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For pure substances, chemical
potential becomes molar Gibbs free
energy at constant P and T.

For mixtures, chemical potential

becomes partial molar Gibbs free
energy.

The partial molar Gibbs free energy is known as
a function of T, P and composition.

Determine the partial molar quantities of
S,V,H, Uand F.
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Consider the binary solution of components A
and B. We have information about the molar
Gibbs free energy of the mixture asa
function of composition.

How can we determine the partial molar Gibbs
energy of A?
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For a binary alloy, the molar free energy of
the mixture becomes

G'=G,n, +G,n, dG'=G,dn, +G.dn,
G, =G, X, +Gg X,

dG,, =G,dX, +G,dX,
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Graphical Determination of Partial Molal Properties
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Graphical Determination of Partial Molal Properties
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Consider the binary solution of components A
and B. We have information about the partial
molar Gibbs free energy of B as a function of
composition.

How can we determine the partial molar Gibbs
energy of A? Derive the expression.

X,dG, + X,dG, =0




Derive the Gibbs-Duhem equation.
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Gibbs-Duhem Equation;
— holds for all partial molar quantities
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Evaluation of Partial Molar Properties

Partial molar properties can be evaluated
from experimental data of two broad types:

(1) Measurements of the corresponding
total properties of the solution as a
function of composition.

G, =G, + X; ds,
dX,

(2) Measurements of the partial molar property
for one of the components as a function of
composition.

n,du, +n,dy, =0

Consider the binary solution of components A
and B. We have information about the activity
of B as a function of composition.

Derive the expression to determine the
activity of A.

X, dy, + X,dp, =0

X, dlna, + X,dIna, =0
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How can you avoid the difficulty that
-In a, goes to infinity as X; — 1?

Use activity coefficient instead of activity.




To avoid the difficulty that
-In a, goes to infinity as X; — 1,

X, dp, + X,dp, =0
X,dlna, + X,dlna, =0
(X, dInX, + X,dInX,) + (X, dIny, + X,dIny,) = 0
X +X, =1 dX, +dX, =0

dX, .y 4%,
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What is the driving force for precipitation of g from a?
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How can you formulate the
irreversibility in chemical reactions?




Modern

i ‘ : N e Thermodynamics
Théophile De Donder (1872-1957) (5th from the left, third row) at the historic 1927 D Kondepudi

Solvay conference. His book, L’Affinité was published the same year. First row, L to R: 1.

Langmuir, M. Planck, Mme Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch.E. Guye. I. Prigogine

C.T.R. Wilson, O.W. Richardson. Second row, L to R: P. Debye, M. Knudsen, W.L.  (1998)
Bragg, H.A. Kramers, PAM. Dirac, A.H. Compton, L. de Broglie. M. Born, N. Bohr.

Third row, L to R: A. Picard, E. Henriot, P. Ehrenfest, Ed. Herzen, Th. De Donder, E.
Schrodinger, E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler. L. Brillouin,

dU =TdS —PdV + 4dn,

dn, =d.n, +d_n,

d;n, = the change due to irreversible chemical reactions
d.n, = the change due to exchange of matter with the exterior

g5 dUrPdV D Hden,
T T

s 2 rdin, dS=d,S+d,S
' T

Td:S = “uncompensated heat” of Clausius
for chemical reaction




Irreversibility in Chemical Reactions

Ay + B & 2C,

dn,,dn, and dn, : change in the mole numbers

dn, dn, dn, _
NS a2 %

£ — extent of reaction

dU+PdV 1
= +—+_(HA T Hg _Zuc)dé

ds
T T

R

A= (uA + g — Zuc) — affinity

— change in chemical potential
— criterion for irreversible chemical reactions




A(g) l B(9) & 2C(g) Gaskell
O O 2

At any instant during the reaction,

G’ =Ny, +Ng g +Ne e
where n,, ng, and n; are, respectively, the numbers
of moles of A, B, and C present in the reaction
system at that instant.

n,=n; N.=2-n,-n;=2(1-n,)

G'=nNpup +Npptg +2(1-Np) e

Gaskell
A(g) u B(9) & 2C(_q)

E = Uy + Uy — Zﬂc =0 — equailibrium reaction
on,

Ha+ Mg =21
oG’

— | = U+ g — 2/1(: >0 — backward reaction
on,

Ha + Mg > 21
oG’ .
—— | = Uy + Uy — 2/1(: <0 — forward reaction
on,

M+ Mg <2




Driving Force for Chemical Reactions

— Change in chemical potentials
from products to reactants

Ap = pfnP = > i’ = —Affinity

ldeal Gases and their Mixtures

The variation of the molar Gibbs free energy of
a closed system of fixed composition, with pressure
at constant T,

dG=VdP  dG :%dP _RTdInP

G(P, T)-G(P,T)=RT In%

1

G(P,T)=G°(T)+RTInP
G=G°+RTInP

G°(T)=G(P =1T): standard Gibbs free energy
u=p°+RTInP




ldeal Gases and their Mixtures

P. = X,P — Dalton's law of partial pressure

For molecules of component i, the mixing
process is equivalent to an isothermal
expansion from an initial pressure P to a final

pressure P,

The change in chemical potential experienced
by component i can be obtained by

dG =du, =-SdT+VdP =VdP  forisothermal mixing

ldeal Gases and their Mixtures
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Chemical Potential in an Ideal Gas Mixture

w(T,R) = 1, (T,P)+RTIn(R/P)

— 1 (T,P) =’ +RTIn(R/P)
— 6 =6° +RTInP
P =1— standard state

How do we treat non-ideal gases?

(P +iz)(v —b)=RT — van der Waals eq.
V

G=G°+RTInP
dG =RTdInf « fugacity
G =C(T)+RT Inf

How do we define the standard state?




Non-ideal Gases

G=G°+RTInP G=G°+RTInf f : fugacity

The integration constant is chosen such that
the fugacity approaches the pressure as the
pressure approaches zero, i.e.,

p=——>1lasP >0 f=¢gp ¢:fugacity coeff.

andard state  Figyre |, Standard state commonly adopted
for a gas. The deviation between the two
lines is exaggerated in order to present a
clearer illustration.

Lupis

Standard State of Non-ideal Gases

G =G’ +RT Inf

G°, the Gibbs free energy of the standard state,
defined as that state in which f=1at T.

Fugacity may be thought of as a
thermodynamic pressure, it has units of
pressure. (gas)

Fugacity can also be thought of as an
escaping tendency. (condensed phase)




What is activity?
How is it defined?

The expression dG = RT din f may be integrated
between two states 1 and 2 to give:

G, -G, =RTIn(f,/f,)

This equation applies to a pure one-component
system. For a solution we must use chemical
potentials,

= =RT In(fi” fi,)

The absolute values of the fugacities of solids
and liquids cannot always be determined, but
their ratios can be.

p = u =RT In(fi” fi,)

If we let one of these states be a reference state,
this can be rewritten:

Hi _,Uio =RT In(fi /fio)

Q :fi/fio

u—u° =RTIna i =’ +RTIna




Mixtures of Ideal Gases

S u(T,P) = +RTIn(P/P) B =1 +RTIn(R/R*)
— 6 =6° +RTInP =u’ +RTInP
-+ P° =1 - standard state =u’ +RTIng,

Non-Ideal Pure Gas Mixtures of Non-ldeal Gases

G =G° +RT Inf p =’ +RTInf
. f

:G°+RTIn(ff—o)—>f°:l = H +RT'”(f—oj

=G°+RTIna =4’ +RTlIna

How do we treat solutions?

— In terms of gas in equilibrium
with solutions

What is the statistical meaning of
equilibrium vapor pressure
of a condensed phase?




Find the expression for the fraction of
surface atoms which have energies greater
than the activation energy for evaporation,
E*,

n. e—(gi/kT) e—(gi/kT)

N Pus i e—(gi / KT)

=1

P = Ze‘(’“”‘” © Partition function
i=1

The energies of the atoms at the surface are
quantized, and the distribution of the surface atoms

among the available quantized energy levels is
given as

_ Nexp(-E; /kT)
" Y exp(-E; /KT)

n




If the quantized energy levels are spaced closely
enough that the summation can be replaced by
an integral, then

o0 Ei B
P= jo exp(—ﬁjdE = KT,

which is thus the average energy per atom.

The fraction of surface atoms which have energies
greater than the activation energy for evaporation,
E'is

n;

1 ¢ E
N EJE* exp(—E/kT )dE = exp(—ﬁj

equil. vapor pressure of pure A = p,

equil. vapor pressure of pure B = pg

mixture — X,, Xy
What would be the equil. vapor pressure of A and B

for the mixture?

Pa= XAPa
Pe= XgPg
— applicable when the magnitudes of the A-A, B-B,
and A-B bond energies in the solution are identical.

— Raoult's law

— normally applicable when the concentration is high




