

Chapter 8 Intro. to Computer Graphics Spring 2008, Y. G. Shin

Components for Image Synthesis

- Scene description
- Light source
- Viewpoint
- Scene = an assembly of one or more models
 - A model contains
 - structural description geometry of the shape
 - surface description appearance (lighting)
 - For a simulation model we need more
 - physics
 - mechanics assemblability, reachability

How are models used?

- Image synthesis
- Design
- Manufacturing part relationships, feasibility
- Simulation
- Art
- Levels of Detail
 - visual detail vs. structural detail
 - more detail = more realism/accuracy

= more resources

 procedural objects : more detail when you need it.

Issues in Model Selection

- Computational cost of the model
 - storage space
 - object construction time
 - display time
- Effectiveness in modeling the desired phenomena
 - geometry
 - looks good for image-making
 - accuracy for simulation
 - appearance
 - looks
 - accuracy

Implementation Complexity

- the number of primitives
- the number of shapes
- complexity of each instance
- The methods need to acquire (or create) data
- Ease of simulation
 - match to simulator
 - cost of conversion
- Ease of animation
 - physics of motion
 - constraints

The difference between models and rendering

- Models describe the object and its attributes:
 - shape or geometry
 - reflectivity, transmittance
 - surface smoothness, color
 - texture
- Rendering algorithm transforms the model to a screen-based view from a given:
 - COP or camera position, location, view direction, view up direction projection type, window clipping plane, focal length
 - One or more light sources location, direction, intensity, color
 - Atmospheric effects ambient light, fog, depth cuing
 - Image quality parameters antialiasing, resolution

Operations on models

- Transformations
- Change of detail

Interpolation to augment detail Averaging to reduce detail Hierarchy of models of the same object at different levels of detail

- Measurement
 - topology connectivity, feature
 - distance
 - volume
 - surface tangent

 Combination union intersection difference cut/slice • Deformation skew stretch bend perturb (e.g., randomly, stochastically, or fractally) • Display operation wire-frame visible line/surface ray cast radiosity

Model Classification

- Graphical Model : represent geometric information in terms of points and lines.
- Surface Model : planar surface
- Volume Model : voxels

Wireframes

- CAD systems
- Simple BUT ambiguous

Surface and Boundary Models

Points

- List of coordinate triples (a collection of 3D points)
- Require a fairly dense distribution of points for accurate modeling
- Polygon mesh (Boundary representation)
 - Vertex, edge, face structure
 - Relatively simple to define, manipulate, and display
 - Commonly used good for flat surfaces

Curved surfaces

- Parametric functions of two variables
- True mathematical curvature
- Adjacent patches may be constrained for continuity
- Shape derived from control points and/or tangent vectors
- Approximating and interpolating
- Bezier, Hermite, Bicubic, B-spline, NURBS

Implicit surfaces / Algebraic equations

- The surfaces are defined as the solutions to algebraic formulas.
- Quadric surfaces

- Implicit second-order polynomial equations
- Double cones

• Ellipsoids $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Hyperboloids of one sheet

- Hyperboloids of two sheets

$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

 $\frac{x^2}{x^2} + \frac{y^2}{x^2} - \frac{z^2}{z^2} = 1$

Volume and CSG Models

- Voxels (Spatial-occupancy enumeration)
 - Use identical cells
 - Space-filling tesselation with cubes or parallelpipeds
 - Density or value associated with each voxel
 - Expensive storage but simple data structure
 - Useful for medical imaging volume visualization
 - Special techniques needed to compute surface normals and shading

Octree

- Space subdivision
- Partition space into 8 cubes, recursively
- Increases space efficiency of solid tesselations
- Primarily an indexing scheme for access efficiency

Figure 8-65

Quadtree representation for a square region of the *xy* plane that contains a single foreground-color area on a solid-color background.

Binary space partitioning (BSP) tree

- Subdivide a scene into two sections at each step with a plane that can be at any position and orientation
- Smaller tree size than octrees

CSG (Constructive Solid Geometry)

- Recursively combine simple primitives by boolean operations
- Simple primitives

Combined

Specialized (single primitive) systems

- Ellipsoids
 - Model elongated, symmetric, rounded objects
- Cylinders
 - Model elongated, rounded objects
- Spheres
 - Isotropic primitives
 - Simple geometry
 - Render as shaded spheres or flat disks

Potential functions

- Models for blobby objects
 - (e.g., muscles)
- Center-point
- Radius-dependent decreasing value
- Act like energy sources, summing when overlapping
- Smooth interfaces between primitives
 - e.g., smooth model
 - : combination of Gaussian
 - density functions

Particle systems

- Sets of many points moving in spatial paths.
- Shape description is combined with physical simulation

▷ accuracy

spatial-partitioning, polygonal b-rep : approximated CSG with non-polyhedra primitives, curved b-rep : accurate

tradeoff : resolution and space or time

 \triangleright domain

primitive instancing, sweeps : limited

b-rep : more wide

 \triangleright uniqueness :

octree, spatial-occupancy-enumeration

: unique representation primitive instancing : does not guarantee uniqueness

validity

b-rep : most difficult to validateBSP tree : represent valid spatial setCSG tree : needs local syntactic checking

▷ closure

simple sweep : not closed under Boolean operation
b-rep : hard to maintain closure after Boolean
operation of non 2-manifolds
> compactness and efficiency

octree, BSP-tree, CGS : unevaluated model b-rep, spatial occupancy enumeration : evaluated model

Fractals

- Birth of fractal geometry: Benoit B. Mandelbrot (IBM) published his seminal book "The Fractal Geometry of Nature" in 1977.
- the geometry best describing most natural objects is not traditional 3D Euclidian geometry, but rather what Mandelbrit describes as the *fractal geometry of nature*.

How long is the coast of Britain?"

Properties of Fractals

- Self-similarity or statistical self-similarity
- Shapes repeat themselves exactly at different scales
- Simple algorithms but complex results
- Iterative procedure
- Noninteger dimension

Mandelbrot zoom (from Wikipedia)

	Self-similar	Scaling
Dimension (D)	parts (N)	factor (S)
1	2	1/2
2	4	1/2
3	8	1/2

 $N = 1/S^{D}$

 $D = \log(N)/\log(1/S)$

Cantor set

We have an object with dimensionality less than one, between a point (dimensionality of zero) and a line (dimensionality 1)

Koch curve

$$S = 1/3, N = 4$$

 $\Rightarrow D = log(4)/log(3)$
 $= 1.2619...$

Classification of Fractals

Deterministic Fractals

: the algorithm produce an identical structure each time it is run.

[Algorithms]

- Linear replacement mapping
 - statistically self-similar
 - snowflake, tree
- Iterated function system
 - self-affine fractals
 - use contractive affine transformation
 - terrain, water, cloud
- Complex plane mapping
 - Julia, Mandelbrot sets

Mandelbrot set

The Mandelbrot set M is defined by a family of complex quadratic polynomials given by

$$f_c(z) = z^2 + c$$

where *c* is a complex.

For each *c*, one considers the behavior of the sequence:

$$(f_c(0), f_c(f_c(0)), f_c(f_c(f_c(0))), \dots)$$

The Mandelbrot set is defined as the set of all points *c* such that the above sequence does not escape to infinity.

Stochastic Fractals

: the random processes play a central role in determining the structure of the fractal object

[Algorithms]

Stochastic processes - mountain landscapes

