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A Simple Image Model

Image: a 2-D light-g g

intensity function f(x,y)

h l f f ( )The value of f at (x,y) 

the intensity (brightness) y ( g )

of the image at that point

0 f( )0 < f(x,y) < ∞



i i l i i iDigital Image Acquisition



Sampling & Quantization
Sampling: partitioning xy plane into a grid

the coordinate of the center of each grid is a pair 
of elements from the Cartesian product Z x Z (Z2), 
Z: set of real integers

Where Does Sampling Occur?p g
Almost all data we are dealing with is discrete

Evaluation of sampled functions at arbitrary sitesEvaluation of sampled functions at arbitrary sites
Volume rendering
Isosurface extractionIsosurface extraction
Ray tracing



Sampling & Quantization
Quantization: once the signal has been sampled, it 
needs to be quantized to turn the samples intoneeds to be quantized to turn the samples into 
numbers which we can process.

Quantization means that we break 
the full positive and negative range 
of the sample value into N sectionsof the sample value into N sections 
and then code it in log2 (N) bits. 



Di it l IDi it l IDi it l IDi it l IDigital ImageDigital ImageDigital ImageDigital Image



Sampling & Quantization



Sampling & Quantization
The digitization process requires decisions about:

Val es fo N M ( he e N M the image a a )Values for N,M (where N x M: the image array) 
AND, the number of discrete gray levels, G, allowed 
for each pixelfor each pixel.

Usually, these quantities are integer powers of 
two: N 2n M 2m and G 2ktwo: N=2n , M=2m and G=2k

Another assumption is that the discrete levels 
ll d b t 0 d L 1 i thare equally spaced between 0 and L-1 in the 

gray scale.



ExamplesExamplesExamplesExamples



ExamplesExamplesExamplesExamples



Sampling & Quantization
If b is the number of bits required to store a 
digitized image then:digitized image then:

b = N x M x k  (if M=N, then b=N2k)

Storage for various values of N and kStorage for various values of N and k



Sampling & Reconstruction
Reconstruction

Given a set of digitized samples how toGiven a set of digitized samples, how to 
approximate the original signal?

Filtersampling Filter
aliasing

sampling

resconstruction
Frequency

Under sampling

resconstruction

Under sampling
Super sampling

Niquist rate



Continuous Luminosity signal

Slide © Rosalee Nerheim WolfeSlide © Rosalee Nerheim-Wolfe



Sampled Luminosity

Slide © Rosalee Nerheim-Wolfe



Reconstructed luminosity

Slide © Rosalee Nerheim-Wolfe



Reconstruction artefact

Slide © Rosalee Nerheim-Wolfe



Staircasing or Jaggies
The raster aliasing effect – removal is called 

antialiasingantialiasing

Images by Don Mitchellg y



Can be a serious problem…

Slide © Rosalee Nerheim-Wolfe



Artifacts 
- Disintegrating textures

Disintegrating texturesg g



Blurring does not work well.

Removed the jaggies, but also all the detail ! 
→ Reduction in resolution



Aliasing PROBLEM



H i i li i d ?How is antialiasing done?
We need some mathematical tools to

A l th li d t tiAnalyse the sampling and reconstruction
Find an optimum solution

Process of sampling and reconstruction is 
best understood in frequency domainbest understood in frequency domain

Use Fourier transform to switch between time and 
frequency domainsfrequency domains
Function in time domain: signal
F ti i f d i tFunction in frequency domain: spectrum



Time and Frequency
Two independent windows to see one signal

High

Low

Frequency is measured in hertz (Hz) (the number of cycles of 
change per second).
A given bandwidth is the difference in hertz between the highest 
and the lowest frequency.



Time and Frequency
Any analog signal consists of components at various 
frequencies.

The simplest case is the sine wave, in which all the signal 
energy is concentrated at one frequency. 
Analog signals usually have complex waveforms, with 
components at many frequencies.
All non periodic signals can be represented as a summationAll non-periodic signals can be represented as a summation 
of sin’s and cos’s of all freuencies.
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Time and Frequency
Transform: rule that tells how to 
obtain a function F(f ) from anotherobtain a function F(f ) from another 
function f (t )

Reveal important properties of fReveal important properties of f
More compact representation of f
Fourier transform DCT waveletFourier transform, DCT, wavelet



Time and Frequency
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Time and Frequency
example : f(t) = {1,    −a/2 < t < a/2

0,    elsewhere
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Time and Frequency
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Time and Frequency
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Time and Frequency
example : f(t) = { 1,    −a/2 < t < a/2

0,    elsewhere
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Fourier Transform 
Many functions f:R R can be written as sums 
of sine (and cosine) waves that are integer ( ) g
multiple of fundamental (basis) frequencies
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locityangular ve is   2 frequency⋅= πω

shiftphase is  ωθ
amplitude is  ωa
pω



Fourier Transform
Moving to complex numbers simplifies notation:

ixiω i
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The Fourier Transform of a Cosine
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The Fourier Transform of a Box 
Function
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The Fourier Transform of a Box 
Function



The Fourier Transform
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2D Fourier Transform
Images are 2D, discrete functions and FT will only contain 
discrete frequencies in quantized amounts
Numerical algorithm: Fast Fourier Transform (FFT) computesNumerical algorithm: Fast Fourier Transform (FFT) computes 
discrete Fourier transforms

spatial domain

frequency domainfrequency domain

Every pixel of the Fourier image is a spatial frequency valueEvery pixel of the Fourier image is a spatial frequency value, 
the magnitude of that value is encoded by the brightness of 
the pixel.
There is also a "DC term" corresponding to zero frequencyThere is also a DC term  corresponding to zero frequency, 
that represents the average brightness across the whole 
image



Fourier Transform 

spatial domain

frequency 
domain

Hi h f !!High frequency!!



2D Fourier Transform

What F(u, v) means in spatial ( , ) p
domain?

There is a signal S with 22 vu +There is a signal S with              
frequency
The orientation of S is tan-1(v/u) spatial domain

vu +

v

The orientation of S is tan 1(v/u)
The weight of S in the whole 
image is the value of F(u v)

p

u
F(u,v)

image is the value of F(u, v)

frequency domain



2D Fourier Transform
- Examples

y v

x u

y v

frequency domainspatial domain
x u



2D Fourier Transform
- Examples
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frequency domainspatial domain
x u



2D Fourier Filtering

Low pass filter High pass filter



2D Fourier Filtering

Image enhancement Noise removal



Convolution
One of the most common methods for filtering a 
function is called convolution.
In 1D, convolution is defined as:

∞
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The convolution operator is a generalized formula to 
express weighted averaging of an input signal f andexpress weighted averaging of an input signal f and 
a weight function or filter kernel g

Qualitatively: Slide the filter to each position x then sumQualitatively: Slide the filter to each position, x, then sum 
up the function multiplied by the filter at that position

One important application of convolution isOne important application of convolution is 
reconstructing sampled signals



Convolution

∫
∞

−=⊗ dttxgtfxgxf )()()()( ∫
∞−

=⊗ dttxgtfxgxf )()()()( 000



Convolution
Green curve is the convolution of the Red curve, 
f(x), and the Blue curve, g(x).( ), , g( )
The grey region indicates the product f(t)g(t – x)



Convolution Theorem
Convolution theorem: Convolution in the spatial 
domain is equivalent to multiplication in thedomain is equivalent to multiplication in the 
frequency domain.

GFgf ⋅=⊗

Symmetric theorem: Convolution in the frequency 
domain is equivalent to multiplication in the spatial 
domain.

HFgf ⊗=⋅



Delta Function

The impulse (Dirac delta function), δ(x), is a 
handy tool for sampling theory.
It has zero width, infinite height, and unit area., g ,
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Delta Function
For sampling, the delta function has two important 
propertiesproperties.
Sifting: )()()()( axafaxxf −=− δδ

)( ax −δ )()( axaf −δ× =)(xf ×
x xaa
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Comb Function
Comb function is an infinite series of equidistant 
Dirac impulses ∞Dirac impulses
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Fourier transform of the comb function takes the 
same form:

T/1



Sampling Function
The Fourier transform of the sampling function(e.g., 
comb function) is itself a sampling functioncomb function) is itself a sampling function.

The sample spacing is the inverse.

)()( 1 ω
T

SxST ⇔

Remember convolution in the spatial domain is the 
same as multiplication in the frequency domainsame as multiplication in the frequency domain



Sampling and Reconstruction
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Sampling and Reconstruction

0.13 0.13 0.13 0.13 0.13

ωx

Reconstruction
filt i

×⊗
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x ω



Reconstruction
To reconstruct, we must restore the original 
spectrum
That can be done by multiplying by a filter like 
square pulse

×

Multiplying by a square pulse in the frequency domain 
is the same as convolving with a sinc function in the 
spatial domain



Sinc Filter

x
xx

π
π )sin()(sinc =
xπ

S ti l i Frequency: boxSpatial: sinc Frequency: box

Perfect low-pass filterPerfect low-pass filter
Cuts off all frequencies above a threshold

ll f d lOscillates to infinity: need too many samples
We use other functions similar to a sinc to filter



lBox Filter

Smooths out function by 
averaging neighbors
Keeps low frequencies and p q
reduces high frequencies 
(low-pass filter)
Equally weights all samples
In frequency domainIn frequency domain, 
contains sidelobes to infinity



B FiltBox Filter
Lousy for steadily varying signals, for instance, sin(x)



Box Filter
+∈< RTTx   ,||  ifbox(x) = { 1, 

0 elsewhere( ) { 0,    elsewhere

Spatial: Box Frequency: sincSpatial: Box Frequency: sinc



lTent Filter

ω
ωω <−= x
x
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ω
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Spatial: Tent
Frequency: sinc squared



Tent Filter

Acts as linear interpolation filter
Reduces high frequencies more
Weights center sample moreWeights center sample more
Other samples weighted linearly

10 7.03.0weight xx ⋅+⋅=



Tent Filter



Tent Filter
Reconstructing a function using linear interpolation. 

the Bartlett filter not only does not separate the original y p g
spectrum from the replications, it also aliases high-
frequency components into the reconstruction due to its 
infinite support.te suppo t



Gaussian Filter

Spatial: Gaussian Frequency: Gaussian

Reduces high frequences even more
No sharp edges like in box, tent



Qualitative Filters

F G H

×

F G

=

H

Low-pass× =

× = High-pass

× = Band-pass=



Filtering in spatial domain
Work in the discrete spatial domain
Convert the filter into a matrix, the filter mask
Move the matrix over each point in the imageMove the matrix over each point in the image, 
multiply the entries by the pixels below, then 
sumsum

Eg. 3x3 box filter
⎥
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⎢
⎡ 111

1averages
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1
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Filtering in Spatial domain
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The Nyquist Theorem
When we can reconstruct the original 
continuous time signal from its samples ?continuous-time signal from its samples ?

There is a minimum frequency 
fwith which functions must be 

sampled – the Nyquist frequency
T i th i fTwice the maximum frequency 
present in the signal
Example: Human ear hears p
frequencies up to 20 kHz → CD 
sample rate is 44.1 kHz.

N t ll li h llNot all sampling schemes allow 
reconstruction

eg: Sampling with a boxeg: Sampling with a box



The Nyquist Theoremyq
- Example 1

Frequency of original signal: 0.5 Hz
Sampling frequency: 0.7 Hz

Sampling freq. < 2*bandwidth
The original wave cannot be recovered.



The Nyquist Theoremyq
- Example 2

Frequency of original signal: 0.5 Hz
Sampling frequency: 1.0 Hz

Sampling freq. = 2*bandwidth 
The original wave may be recovered.



Sources of Aliasing
Non-bandlimited signal

Low sampling rate (below Nyquist)

Non perfect reconstruction



Prefiltering

Before sampling the image, use a low-pass filter 
t li i t f i b th N i t li itto eliminate frequencies above the Nyquist limit
This blurs the image, but ensures that no high 
frequencies will be misrepresented as low 
frequencies
Determines pixel intensity based on the amount 
that a particular pixel is covered by an object in 
the scene. Determining such areas requires 
extensive calculations and integral approximations



Basis for Prefiltering

1. Treat a pixel as an 
area

2. Compute weighted 
amount of object 
overlap

Wh i h iWhat weighting 
function should we 

?use?
How in volume 
rendering?rendering?



Prefiltering- example



Postfiltering 

Postfiltering, also known as supersampling
Sample image at higher resolution than final image, 
then “average down”
“Average down” means multiply by low-pass function 
in frequency domain 
D ’ li i li i j hif h N i li iDoesn’t eliminate aliasing, just shifts the Nyquist limit 
higher

C t fi ( h k b d)Cannot fix some scenes (e.g., checkerboard)
Badly inflates storage requirements
l l d f k ll hRelatively easy and often works all right in practice

Can be added to a standard renderer : A-buffer



Postfiltering 
The two steps in the postfiltering process are: 

S l th t ti th di l1. Sample the scene at n times the display 
resolution. 

2 Th l f h i l i th d d2. The color of each pixel in the rendered 
image will be an average of several samples. 

A filter provides the weights used to computeA filter provides the weights used to compute 
the average.



Sampling in the postfiltering 
method

Supersampling from a 4x3 image. 
Compute the weighted average of manyCompute the weighted average of many 
samples (9 samples for each pixel)
S li b d d l l lSampling can be done randomly or regularly. 
The method of perturbing the sample 
positions is known as "jittering "positions is known as jittering.



Antialiasing

http://www.siggraph.org/education/materials/HyperGraph/aliasing



Antialiasing in the 
continuous domain

Problem with Prefiltering:
Sampling and image generation inextricably linked in most 
renderers

Z buffer algorithmZ-buffer algorithm
Ray tracing

Why?Why?

Still, some approaches try to approximate the effect 
of convolution in the continuous domain - splattingof convolution in the continuous domain splatting



Antialiasing in the 
continuous domain

Pi lPixel
Grid

Polygons Filter kernel



Antialiasing in the 
continuous domain
The good news

E t l f th filt k lExact polygon coverage of the filter kernel 
can be evaluated
What does this entail?What does this entail?

Clipping
Hidden surface determinationHidden surface determination

Filter kernel



Antialiasing in the 
continuous domain
The bad news

Evaluating coverage is very expensive
The intensity variation is too complex to y p
integrate over the area of the filter

Q: Why does intensity make it harder?
A: Because polygons might not be flat- shaded
Q: How bad a problem is this?
A: Intensity varies slowly within a pixel, so shape 

changes are more important

Filter kernel



Catmull’s Algorithm

Find fragment 

A1
A2

areas
Multiply by A1fragment colors
Sum for final 
pixel color

AB A3



Catmull’s Algorithm
First real attempt to filter in continuous domain

Very expensive 
Clipping polygons to fragments

Sorting polygon fragments by depth 

(What’s wrong with this as a hidden surface algorithm?)

Equates to box filter (Is that good?)



A-Buffer
Accumulation buffer
Idea: approximate continuous filtering by subpixelIdea: approximate continuous filtering by subpixel 
sampling
Summing areas now becomes simpleSumming areas now becomes simple
Commonly used in software to generate high 
quality renderings but not in real-time



A-Buffer

z-buffer: one visible surface per pixel
A-buffer: linked list of surfaces



Antialiasing Strategies
Supersampling: sample 
at higher resolution

A-Buffer: approximate 
pre-filtering of continuousat higher resolution, 

then filter down
Pros:

pre filtering of continuous 
signal by sampling

Pros:Pros:
Conceptually simple
Easy to retrofit existing

Pros:
Integrating with scan-line 
renderer keeps storage 

t l
Easy to retrofit existing 
renderers
Works well most of the 
ti

costs low
Can be efficiently 
implemented with clevertime

Cons:
High storage costs

implemented with clever 
bitwise operations

Cons: 
High storage costs
Doesn’t eliminate 
aliasing, just shifts 

Still basically a super-
sampling approach
Doesn’t integrate with ray-Nyquist limit upwards Doesn t integrate with ray
tracing



What you learn?
Sampling
Transform (signal frequency)
FiltersFilters
Aliasing & Anti-alising
Nyquist Limit
Why jagged effects in CG image?Why jagged effects in CG image?
How you solve that?


