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For pure substances, chemical 
potential becomes molar Gibbs free
energy at constant P and T. 

For mixtures, chemical potential 
becomes partial molar Gibbs free
energy. 
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Determine the partial molar quantities of   

S, V, H,  U and F.

The partial molar Gibbs free energy is known as
a function of T, P and composition.



Consider the binary solution of components A 
and B. We have information about the molar
Gibbs free energy of the mixture  as a
function of composition.

How can we determine the partial molar Gibbs
energy of A?

= + m
A m B

A

dGG G X
dX

( )= + − m
A m A

A

dGG G X
dX

1

= +m A A B BdG G dX G dX

= −m
A B

A

dG G G
dX

′ ′= + = +

= +
A A B B A A B B

m A A B B

For  a binary alloy, the molar free energy of
the mixt

G G n G n dG G dn G dn

G G X

ure becomes

G X



( )

= −

+ = + =

m
B B A B B

A

m
m B A A B A

A

dGX X G X G
dX

dGG X G X X G
dX

= + m
A m B

A

dGG G X
dX

= + m
B m A

B

dGG G X
dX

= +m 1 1 2 2V XV X V

mV

6000

0
0 1

2X
oX 2

P B

C

A

2V

1V − = m
2 1

2

dVV V
dX

( )= + − m
m2 2

2

dVV V 1 X
dX

− =2 1V V ?

=2V ?

Graphical Determination of Partial Molal Properties



Graphical Determination of Partial Molal Properties
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Consider the binary solution of components A 
and B. We have information about the partial 
molar Gibbs free energy of B as a function of
composition.

How can we determine the partial molar Gibbs
energy of A? Derive the expression.
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Gibbs-Duhem Equation; 
→ holds for all partial molar quantities

Derive the Gibbs-Duhem equation.
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Evaluation of Partial Molar Properties

(2)  Measurements of the partial molar property    
for one of the components as a function of  
composition.
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Partial molar properties can be evaluated 
from experimental data of two broad types:

(1) Measurements of the corresponding 
total properties of the solution as a
function of composition.

μ + μ =A A B Bn d n d 0

Consider the binary solution of components A 
and B. We have information about the activity
of B as a function of composition.

Derive the expression to determine the
activity of A.
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i) As X2 →1, X2/ X1→ ∞

ii) As X2→0, a2 →0 and
ln a2→ - ∞.
i.e. tails to ∞.

How can you avoid the difficulty that 
-ln a2 goes to infinity as X1 → 1?

Use activity coefficient instead of activity.



To avoid the difficulty that  
-ln a2 goes to infinity as X1 → 1,
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What is the driving force for precipitation of β from α?
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How can you formulate the 
irreversibility in chemical reactions?
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 the change due to irreversible chemical reactions
 the change due to exchange of matter with the exterior
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for chemical reaction
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Irreversibility in Chemical Reactions

A B Cdn ,dn  and dn  : change in the mole numbers
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→ criterion for irreversible chemical reactions



At any instant during the reaction,
μ μ μ′ = + +A A B B C CG n n n

+ R(g) (g) (g)A B 2C
 0     0          2

where nA, nB, and nC are, respectively, the numbers
of moles of A, B, and C present in the reaction
system at that instant.
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Driving Force for Chemical Reactions

→ Change in chemical potentials 
from products to reactants 

Δμ = μ − μ = −∑ ∑p p r r
i i i in n Affinity

Ideal Gases and their Mixtures
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The variation of the molar Gibbs free energy of
a closed system of fixed composition, with pressure
at constant T,
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Ideal Gases and their Mixtures

'i iP X P Dalton s law of partial pressure= →

For molecules of component  i, the mixing
process is equivalent to an isothermal 
expansion from an initial pressure P to a final
pressure Pi. 

The change in chemical potential experienced
by component i can be obtained by 

= μ = − + =i i i i idG d SdT VdP VdP for isothermal mixing

Ideal Gases and their Mixtures
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Chemical Potential in an Ideal Gas Mixture
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P 1 standard state

How do we treat non-ideal gases?
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How do we define the standard state?
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Non-ideal Gases

= + lnoG G RT P = + lnoG G RT f :f fugacity

The integration constant is chosen such that
the fugacity approaches the pressure as the
pressure approaches zero, i.e.,

φ = → →
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p

1 0 φ φ=f p fugacity coeff: .

Lupis
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Go, the Gibbs free energy of the standard state,
defined as that state in which f = 1 at T.

Fugacity may be thought of as a 
thermodynamic pressure; it has units of 
pressure.  (gas)
Fugacity can also be thought of as an 
escaping tendency. (condensed phase)

Standard State of Non-ideal Gases



This equation applies to a pure one-component
system. For a solution we must use chemical
potentials,

The expression dG = RT dln f may be integrated 
between two states 1 and 2 to give:

( )− =G G RT f f2 1 2 1ln
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What is activity?
How is it defined?

The absolute values of the fugacities of solids 
and liquids cannot always be determined, but 
their ratios can be.
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Mixtures of Ideal Gases

Mixtures of Non-Ideal GasesNon-Ideal Pure Gas
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How do we treat solutions?

What is the statistical meaning of
equilibrium vapor  pressure 
of a condensed phase? 

→ in terms of gas in equilibrium 
with solutions
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Evaporation
Find the expression for the fraction of 
surface atoms which have energies greater 
than the activation energy for evaporation, 
E*.

The energies of the atoms at the surface are 
quantized, and the distribution of the surface atoms
among the available quantized energy levels is
given as   
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If the quantized energy levels are spaced closely
enough that the summation can be replaced by
an integral, then 

∞ ⎛ ⎞= − =⎜ ⎟
⎝ ⎠∫ iEP dE kT

kT0
exp ,

The fraction of surface atoms which have energies 
greater than the activation energy for evaporation,
E*, is 
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n EE kT dE
N kT kT*

* *1 exp exp

which is thus the average energy per atom. 

→

o
A
o
B

A B

equil. vapor  pressure of pure A = p
equil. vapor  pressure of pure B = p
mixture X , X  

What  would be the equil. vapor pressure of A and B
for the mixture?

o
A A A

o
B B B

p = X p
p = X p

→ Raoult ' s law

→ applicable when the magnitudes of the A-A, B-B, 
and A-B bond energies in the solution are identical.  

→ normally  applicable when the concentration is high


