
Visible-Surface Detection
Methods

Chapter ?
Intro. to Computer Graphics
Spring 2008, Y. G. Shin

The Visibility Problem
[Problem Statement]

GIVEN: a set of 3-D surfaces, a
projection from 3-D to 2-D screen,

DETERMINE: the nearest surface
encountered at any point on 2-D
screen

Removal of hidden parts of
picture definition

Hidden-surface removal :
surface rendering
Hidden-line removal : line
drawing

Techniques
Visible-surface algorithms are 3D versions of sorting,
i.e., depth comparison
Avoid comparing all pairs of objects using the
following coherence.
Coherence

object coherence: no comparison between
components of objects if objects are separated
each other
face coherence: surface properties vary smoothly
across a face
edge coherence: an edge changes its visibility not
frequently

Techniques
implied edge coherence: line of intersection of
two face can be determined from two
intersection points
scan-line coherence: little change in visible
spans from one scanline to another
area coherence: a group of pixels is often
covered by the same visible surface
span coherence: (special case of area coherence)
homogeneous runs in a scanline
depth coherence: adjacent parts of the same
surface are typically close in depth
frame coherence: animation frames contain
small changes from the previous frame

Techniques for Efficient
Algorithms

Bounding volumes
approximate objects with
simple enclosures before
making comparisons.
the simplest approximate
enclosure is a boundary
box

Backface Removal
(Backface Culling)
Remove entire polygons that face away from
the viewer
If we are dealing with a single convex object,
culling completely solves the hidden surface
problem

Geometric test for the visibility

surface visible: 0<⋅NVVN

ssilhouette : 0=⋅NV

Back-face Culling More..
Vertex order in surface normal calculation

counterclockwise in the right-handed viewing system

Backface culling after viewing transformation
simpler culling test (consider only z component of normal
vectors since COP is at infinity after view-volume
normalization)
more points to transform

Partially hidden faces cannot be determined by
back-face culling
Not useful for ray-casting, radiosity

Depth-Buffer (Z-buffer)
The basic idea is to test the z-depth of each surface to
determine the closest (visible) surface
Use two buffers

refresh buffer : image value (intensity)
depth buffer (z-buffer) : z-value

Algorithm
loop on objects

loop on y within y range of this object
loop on x within x range of this scan line of

this object
if z(x,y) < zbuf[x,y]

zbuf[x,y] = z(x,y)
image[x,y] = shade(x,y)

Depth-Buffer (Z-Buffer)
Z-Buffer has memory corresponding to each pixel
location

Usually, 16 to 20 bits/location.

Z-Buffer Algorithm

C
Bz

C
DyBAxz

C
Az

C
DByxAz

yxyx

yxyx

−=
−+−−

=

−=
−−+−

=

+

+

),()1,(

),(),1(

)1(

)1(

0=+++ DCzByAxCalculating z values of plane:

C
DByAxz −−−

=

Use incremental calculation

),(position ofdepth the:),(yxz yx

Use interpolation.

Z-Buffer Algorithm
pros:

easy implementation (directly in hardware)
no sorting of surfaces
O(# of objects × pixels)
good rendering algorithm with polygon models

cons:
additional buffer (z-buffer)
aliasing (point-sampling)
difficult to deal with transparent object

Z-Buffer Algorithm

Backface culling Z-buffer algorithm

Accumulation Buffer (A-Buffer)

An extension of the depth-buffer for dealing with
anti-aliasing, area-averaging, transparency, and
translucency
The depth-buffer method identifies only one visible
surface at each pixel position

Cannot accumulate color values for more than one
transparent and translucent surfaces

The same resolution as z-buffer

Part of OpenGL and DirectX

Costly for real-time rendering

Accumulation Buffer (A-Buffer)
Each position in the A-buffer has two fields

Depth field: Stores a depth value
Surface data field

RGB intensity components
Opacity parameter (percent of transparency)
Depth
Percent of
area coverage
Surface identifier

Even more memory intensive
Widely used for high
quality rendering

Painter’s Algorithm
Draw polygons as an oil painter might: The
farthest one first. (Used in PostScript)
[Algorithm]
sort objects by depth, splitting if necessary to
handle intersections
loop on objects (drawing from back to front)

loop on y within y range of this object
loop on x within x range of this
scan line of this object

image[x,y] = shade(x,y)

Pinter’s Algorithm (z-overlap case)

Easy case of depth comparison

Need to split

Binary Space-Partitioning
Trees (BSP trees)

Binary Space Paritition is a relatively easy way to sort the
polygons relative to the eyepoint
Fuchs, Kedem, and Naylor
The scan conversion order is decided by building a binary
tree of polygons, the BSP tree.
Fast traversal and viewpoint independent order
Clusters that are on the same side of the plane as the
eye-point can obscure clusters on the other side.

BSP tree
EYE 1

+X -X

C

B

A

D

E1

+Z
F2

E2
F1

EYE 2

A

C

F1 D

E2 F2

B

E1

BSP trees
Disadvantages

significantly more than input polygons - more
polygon splitting may occur than in Painter's
algorithm
appropriate partitioning hyperplane selection is
quite complicated and difficult (ref. Chen in
SigGraph96)

Scan-Line Method
An extension of scan-line polygon filling (multiple surfaces)
Idea is to intersect each polygon with a particular scanline.
Solve hidden surface problem for just that scan line.
Requires a depth buffer equal to only one scan line
The cost of tiling scene is roughly proportional to its depth
complexity
Efficient way to tile shallowly-occluded scenes
May need to split

Scan line

Ray Casting
rendering + visibility
ALGORITHM
loop y

loop x
shoot ray from eye point through

pixel (x,y) into scene
intersect with all surfaces, find

first one the ray hits
shade that point to compute the

color of pixel (x,y)

Ray Casting

Warnock's algorithm

1. Take a given section of the
screen (the entire screen, in
the first pass)

2. Check to see if it is "simple
enough"

3. If it is, display it
4. If it isn't, subdivide the screen

into four sections and check
each of the new sections
(starting at step 1)

Area Subdivision Algorithms
image space algorithms
divide-and-conquer : area coherence

http://www.cs.helsinki.fi/group/goa/render/piilopinnat/simple_enough.html
http://www.cs.helsinki.fi/group/goa/render/piilopinnat/simple_enough.html

Warnock's algorithm

• Runtime:

polygons ofnumber :
pixels ofnumber :

)(

n
p

npO ×

Comparisons of
Hidden-Surface Algorithms
Z-buffer:

memory: used for image buffer & z-buffer
implementation: moderate, requires scan
conversion. It can be put in hardware.
speed: fast, unless depth complexity is high
generality: very good

Painter’s:
memory: used for image buffer
implementation: moderate, requires scan
conversion; hard if sorting & splitting needed
speed: fast only if objects can be sorted a priori
generality: splitting of intersecting objects & sorting
make it clumsy for general 3-D rendering

Comparisons of Hidden-
Surface Algorithms

Ray casting:
memory: used for object database
implementation: easy, but to make it fast you
need spatial data structures
speed: slow if many objects: cost is
O((#pixels)´(#objects))
generality: excellent, can even do non-polygon
models, shadows, transparency.

Others (scanline, object space): tend to be
hard to implement, and very hard to generalize to
non-polygon models

	Visible-Surface Detection Methods
	The Visibility Problem
	Techniques
	Techniques
	Techniques for Efficient Algorithms
	Backface Removal�(Backface Culling)
	Back-face Culling More..
	Depth-Buffer (Z-buffer)
	Depth-Buffer (Z-Buffer)
	Z-Buffer Algorithm
	Z-Buffer Algorithm
	Z-Buffer Algorithm
	Accumulation Buffer (A-Buffer)
	Accumulation Buffer (A-Buffer)
	Painter’s Algorithm
	Pinter’s Algorithm (z-overlap case)
	Binary Space-Partitioning Trees (BSP trees)
	BSP tree
	BSP trees
	Scan-Line Method
	Ray Casting
	Ray Casting
	Warnock's algorithm
	Warnock's algorithm
	Comparisons of �Hidden-Surface Algorithms
	Comparisons of Hidden-Surface Algorithms

