CHAPTER 14 QUERY OPTIMIZATION

Advanced DB

Chapter 14: Query Optimization

- Overview
- Estimating Statistics of Expression Results
- Transformation of Relational Expressions
- Choice of Evaluation Plans
- Materialized Views

Introduction

- Generation of query-evaluation plans for an expression involves several steps:
 - 1. Generating logically equivalent expressions
 - Use *equivalence rules* to transform an expression into an equivalent one.
 - 2. Annotating resulting expressions to get alternative query plans
 - 3. Choosing the cheapest plan based on *estimated cost*
- The overall process is called cost based optimization.

Original Slides: © Silberschatz, Korth and Sudarshan Advanced DB (2008-1) Copyright © 2006 - 2008 by S.-g. Lee

Query Optimization

Equivalence of Expressions

Given a DB schema S, a query Q on S is <u>equivalent</u> to another query Q' on S, if the answer sets of Q and Q' are the same in *any* instances of the DB.

 $\Pi_{b_name, asset}(\sigma_{c_city="PC"}(customer \bigotimes depositor \bigotimes branch)) vs$

 $\Pi_{b_name, asset}((\sigma_{c_city="PC"}(customer)) \boxtimes depositor \boxtimes branch)$

 Query optimization is the process of *selecting* the *most efficient query evaluation plan* for a given query

Evaluation Plan

 An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_{1} \wedge \theta_{2}}(E) = \sigma_{\theta_{1}}(\sigma_{\theta_{2}}(E))$$

- 2. Selection operations are commutative. $\sigma_{\theta_1}(\sigma_{\theta_2}(E) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$
- 3. Only the last in a sequence of projection operations is needed, the others can be omitted.

 $\Pi_{t1}(\Pi_{t2}(\ \dots\ \Pi_{tn}(E\)\ \dots\)) = \Pi_{t1}(E\)$

- 4. Selections can be combined with Cartesian products and theta joins.
 - a. $\sigma_{\theta}(E_1 \mathsf{X} E_2) = E_1 \Join_{\theta} E_2$
 - b. $\sigma_{\theta_1}(E_1 \bigotimes_{\theta_2} E_2) = E_1 \bigotimes_{\theta_1 \land \theta_2} E_2$

Equivalence Rules (cont.)

- 5. Theta-join operations (and natural joins) are commutative. $E_1 \bigotimes_{\theta} E_2 = E_2 \bigotimes_{\theta} E_1$
- 6. (a) Natural join operations are associative:

 $(E_1 \boxtimes E_2) \boxtimes E_3 = E_1 \boxtimes (E_2 \boxtimes E_3)$

(b) Theta joins are associative in the following manner:

 $(E_1 \bigotimes_{\theta_1} E_2) \bigotimes_{\theta_2 \land \theta_3} E_3 = E_1 \bigotimes_{\theta_2 \land \theta_3} (E_2 \bigotimes_{\theta_2} E_3)$

where θ_2 involves attributes from only E_2 and E_3 .

7. Selection operation distributes over theta join when all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined. $\sigma_{\theta_0}(E_1 \boxtimes_{\theta} E_2) = (\sigma_{\theta_0}(E_1)) \boxtimes_{\theta} E_2$

Equivalence Rules (cont.)

Transformation – Example 1

 Query: Find the names of all customers who have an account at some branch located in Brooklyn.

 $\Pi_{customer-name}(\sigma_{branch-city} = "Brooklyn")$ $(branch \Join (account \bowtie depositor)))$

• Transformation using rule 7a.

II_{customer-name}

$$(\sigma_{branch-city} = "Brooklyn" (branch)) \boxtimes (account \boxtimes depositor))$$

 Performing the selection as early as possible reduces the size of the relation to be joined.

Transformation – Example 2

 Query: Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

$$\Pi_{customer-name}(\sigma_{branch-city} = "Brooklyn" \land balance > 1000 \\ (branch \Join (account \bowtie depositor)))$$

• Using join associativity (Rule 6a):

 $\Pi_{customer-name}((\sigma_{branch-city} = "Brooklyn" \land balance > 1000)$ $(branch \Join (account)) \Join depositor)$

• Push selection in (Rules 1 & 7):

$$\Pi_{customer-name}((\sigma_{branch-city} = "Brooklyn" (branch)) \boxtimes \sigma_{balance} > 1000 (account))$$

Original Slides: © Silberschatz, Korth and Sudarshan *depositor*)

Transformation – Example 2 (cont.)

Join Ordering

- $(r_1 \boxtimes r_2) \boxtimes r_3 = r_1 \boxtimes (r_2 \boxtimes r_3)$ (Rule 6a)
- Choose the expression that will yield smaller temporary result
- Example

 $\Pi_{customer-name} ((\sigma_{branch-city} = "Brooklyn" (branch)) \bowtie account \bowtie depositor)$

• $account \bowtie depositor$

•
$$\sigma_{branch-city} = "Brooklyn" (branch) \Join account$$

Cost Estimation

- Cost of each operator computer as described in Chapter 13
 - Need statistics of input relations
 - E.g. number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
 - Need to estimate size of expression results
 - To do so, we require additional statistics
 - E.g. number of distinct values for an attribute

Statistics for Cost Estimation

- n_r : number of tuples in a relation r
- b_r : number of blocks containing tuples of r
- s_r : size of a tuple of r
- f_r : blocking factor of r

i.e., the number of tuples of r that fit into one block

- V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$
- SC(A, r): selection cardinality of attribute A of relation r, average number of records that satisfy equality on A
- $b_r = \lceil n_r / f_r \rceil$ if tuples of *r* are stored together physically in a file

Catalog Information about Indices

- *f_i*: average fan-out of internal nodes of index *i*,
 for tree-structured indices such as B+-trees
- HT_i : number of levels in index i i.e., the height of i
 - For a balanced tree index (such as B+-tree) on attribute A of relation r, $HT_i = \lceil \log_{fi} (V(A, r)) \rceil$.
 - For a hash index, HT_i is 1.
 - LB_{i} : number of lowest-level index blocks in i i.e, the number of blocks at the leaf level of the index.

Measures of Query Cost

- Recall that
 - Typically disk access is the predominant cost, and is also relatively easy to estimate.
 - The *number of block transfers from/ to disk* is used as a measure of the actual cost of evaluation.
 - It is assumed that all transfers of blocks have the same cost
- We do not include cost of writing output to disk
- We refer to the cost estimate of algorithm A as E_A

Selection Size Estimation

- Equality selection $\sigma_{A=v}(r)$
 - SC(A, r): number of records that will satisfy the selection
 - $\left\lceil SC(A, r)/f_r \right\rceil$ number of blocks that these records will occupy
 - E.g. Binary search cost estimate becomes

$$E_{\mathcal{A}} = \left\lceil \log_2(b_r) \right\rceil + \left\lceil SC(\mathcal{A}, r)/f_r \right\rceil - 1$$

• Equality condition on a key attribute: SC(A,r) = 1

Join Size Estimation

- $r \bowtie s = r \ge s$ if $R \cap S = \emptyset$
 - $r \ge s$ contains $n_r * n_s$ tuples
 - each tuple occupies $s_r + s_s$ bytes
- If $R \cap S$ is a key for R
 - then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \boxtimes s$ is no greater than the number of tuples in *s*.
 - In the example query *depositor* \bowtie *customer*
 - *customer-name* in *depositor* is a foreign key of *customer*
 - hence, the result has (exactly) $n_{depositor}$ tuples

Join Size Estimation (cont.)

- If $R \cap S = \{A\}$ is not a key for R or S
 - If every tuple t in R produces tuples in $R \bowtie S$: $(n_r * n_s) / V(A, s)$
 - If the reverse is true: $(n_r * n_s) / V(A, r)$
 - The lower of these two estimates is probably the more accurate one.
 - Compute the size estimates for *depositor* \(\mathcal{Lustomer}\) without using information about foreign keys:
 - V(customer-name, depositor) = 2,500V(customer-name, customer) = 10,000
 - The two estimates are 5,000 * 10,000/2,500 = 20,000 and 5,000 * 10,000/10,000 = 5,000

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
 - choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
 - merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 - nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:
 - 1. Search all the plans and choose the best plan in a cost-based fashion.
 - 2. Uses heuristics to choose a plan.

Cost-Based Optimization

- Consider finding the best join-order for $r_1 \boxtimes r_2 \boxtimes \ldots r_n$.
- There are (2(n-1))!/(n-1)! different join orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of $\{r_1, r_2, \ldots, r_n\}$ is computed only once and stored for future use.

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming
 - Search space grows exponentially!
- Heuristic optimization
 - make transformations based on a set of rules that typically (but not in all cases) improve execution performance:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations before other similar operations
 - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.

END OF CHAPTER 14