Three-Dimensional Viewing
How to define a window?
How to project onto the window?
Rendering

"Create a picture (in a synthetic camera)"

- Specification of projection type
- Specification of viewing parameters:
 - viewer's eye, viewing plane (viewing coordinates)
- Clipping in 3D: window, view volume
- Projection: the transformation of points from a coordinate system in \(n \) dimensions to a coordinate system in \(m \) dimensions where \(m < n \)
- Display: view port
General 3D Viewing Pipeline

- Modeling coordinates (MC)
- World coordinates (WC)
- Viewing coordinates (VC) – VRC, camera position
- Projection coordinates (PC) – window, projection type
- Normalized coordinates (NC)
- Device coordinates (DC) – viewport in a screen
Projections

- Projection coordinate system:
 - left-handed - Core, **DirectX**
 - why? screen coordinate system is left-handed
 - right-handed - GKS, PHIGS, **OpenGL**, DirectX

- Projection plane (view plane): viewing surface where objects are projected.
Viewing-Coordinate Parameters

- View reference point (VRP)
 - The viewing origin in WC: \(P_0 = (x_0, y_0, z_0) \)
 - Eye position, camera position

- View-plane (Projection plane)
 - Locates on \(z_{\text{view}} \) axis: \(z_{\text{vp}} \)
 - Perpendicular to \(z_{\text{view}} \)

- Viewing Coordinate: \(uvn \)
 - Defined by \(P_0, N, VUP \)
Viewing-Coordinate Parameters

How we specify a view plane normal vector \mathbf{N}

[Way I] The origin of WC to a selected point position
[Way II] The direction from a reference point P_{ref}

to the viewing origin: $\mathbf{N} = \mathbf{P}_0 - P_{\text{ref}}$

P_{ref}: look-at point
Viewing direction: $-\mathbf{N}$
Viewing-Coordinate Parameters

- **View-up vector**: \(\mathbf{VUP} \)
 - Specified in the world coordinates
 - Used to establish the positive direction for the \(y_{\text{view}} \) axis
 - \(\mathbf{VUP} \) should be perpendicular to \(\mathbf{N} \), but it can be difficult to a direction for \(\mathbf{VUP} \) that is precisely perpendicular to \(\mathbf{N} \)
The camera orientation is determined by viewing reference frame \(\mathbf{x}_{\text{view}}, \mathbf{y}_{\text{view}}, \mathbf{z}_{\text{view}} \) (or \(\mathbf{uvn} \)).

The origin of the viewing reference frame: \(\mathbf{P}_0 (= \text{VRP}) \).

\(\mathbf{uvn} \) is called View Reference Coordinate (VRC).

\[
\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|} = (n_x, n_y, n_z)
\]

\[
\mathbf{u} = \frac{\mathbf{VUP} \times \mathbf{n}}{\|\mathbf{VUP}\|} = (u_x, u_y, u_z)
\]

\[
\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_x, v_y, v_z)
\]
World-to-Viewing Transformation

- Transformation from WC to VRC
 - Translate the viewing-coordinate origin to the world-coordinate origin
 - Apply rotations to align the u, v, n axes with the world x_w, y_w, z_w axes, respectively
World-to-Viewing Transformation

\[R = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad T = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[M_{wc,vc} = R \cdot T = \begin{bmatrix} u_x & u_y & u_z & -u \cdot P_0 \\ v_x & v_y & v_z & -v \cdot P_0 \\ n_x & n_y & n_z & -n \cdot P_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Example of VRC \Rightarrow WC

Given $VPN = \begin{pmatrix} -6 & -8 & -7.5 \end{pmatrix}$

$VUP = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$

$R_z = \frac{R_z}{\|R_z\|} = \frac{1}{12.5} (-6, -8, -7.5) = (0.48, 0.64, 0.60)$

$VUP \times R_z = \frac{1}{12.5} \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ 6.0 & 8.0 & 7.5 \end{vmatrix} = \frac{1}{12.5} (-8.0, 6.0, 0.0)$

$R_x = \frac{VUP \times R_z}{\|VUP \times R_z\|} = (-0.8, 0.6, 0.0)$

$R_y = R_z \times R_x = (-0.35, -0.48, 0.8)$
Hierarchy of plane geometric projections

- parallel
 - orthographic
 - axonometric
 - oblique
 - trimetric
 - cavalier
 - cabinet
 - dimetric
- perspective
 - isometric
 - single-point
 - two-point
 - three-point
Parallel Projections

- Parallel direction of projection (DOP)
- Direction of projection (DOP) same for all points
- The parallel projection of the point \((x, y, z)\) on the \(xy\)-plane gives \((x + az, y + bz, 0)\)
 - When \(a = b = 0\), the projection is said to be orthographic or orthogonal. Otherwise, it is oblique.
- Preserves relative dimension
- Orthographic parallel projections
 - The direction of projection is normal to the projection plane
 - Architectural, engineering drawings
Axonometric Parallel Projection

- Orthographic parallel projection that displays more than one face of an object
- Projection plane intersects each principal axis
- Classify by how many identical angles of a corner of a projected cube.
 - Three: isometric
 - Two: dimetric
 - None: trimetric
Oblique Parallel Projections

- Parallel projection of which DOP (Direction of projection) is not perpendicular to the projection plane
- Only faces of the object parallel to the projection plane are shown true size and shape

\[
\frac{AB}{AC} = \frac{A'B'}{A'C'} = \frac{1}{2} \frac{BC}{B'C''}
\]

\[
\alpha = \arctan(1/2) = 26.565^\circ
\]
Oblique Parallel Projections

cavalier projections
DOP $\approx 45^\circ$

cabinet projections
DOP $\approx 63.4^\circ$
Perspective vs. Parallel Projections
Lines that are not parallel to the projection plane converge to a single point in the projection (the **vanishing point**).

Lines parallel to one of the major axis come to a vanishing point, these are called (principle) axis vanishing points. Only three axis vanishing points in 3D space.
Projection Types

- Front elevation
- Elevation oblique
- Plan oblique
- Isometric
- One-point perspective
- Three-point perspective
Projections

- **Window**
 - a rectangular region on the projection plane

- **Projection Reference Point (PRP)**
 - PRP is specified in the VRC system
 - In general, (0,0,0)

- **Direction of projection (DOP):** in a parallel projection, PRP \Rightarrow CW

- **Center of projection (COP):** in a perspective projection, PRP = COP
View Volume (View Frustum)

- 3D clipping region where we can see
- Defined by front and back clipping planes (which are parallel to view plane)

\[(\text{left,bottom},z_{\text{near}})\]
\[(0,0,0)\]
\[(\text{right,top},z_{\text{near}})\]

\[z_{\text{near}},z_{\text{far}} \text{ are positive}\]
Create a View Volume

CW is not aligned n-axis
(left, right, top, bottom, near, far)

CW is aligned n-axis
(width, height, near, far)

CW is aligned n-axis
(field of view, aspect, near, far)

\[\text{aspect} = \frac{\text{width}}{\text{height}} \]
1) Establishing a View Reference Coordinate System

User supply the following parameters

- the view reference point (VRP) - in WC
- VPN - a vector in WC
- VUP - a vector in WC
3D Viewing

2) View Mapping (WC \Rightarrow VRC \Rightarrow NPC)
 - the projection type
 - the Projection Reference Point (PRP)
 - a view plane distance ($= z_{vp}$)
 - In DirectX, view plane is identical to near plane
 - a back plane and a front plane distance

3) device-dependent transformation
Planar Geometric Projections

- Mathematics of Planar Geometric Projections

Centre of projection at the origin
Projection plane at $z=d$
Planar Geometric Projections

\[
\frac{x_p}{d} = \frac{x}{z}, \quad \frac{y_p}{d} = \frac{y}{z}
\]

\[
\Rightarrow x_p = \frac{d \cdot x}{z} = \frac{x}{z/d}, \quad y_p = \frac{d \cdot y}{z} = \frac{y}{z/d}
\]

\[
\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = M_{per} \cdot P = \begin{bmatrix}
1 & 0 & 0 & 0 & x \\
0 & 1 & 0 & 0 & y \\
0 & 0 & 1 & 0 & z \\
0 & 0 & 1/d & 0 & 1
\end{bmatrix}
\]

\[
\Rightarrow \left(\frac{X}{W}, \frac{Y}{W}, \frac{X}{W} \right) = (x_p, y_p, z_p) = \left(\frac{x}{z/d}, \frac{y}{z/d}, d \right)
\]
Normalizing Transformation

- Transform an arbitrary parallel- or perspective-projection view volume into the normalized or canonical view volume (in DirectX)
Normalizing Transformation

OpenGL
Normalizing transformation for parallel projections

1. Translate VRP to the origin of the WC
2. Rotate VRC such that \(n \text{ axis } = z \text{ axis, } u \text{ axis } = x \text{ axis and } v \text{ axis } = y \text{ axis.} \)

(\text{By 1 & 2, transformation from WCS to VRC})

3. Shear so the direction of projection parallel to the z axis. (not necessary for orthographic projections)

4. Translate and scale into the parallel-projection canonical view volume
Normalizing transformation for parallel projections

[Step 2]

\[R_z(\theta)R_y(\phi)R_x(\alpha) \]

Or use orthogonal matrix properties

\[
\begin{align*}
R_z &= \frac{\text{VPN}}{\|\text{VPN}\|} \\
R_x &= \frac{\text{VUP} \times R_z}{\|\text{VUP} \times R_z\|} \\
R_y &= R_z \times R_x
\end{align*}
\]

\[
R = \begin{bmatrix}
 r_{1x} & r_{2x} & r_{3x} & 0 \\
 r_{1y} & r_{2y} & r_{3y} & 0 \\
 r_{1z} & r_{2z} & r_{3z} & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Normalizing transformation for parallel projections

[Step 3] shearing
- after step 2, VRC = WC
- DOP = CW - PRP
Normalizing transformation for parallel projections

- z-component of DOP is invariant.

\[
SH_z(a,b) = \begin{bmatrix}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
DOP_{wc} = CW - PRP = \begin{pmatrix} dop_x & dop_y & dop_z \end{pmatrix}
\]

\[
DOP' = \begin{bmatrix}
1 & 0 & a & 0 \\
0 & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} \cdot DOP_{wc} = \begin{pmatrix}
0 \\
0 \\
dop_z \\
1 \\
\end{pmatrix}
\]

\[
a = -\frac{dop_x}{dop_z}, \quad b = -\frac{dop_y}{dop_z}
\]
Normalizing transformation for parallel projections

- View volume after transformation steps 1 to 3

\[
(B, V, F) \rightarrow (u_{\text{max}}, v_{\text{max}}, B)
\]

\[
(u_{\text{min}}, v_{\text{min}}, F)
\]

Step 4
Normalizing transformation for parallel projections

[Step 4] translate and scale

1. Translate the front center of the view volume

\[T_{par} = T \left(-\frac{u_{\text{max}} + u_{\text{min}}}{2}, -\frac{v_{\text{max}} + v_{\text{min}}}{2}, F \right) \]

2. Scale to the $2 \times 2 \times 1$ size

\[S_{par} = S \left(\frac{2}{u_{\text{max}} - u_{\text{min}}}, \frac{2}{v_{\text{max}} - v_{\text{min}}}, \frac{1}{F - B} \right) \]
Normalizing transformation for perspective projection

1. Translate VRP to the origin of the WC: $T(-\text{VRP})$
2. Rotate VRC such that n axis = z axis, u axis = x axis and v axis = y axis
3. Translate such that PRP=$(\text{prp}_u, \text{prp}_v, \text{prp}_n)$ is at the origin: $T(-\text{PRP})$
4. Shear so the center line of the view volume becomes the z-axis
5. (*Scale such that the view volume becomes the canonical perspective view volume.*)
Normalizing transformation for perspective projection

After step 1,2,3

Step 4
Normalizing transformation for perspective projection

[Step 4] shearing

shear so that CW – PRP is into –z axis

\[SH_{\text{per}} = Sh_{\text{par}} \]

Another Way: \[VRP' = SH_{\text{per}} T(-\text{PRP}) [0 \ 0 \ 0 \ 1]^T \]

z component of \(VRP' \): \(vrp_z' = -prp_n \)
Normalizing transformation for perspective projection

[Step 5] scale

1. Scale x and y to give the sloped planes bounding the view-volume unit slope.

 Scale the window so its half-height and half-width are both \(-v_rp_z'\)

\[
\begin{align*}
\text{x scale:} & \quad \frac{-2 \cdot v_rp_z'}{(u_{\text{max}} - u_{\text{min}})} \\
\text{y scale:} & \quad \frac{-2 \cdot v_rp_z'}{(v_{\text{max}} - v_{\text{min}})}
\end{align*}
\]
Normalizing transformation for perspective projection

2. Scale uniformly all three axes such that the back clipping plane \(z = vrp'_z + B \) becomes -1.

\[\Rightarrow \text{scale factor: } -1/(vrp'_z + B) \]

Perspective scale transformation

\[
S_{\text{per}} = S\left(\frac{2vrp'_z}{(u_{\text{max}} - u_{\text{min}})(vrp'_z + B)}, \frac{2vrp'_z}{(v_{\text{max}} - v_{\text{min}})(vrp'_z + B)}, -1 \right)
\]
DirectX: Viewing Transformation

- How to define VRC
 - **Eye-Point** (= VRP)
 - **Look-At Position**
 - Look-At Position – Eye-Point → N
 - **Up-Vector** (→ v)

Syntax

```c
D3DXMATRIX *D3DXMatrixLookAtLH(
    D3DXMATRIX *pOut, CONST D3DXVECTOR3 *pEye,
    CONST D3DXVECTOR3 *pAt, CONST D3DXVECTOR3 *pUp);
```

Parameters

- **pOut**: Pointer to the `D3DXMATRIX` structure that is the result of the operation.
- **pEye**: Pointer to the `D3DXVECTOR3` structure that defines the eye point.
- **pAt**: Pointer to the `D3DXVECTOR3` structure that defines the camera look-at target.
- **pUp**: Pointer to the `D3DXVECTOR3` structure that defines the current world's up, usually [0, 1, 0].
DirectX: Perspective Projection Transformation

When CW aligns n-axis

Syntax

```c
D3DXMATRIX *D3DXMatrixPerspectiveFovLH(
    D3DXMATRIX *pOut, FLOAT fovy, FLOAT Aspect, FLOAT zn, FLOAT zf);
```

Parameters

- `pOut`: Pointer to the `D3DXMATRIX` structure that is the result of the operation.
- `fovy`: Field of view in the y direction, in radians.
- `Aspect`: Aspect ratio, defined as view space width divided by height.
- `zn`: Z-value of the near view-plane.
- `zf`: Z-value of the far view-plane.
DirectX:
Perspective Projection Transformation

When CW does not align n-axis

Syntax
D3DXMATRIX *D3DXMatrixPerspectiveOffCenterLH
 (D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t,
 FLOAT zn, FLOAT zf);

Parameters
pOut : Pointer to the D3DXMATRIX structure that is the result of the operation.
l : Minimum x-value of the view volume.
r : Maximum x-value of the view volume.
b : Minimum y-value of the view volume.
t : Maximum y-value of the view volume.
zn : Minimum z-value of the view volume.
zf : Maximum z-value of the view volume.
DirectX: Orthographic Parallel Projection Transformation

Syntax

```c
D3DXMATRIX *WINAPI D3DXMatrixOrthoLH(
    D3DXMATRIX *pOut, FLOAT w, FLOAT h, FLOAT zn, FLOAT zf);
```

Parameters

- **pOut**: Pointer to the `D3DXMATRIX` structure that contains the resulting matrix.
- **w**: Width of the view volume.
- **h**: Height of the view volume.
- **zn**: Minimum z-value of the view volume which is referred to as z-near.
- **zf**: Maximum z-value of the view volume which is referred to as z-far.
DirectX: Oblique Parallel Projection Transformation

Syntax

```c
D3DXMATRIX *D3DXMatrixOrthoOffCenterLH
(D3DXMATRIX *pOut, FLOAT l, FLOAT r, FLOAT b, FLOAT t,
FLOAT zn, FLOAT zf);
```

Parameters

- `pOut`: Pointer to the `D3DXMATRIX` structure that is the result of the operation.
- `l`: Minimum x-value of view volume.
- `r`: Maximum x-value of view volume.
- `b`: Minimum y-value of view volume.
- `t`: Maximum y-value of view volume.
- `zn`: Minimum z-value of the view volume.
- `zf`: Maximum z-value of the view volume.
3D Clipping

- For orthographic projection, view volume is a box
- For perspective projection, view volume is a frustum

Need to calculate intersection with 6 planes
3D Clipping

- Clipping is efficiently done on the normalized view volume.
- The canonical parallel projection view volume is defined by:
 \[-1 \leq x \leq 1, \quad -1 \leq y \leq 1, \quad -1 \leq z \leq 0\]
- Clip primitives against this view volume
3D Region Coding for Clipping

- 3-D Extension of 2-D Cohen-Sutherland Algorithm

For parallel-projection canonical view volume:

- Bit 1 - point is above view volume: \(y > 1 \)
- Bit 2 - point is below view volume: \(y < -1 \)
- Bit 3 - point is right of view volume: \(x > 1 \)
- Bit 4 - point is left view volume: \(x < -1 \)
- Bit 5 - point is behind view volume: \(z < -1 \)
- Bit 6 - point is in front of view volume: \(z > 0 \)
3D Region Coding for Clipping
3D Region Coding for Clipping

For perspective-projection canonical view volume

Bit 1 - Point is above view volume \(y > -z \)
Bit 2 - Point is below view volume \(y < z \)
Bit 3 - Point is right of view volume \(x > -z \)
Bit 4 - Point is left of view volume \(x < z \)
Bit 5 - Point is behind view volume \(z < -1 \)
Bit 6 - Point is in front of view volume \(z > z_{\text{min}} \)
Clipping and Homogeneous Coordinates

- Efficient to transform frustum into perspective canonical view volume – unit slope planes
- Even better to transform to parallel canonical view volume
 - Clipping must be done in homogeneous coordinates
 - We do not need to $[X, Y, Z, W] \Rightarrow [x, y, z, 1]$ for the clipped region
- Points in homogeneous coordinate can appear with $-W$ and cannot be clipped properly in 3D
Clipping and Homogeneous Coordinates

- 3D parallel projection volume is defined by:
 \[-1 \leq x \leq 1, \ -1 \leq y \leq 1, \ -1 \leq z \leq 0\]

- Replace by \(X/W, Y/W, Z/W\):
 \[-1 \leq X/W \leq 1, \ -1 \leq Y/W \leq 1, \ -1 \leq Z/W \leq 0\]

- Corresponding plane equations are:
 \(X=-W, X=W, Y=-W, Y=W, Z=-W, Z=0\)

- If \(W>0\), multiplication by \(W\) does not change sign:
 \(W>0: -W \leq X \leq W, -W \leq Y \leq W, -W \leq Z \leq 0\)

- However if \(W<0\), need to change sign:
 \(W<0: -W \geq X \geq W, -W \geq Y \geq W, -W \geq Z \geq 0\)
For the canonical parallel projection volume:

\[-1 \leq x \leq 1, \ -1 \leq y \leq 1, \ -1 \leq z \leq 0\]

To clip to \(x = -1\) (left):

- Homogeneous coordinate: Clip to \(X/W = -1\)
- Homogeneous plane: \(W + X = 0\)
- Point is visible if \(W + X > 0\)
Clipping and Homogeneous Coordinates

- The intersection of the line segment with a clipping plane:

\[P = (1 - \alpha)P_1 + \alpha P_2 \quad \text{and} \quad w + x = 0 \]

\[\Rightarrow \quad [(1 - \alpha)w_1 + \alpha w_2] + [(1 - \alpha)x_1 + \alpha x_2] = 0 \]

\[\Rightarrow \quad \alpha = \frac{x_1 + w_2}{(w_1 + x_1) - (w_2 + x_2)} \]

- Repeat for remaining boundaries: other Near and Far clipping planes
Clipping and Homogeneous Coordinates (example)

\[P_1 = [2, y_1^*, z_1^*, 2] \]
\[P_2 = [-1, y_2^*, z_2^*, \frac{1}{2}] \]

\[\alpha = \frac{x_1 + w_2}{(w_1 + x_1) - (w_2 + x_2)} = \frac{2 + 2}{-\left(\frac{1}{2} - 2\right) - (-1 - 2)} = \frac{8}{9} \]

\[P^* = \left[-\frac{2}{3}, y_1^* + \frac{8}{9} (y_2^* - y_1^*), z_1^* + \frac{8}{9} (z_2^* - z_1^*), \frac{2}{3} \right] \]

Projected x-coordinate of \(P^* = \frac{x}{w^*} = -1 \)
Points in Homogeneous Coordinates

\[\mathbf{P}_1 = [1 \ 2 \ 3 \ 4]^T \]

\[\mathbf{P}_2 = [-1 \ -2 \ -3 \ -4]^T \]

Region A

Region B

Projection of \(\mathbf{P}_1 \) and \(\mathbf{P}_2 \) onto \(W=1 \) plane

Need to consider both regions when performing clipping
Lines in Homogeneous Coordinates

- Could clip twice – once for region B, once for region A.
 - Expensive
- Check for negative W values and negate points before clipping

![Diagram of lines in homogeneous coordinates](image)

Projection of points

W=1
Lines in Homogeneous Coordinates

W = X
W = 1
W = -X

P1

P2

Clipped lines
3D Polygon Clipping Algorithms

- Bounding box or sphere test for early rejection
- Sutherland-Hodgman and Weiler-Atherton algorithms can be generalized
What’s Next