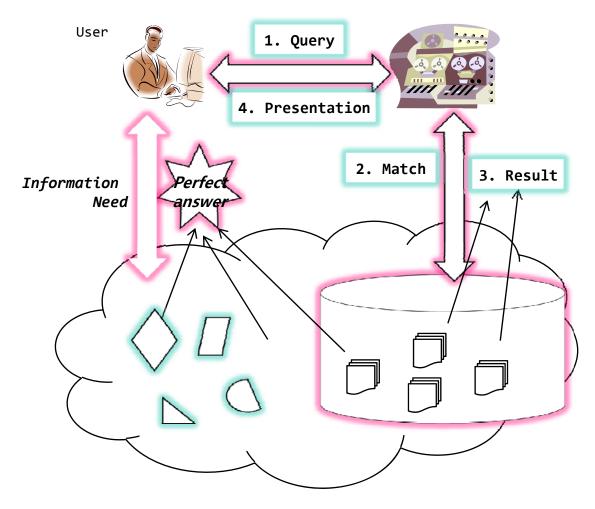
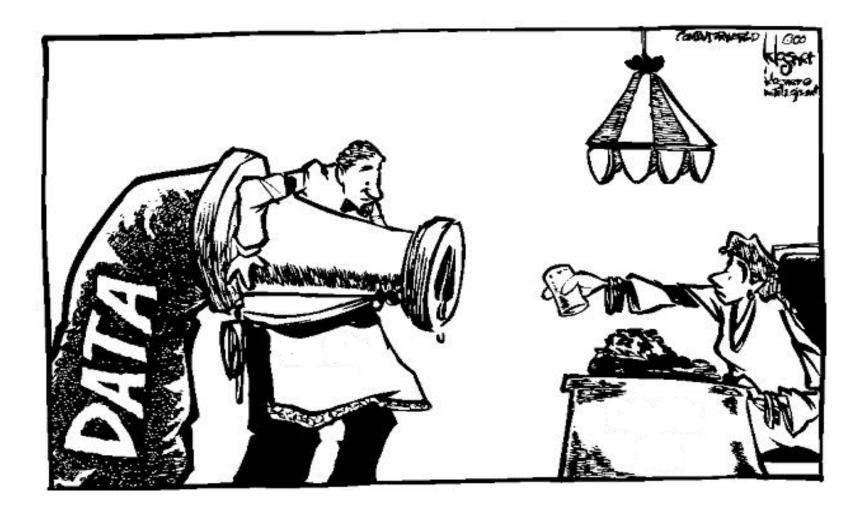
Intro to DB

CHAPTER 19 INFORMATION RETRIEVAL


Chapter 19: Information Retrieval

- Relevance Ranking Using Terms
- Relevance Using Hyperlinks
- Synonyms., Homonyms, and Ontologies
- Indexing of Documents
- Measuring Retrieval Effectiveness
- Web Search Engines
- Information Retrieval and Structured Data
- Directories

Information Retrieval Systems


- Information retrieval (IR) systems
 - Use a simpler data model than database systems
 - Information organized as a collection of documents
 - Documents are unstructured, no schema
 - Can be used even on textual descriptions provided with non-textual data such as images
 - Web search engines are the most familiar example of IR systems
- Differences from database systems
 - IR systems don't deal with transactional updates (including concurrency control and recovery)
 - Database systems deal with structured data, with schemas that define the data organization
 - [•] IR systems deal with some querying issues not generally addressed by DBMSs
 - Approximate searching by keywords
 - Ranking of retrieved answers by estimated degree of relevance

The Search Process

- 1. Query:
 - Can I represent my info.
 need accurately?
- 2. Match:
 - Is the matching algorithm adequate?
- 3. Result:
 - Do I get the type of information I was looking for?
- 4. Presentation:
 - Is the information presented in a comprehensible form?

The Search Problem

Matching Criteria

- Exact match
 - Relational DB (Business data)
 - numeric or alphabet (simple, atomic, well defined)
- Approximate match
 - IRS
 - docs are not well organized and queries are not precise
 - matching semantics is ambiguous
- Queries
 - natural language
 - list of terms

Information Retrieval (IR) Model

- How do we decide which documents are relevant to a given query?
 - What's our view (and representation) of a document?
 - What's our view (and representation) of a query?
 - What's our view of "relevance"? How do we compute it?
- An IR model is a conceptual structure in which these issues are defined.

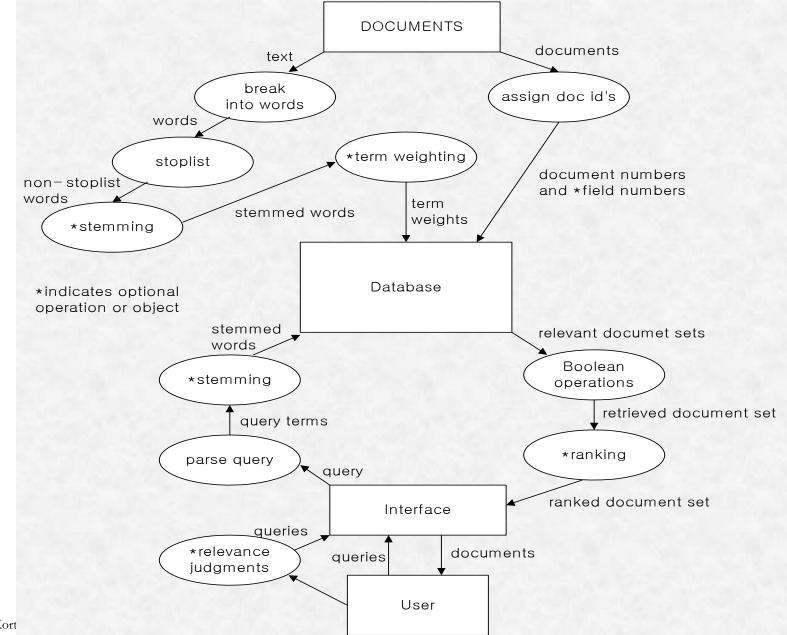
Boolean Model

- Query
 - list of terms that need to be present in a doc
 - AND, OR, NOT
- e.g.
 - database AND medical
 - protocol AND NOT computer
 - (A AND B) OR (B AND C) OR (A AND C)
- Matching
 - A query is a characteristic function: value 1 for relevant documents and 0 for others
- Most popular in Web
 - Over 95% of queries are simple term queries
 - Simple (too simple!!!)
 - Unable to represent significance (weights)
 - Document ranking is difficult

Vector Model

- A document is represented as a vector (ordered list) of terms
- A query is also a vector of terms

 $(\text{comp, database, OS, HW,}) \leftarrow \text{predetermined keyword list}$ $d_1 = (0, 0, 1, 1, 0, 0, 1, 0, 1)$ q = (0, 1, 0, 1, 1, 0, 0, 0, 1)or $d_1 = (0, 0, 0.5, 0.8, 0, 0, 0.3, 0, 0.9) \leftarrow \text{weights}$ q = (0, 0.6, 0, 0.7, 0.8, 0, 0, 0, 0.9)


- Documents and query are points in a vector space.
- Similarity measures : more flexible than Boolean
 - Distance measure
 - Angular measure: cosine measure
- Not able to represent logical connectives

$$s(d,q) = \frac{d \bullet q}{|d| \times |q|} = \frac{\sum_{k} (t_k \times q_k)}{\sqrt{\sum_{k} (t_k)^2} \times \sqrt{\sum_{k} (q_k)^2}}$$

Indexing

- Indexing: assigning index terms to a document
 - to permit easy location of documents by topic
 - to define topic areas (relate one document to another)
 - to predict relevance of documents to a specified information need
- Indexing Language
 - set of index terms; also called the *vocabulary*
 - single words VS phrases
 - controlled VS uncontrolled
- Important words occur frequently but not too frequently
 - most frequently occurring words are is, and, the, ... (stop words)
 - terms that occur only once or twice do not make good search terms

Text Analysis Process

Original Slides: © Silberschatz, Kort

Term Frequency

Term matching

- fundamental underlying process in IR
- existence of a (query) term in a document doesn't always mean relevance
 - "This document is not about ...", "The effect of ... will be explained in subsequent documents", ...
 - but almost always the best heuristic to relevance
- Absolute term frequency can be very misleading
 - term *t1* occurred 100 times in each of documents *d1* and *d2*
 - d1 is 5000 words while d2 is 50000 words
 - average doc in *d1*'s database has >100 occurrence of *t1* while average doc in *d2*'s database has < 10 occurrence
- Normalize term frequency counts to take into account document size
 - atf / doc_size
 - atf / max(atf in doc)

Inverse Document Frequency Weight

- Relative term frequency: take into account
 - document and collection size
 - document and collection characteristics
- Parameters
 - N: # of docs in collection
 - d_k : # of docs that contain term k (assume > 0)
 - tf_{ik} : term frequency of term k in doc i (normalized by doc size)
- Candidates for normalized weight (TF.IDF)

•
$$tf_{ik} / d_k$$

- $tf_{ik} / [(d_k/N)+1]$
- $f_{ik} / [log_2(d_k/N) + 1]$
- $tf_{ik} [log_2 N log_2 d_k + 1]$
 - increases with tf_{ik}
 - decreases with d_k

IDF Example

- *d*_k
 - "oil" is found in 128 items, "Mexico" is found in 16 items, "refinery" is found in 1024 items
- tf_{ik} for the given document i
 - TF of "oil" is 4, TF of "Mexico" is 8, TF of "refineries" is 10;
- N: there are 2048 items in the database

$$Weight_{i, \text{ oil}} = 4* (\text{Log}_2(2048) - \text{Log}_2(128) + 1) = 20$$

Weight_{i, \text{Mexico}} = 8* (\text{Log}_2(2048) - \text{Log}_2(16) + 1) = 64
Weight_{i, refinery} = 10* (\text{Log}_2(2048) - \text{Log}_2(1024) + 1) = 20

TF-IDF (as defined in textbook)

- **TF-IDF** (Term frequency/Inverse Document frequency) ranking:
 - Let n(d) = number of terms in the document d
 - n(d, t) = number of occurrences of term *t* in the document *d*.
 - Relevance of a document *d* to a *term t*

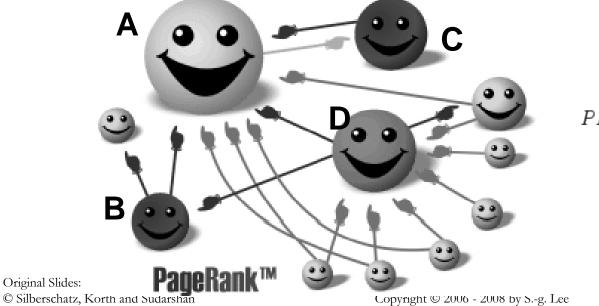
$$TF(d, t) = log\left(1 + \frac{n(d, t)}{n(d)}\right)$$

- The log factor is to avoid excessive weight to frequent terms
- Relevance of document to query Q

$$r(d, Q) = \sum_{t \in Q} \frac{TF(d, t)}{n(t)}$$

Other Issues in Indexing

- *co-occurrence*: occur together within a document
- *phrases*: occur consecutively in certain order
- *proximity*: occur together within certain distance
 - if a relationship is observed sufficiently often then it should be included in the vocabulary
- synonyms and homonyms
 - "'jaguar and lion" vs "jaguar and BMW"
 - "motorcycle repair" vs "motorcycle maintenance"
- stemming
 - education, educational, educating, ...



Similarity Based Retrieval

- Similarity based retrieval retrieve documents similar to a given document
 - Similarity may be defined on the basis of common words
 - E.g. find k terms in A with highest TF(d, t) / n(t) and use these terms to find relevance of other documents.
- Relevance feedback
 - Similarity can be used to refine answer set to keyword query
 - User selects a few relevant documents from those retrieved by keyword query, and system finds other documents similar to these
- Vector space model is used widely for similarity based methods

Relevance Using Hyperlinks

- Most of the time people are looking for pages from popular sites
 - Idea: use popularity of Web site (e.g. how many people visit it) to rank site pages that match given keywords
- Use number of hyperlinks to a site as a measure of the popularity or prestige of the site
 - When computing prestige based on links to a site, give more weight to links from sites that themselves have higher prestige

$$PR(A) = \frac{PR(B)}{L(B)} + \frac{PR(C)}{L(C)} + \frac{PR(D)}{L(D)}.$$

Relevance Using Hyperlinks (Cont.)

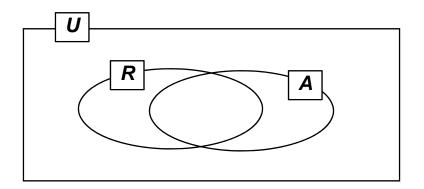
- Hub and authority based ranking
 - A **hub** is a page that stores links to many pages (on a topic)
 - An **authority** is a page that contains actual information on a topic
 - Each page gets a hub prestige based on prestige of authorities that it points to
 - Each page gets an authority prestige based on prestige of hubs that point to it
- Refinements
 - Count only one hyperlink from each site (why?)
 - Popularity measure is for site, not for individual page
 - But, most hyperlinks are to root of site
 - Also, concept of "site" difficult to define since a URL prefix like cs.yale.edu contains many unrelated pages of varying popularity
- Prestige definitions are cyclic, and can be obtained by solving linear equations

Concept-Based Querying

- Approach
 - For each word, determine the concept it represents from context
 - Use one or more ontologies:
 - Hierarchical structure showing relationship between concepts
 - E.g.: the ISA relationship that we saw in the E-R model
- This approach can be used to standardize terminology in a specific field
- Ontologies can link multiple languages
- Foundation of the Semantic Web (not covered here)

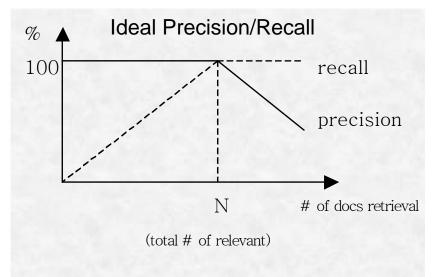
Inverted Index (File)

- Most commonly used index structure for IR
- Maps each keyword K_i to a set of documents S_i that contain the keyword
 - Documents identified by identifiers
- Inverted index may record
 - Keyword locations within document to allow proximity based ranking
 - Counts of number of occurrences of keyword to compute TF
- and operation: Finds documents that contain all of K₁, K₂, ..., K_n.
 Intersection S₁ ∩ S₂ ∩.... ∩ S_n
- or operation: documents that contain at least one of $K_1, K_2, ..., K_n$

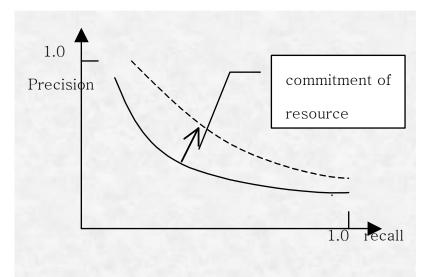

• union, $S_1 \cup S_2 \cup \dots \cup S_n$,.

- Each S_i is kept sorted to allow efficient intersection/union by merging
 - "not" can also be efficiently implemented by merging of sorted lists

Measuring Retrieval Effectiveness


- Approximate retrieval may result in:
 - false negative (false drop) some relevant documents may not be retrieved.
 - false positive some irrelevant documents may be retrieved.
- Relevant performance metrics:
 - precision what percentage of the retrieved documents are relevant to the query.
 - recall what percentage of the documents relevant to the query were retrieved.

Precision & Recall


- U : a set of all documents
 - R : Relevant document set
- A : Answer document set

- Measuring the effectiveness of an IRS
- Recall
 - $card(R \cap A) / card(R)$
- Precision
 - $\ \ \, {\rm card}(R \cap A) \; / \; {\rm card}(A) \\$

Measuring Retrieval Effectiveness (Cont.)

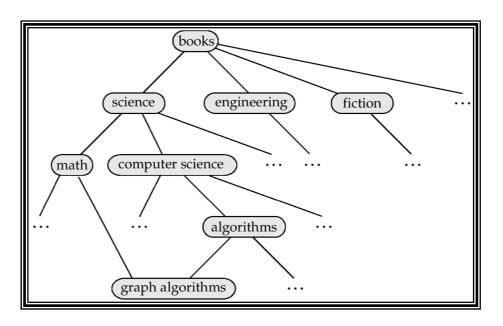
Recall vs. precision tradeoff:

- Measures of retrieval effectiveness:
 - Recall as a function of number of documents fetched, or
 - Precision as a function of recall
 - Equivalently, as a function of number of documents fetched
 - E.g. "precision of 75% at recall of 50%, and 60% at a recall of 75%"
- Problem: which documents are actually relevant, and which are not

Web Search Engines

- Web crawlers are programs that locate and gather information on the Web
 - Recursively follow hyperlinks present in known documents, to find other documents
 - Starting from a *seed* set of documents
 - Fetched documents
 - Handed over to an indexing system
 - Can be discarded after indexing, or store as a *cached* copy
- Crawling the entire Web would take a very large amount of time
 - ^o Search engines typically cover only a part of the Web, not all of it
 - Take months to perform a single crawl

Web Crawling


- Crawling is done by multiple processes on multiple machines, running in parallel
 - Set of links to be crawled stored in a database
 - New links found in crawled pages added to this set, to be crawled later
- Indexing process also runs on multiple machines
 - Creates a new copy of index instead of modifying old index
 - Old index is used to answer queries
 - After a crawl is "completed" new index becomes "old" index
- Multiple machines used to answer queries
 - Indices may be kept in memory
 - Queries may be routed to different machines for load balancing

Information Retrieval and Structured Data

- Information retrieval systems originally treated documents as a collection of words
- Information extraction systems infer structure from documents, e.g.:
 - Extraction of house attributes (size, address, number of bedrooms, etc.) from a text advertisement
 - Extraction of topic and people named from a new article
- Relations or XML structures used to store extracted data
 - System seeks connections among data to answer queries
 - Question answering systems

Web Directories

- A Web directory is a classification directory on Web pages
 - Yahoo! Directory, Open Directory project
 - Issues:
 - What should the directory hierarchy be?
 - Given a document, which nodes of the directory are categories relevant to the document
 - Often done manually
 - Classification of documents into a hierarchy may be done based on term similarity

END OF CHAPTER 19