. N=root
- 2. Repeat
 - 1. Examine N for the smallest search-key value > k.
 - 2. If such a value exists, assume it is K_i . Then set $N = P_i$
 - 3. Otherwise $k \ge K_{n-1}$. Set $N = P_n$

Until N is a leaf node

- 3. If for some *i*, key $K_i = k$ follow pointer P_i to the desired record or bucket.
- 4. Else no record with search-key value k exists.



Queries on B⁺⁻Trees (Cont.)

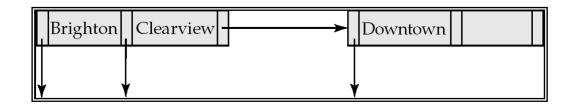
- If there are *K* search-key values in the file, the height of the tree is no more than $\lceil \log_{n/2} \rceil(K) \rceil$.
- A node is generally the same size as a disk block, typically 4 kilobytes
 - and *n* is typically around 100 (40 bytes per index entry).
- With 1 million search key values and *n* = 100
 - at most $log_{50}(1,000,000) = 4$ nodes are accessed in a lookup.
- Contrast this with a balanced binary free with 1 million search key values — around 20 nodes are accessed in a lookup
 - above difference is significant since every node access may need a disk I/O, costing around 20 milliseconds

Insertion in B⁺-Trees

- 1. Find the leaf node in which the search-key value would appear
- 2. If the search-key value is already present in the leaf node
 - 1. Add record to the file
 - 2. If necessary add a pointer to the bucket.
- 3. If the search-key value is not present, then
 - 1. add the record to the main file (and create a bucket if necessary)
 - 2. If there is room in the leaf node, insert (key-value, pointer) pair in the leaf node
 - 3. Otherwise, split the node (along with the new (key-value, pointer) entry) as discussed in the next slide.

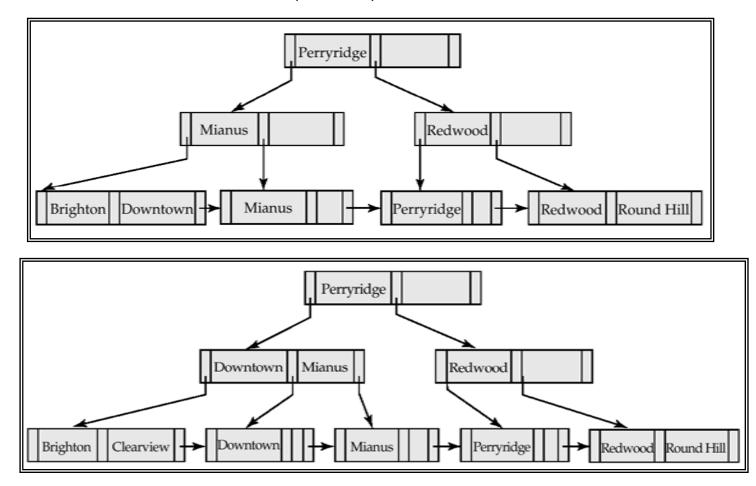
Insertion in B⁺-Trees (cont.)

- Splitting a leaf node:
 - ^{**D**} take the *n* (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first $\lceil n/2 \rceil$ in the original node, and the rest in a new node.
 - let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the node being split.
 - If the parent is full, split it and **propagate** the split further up.
- Splitting of nodes proceeds upwards till a node that is not full is found.
 - In the worst case the root node may be split increasing the height of the tree by 1.



Result of splitting node containing Brighton and Downtown on inserting Clearview Next step: insert entry with (Downtown,pointer-to-new-node) into parent

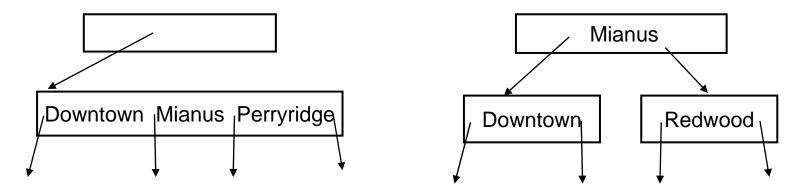
Insertion in B⁺-Trees (cont.)



B⁺-Tree before and after insertion of "Clearview"

Insertion in B⁺-Trees (cont.)

- Splitting a non-leaf node: when inserting (k,p) into an already full internal node N
 - Copy N to an in-memory area M with space for n+1 pointers and n keys
 - Insert (k,p) into M
 - Copy $P_1, K_1, ..., K_{\lceil n/2 \rceil}, P_{\lceil n/2 \rceil}$ from M back into node N
 - Copy $P_{\lceil n/2 \rceil+1}, K_{\lceil n/2 \rceil+1}, \dots, K_n, P_{n+1}$ from M into newly allocated node N'
 - Insert ($K_{\lceil n/2 \rceil}$, N') into parent N
- Read pseudocode in book!



Deletion on B⁺-Trees

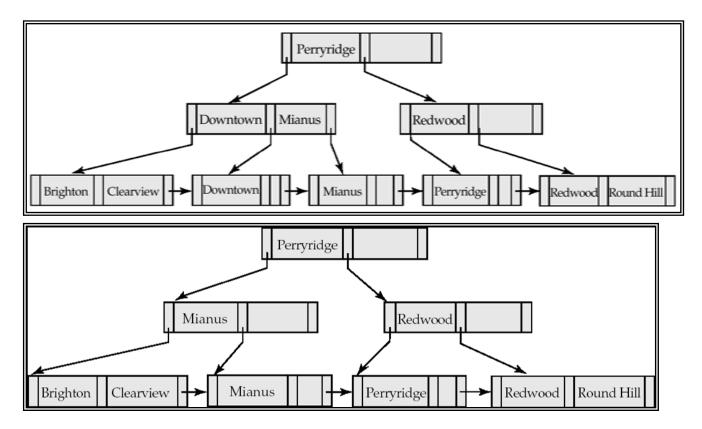
- Find the record to be deleted, and remove it from the main file and from the bucket (if present)
- Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has become empty
- If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then *merge siblings:*
 - Insert all the search-key values in the two nodes into a single node (the one on the left), and delete the other node.
 - Delete the pair (K_{i-1}, P_i) , where P_i is the pointer to the deleted node, from its parent, recursively using the above procedure.

Deletion on B⁺-Trees (cont.)

- Otherwise, if the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then **redistribute pointers**:
 - Redistribute the pointers between the node and a sibling such that both have more than the minimum number of entries.
 - Update the corresponding search-key value in the parent of the node.
- The node deletions may cascade upwards till a node which has $\lceil n/2 \rceil$ or more pointers is found.
- If the root node has only one pointer after deletion, it is deleted and the sole child becomes the root.

Examples of B⁺-Tree Deletion

- Deleting "Downtown" causes merging of under-full leaves
 - leaf node can become empty only for n=3!

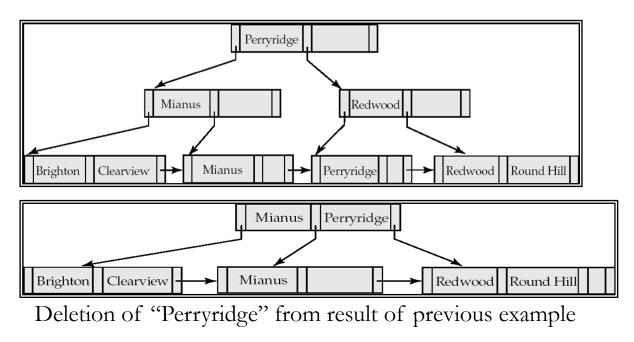


Before and after deleting "Downtown"

Intro to DB (2008-1) Copyright © 2006 - 2008 by S.-g. Lee

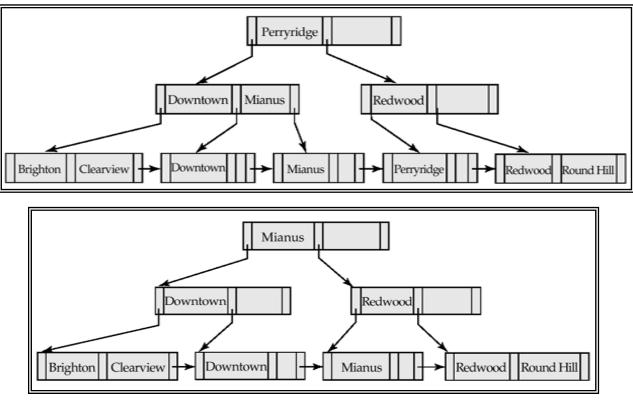
Examples of B⁺-Tree Deletion (Cont.)

- Leaf with "Perryridge" becomes underfull (actually empty, in this special case) and merged with its sibling.
- As a result "Perryridge" node's parent became underfull, and was merged with its sibling
 - Value separating two nodes (at parent) moves into merged node
 - Entry deleted from parent
- Root node then has only one child, and is deleted



Examples of B⁺-Tree Deletion (Cont.)

- Parent of leaf containing Perryridge became underfull, and borrowed a pointer from its left sibling
- Search-key value in the parent's parent changes as a result



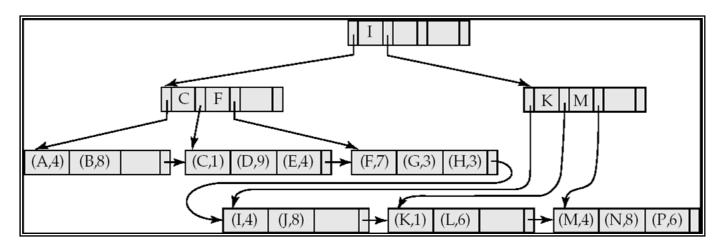
Before and after deletion of "Perryridge" from earlier example

B⁺-Tree File Organization

- Index file degradation problem is solved by using B⁺-Tree indices.
- Data file degradation problem is solved by using B⁺-Tree File Organization.
- The leaf nodes in a B⁺-tree file organization store records, instead of pointers.
- Leaf nodes are still required to be half full
 - Since records are larger than pointers, the maximum number of records that can be stored in a leaf node is less than the number of pointers in a nonleaf node.
- Insertion and deletion are handled in the same way as insertion and deletion of entries in a B⁺-tree index.

B⁺-Tree File Organization (cont.)

- Good space utilization important since records use more space than pointers.
- To improve space utilization, involve more sibling nodes in redistribution during splits and merges
 - Involving 2 siblings in redistribution (to avoid split / merge where possible) results in each node having at least $\lfloor 2n/3 \rfloor$ entries



Ordered Indexing vs Hashing

- Cost of periodic re-organization
 - Static hashing is worst => dynamic hashing
- Relative frequency of insertions and deletions
- Is it desirable to optimize average access time at the expense of worst-case access time?
- Expected type of queries:
 - Hashing is generally better at retrieving records having a specified value of the key.
 - If range queries are common, ordered indices are to be preferred

Index Definition in SQL

Create an index

E.g.: **create index** *b-index* **on** *branch(branch-name)*

- Use **create unique index** to indirectly specify and enforce the condition that the search key is a candidate key.
 - Not really required if SQL **unique** integrity constraint is supported
- To drop an index

drop index <index-name>

END OF CHAPTER 12