Thermodynamics of Materials 15th Lecture 2007. 5. 7 (Wednesday) # Thermodynamics of Chemical Vapor Deposition How do we define the irreversibility criterion for deposition in CVD? How about in PVD? Transition between condensed phases \Rightarrow solid to liquid, solid (α) to solid (β) $$\Delta G^{S \to L} = \Delta H^{S \to L} - T \Delta S^{S \to L}$$ ⇒ close system Transition between condensed and gas phases ⇒ solid to gas, gas to solid $$\begin{split} d\textit{G} &= \textit{SdT} - \textit{VdP} + \sum \mu_{j} \textit{n}_{j} \\ &= \sum \mu_{j} \textit{n}_{j} \quad \text{ at constant T and P} \end{split}$$ \Rightarrow open system #### What is the driving force for wet clothes to dry? $$\begin{split} \Delta \mu_{H_2\text{O}}^{\text{liquid} \to \text{gas}} &= \mu_{H_2\text{O}}^{\text{gas}} - \mu_{H_2\text{O}}^{\text{liquid}} \\ &= \mu_{H_2\text{O},\text{gas}}^{\text{o}} + RT \ln p_{H_2\text{O}}^{\text{gas}} - \left(\mu_{H_2\text{O},\text{gas}}^{\text{o}} + RT \ln p_{H_2\text{O}}^{\text{eq}} \right) \\ &= RT \ln p_{H_2\text{O}}^{\text{gas}} - RT \ln p_{H_2\text{O}}^{\text{eq}} = -RT \ln \left(\frac{p_{H_2\text{O}}^{\text{eq}}}{p_{H_2\text{O}}^{\text{gas}}} \right) \end{split}$$ $$\alpha = \frac{p_{H_2O}^{eq}}{p_{H_2O}^{gas}}$$: Supersaturation Ratio for Evaporation $\Delta \mu_{Cu}^{liquid o gas} = -RT \ln \alpha$: Driving Force for Evaporation ## What is the driving force for precipitation when the water vapor is supercooled from 300 K to 290 K? $$\Delta u^{300K\rightarrow290K} = -RTIn \left(\frac{P_{300}}{P_{290}^{eq}} \right)$$ T = 290 K Assuming that the water vapor behaves like ideal gas. #### → Identical to Driving Force in PVD ### Driving Force for Deposition in PVD ex) Thermal Evaporation of Cu $$\begin{split} \Delta \mu_{\text{C}u}^{\text{gas} \to \text{solid}} &= \mu_{\text{C}u}^{\text{solid}} - \mu_{\text{C}u}^{\text{gas}} \\ &= \mu_{\text{C}u,\text{gas}}^{\text{o}} + RT \ln p_{\text{C}u}^{\text{eq}} - \left(\mu_{\text{C}u,\text{gas}}^{\text{o}} + RT \ln p_{\text{C}u}^{\text{gas}}\right) \\ &= RT \ln p_{\text{C}u}^{\text{eq}} - RT \ln p_{\text{C}u}^{\text{gas}} = -RT \ln \left(\frac{p_{\text{C}u}^{\text{gas}}}{p_{\text{C}u}^{\text{eq}}}\right) \end{split}$$ $\alpha = \frac{p_{Cu}^{gas}}{p_{Cu}^{eq}}$: Supersaturation Ratio for Deposition $\Delta\mu_{\text{C}u}^{\text{gas} o \text{solid}} = -RT \ln \alpha$: Driving Force for Deposition T: substrate temperature #### Chemical Vapor Deposition Precipitation of a solid phase from chemical reactions in the gas phase Physical Vapor Deposition → No chemical reactions $$2H_2 + O_2 \rightarrow 2H_2O(ice)$$ $$A + B \Rightarrow C_s + D$$ Find the expression for supersaturation and driving force for deposition. $$\alpha = \frac{P_A^i P_B^i}{P_A^f P_B^f} \qquad \Delta \mu = -RT \ln \alpha$$ Usually very high value of $\boldsymbol{\alpha}$ When 'D' is supplied, $$\alpha = \frac{P_A^i P_B^i P_D^f}{P_A^f P_B^f P_D^i} \qquad \Delta \mu = -RT \ln \alpha$$ Is this thermodynamic scheme correct? $$A + B \Rightarrow C_s + D$$ A,B: Reactants, C, D: Products C_s : deposition species $$\begin{split} \mu_{\text{A}}^i &= \mu_{\text{A}}^{\text{s}} + \text{RTIn}P_{\text{A}}^i \\ \mu_{\text{B}}^i &= \mu_{\text{B}}^{\text{s}} + \text{RTIn}P_{\text{B}}^i \end{split}$$ Initially, C and D are absent. $$\begin{split} \mu_{\mathcal{C}}^i &= \mu_{\mathcal{C}}^s + \mathsf{RTIn(0)} = -\infty \\ \mu_{D}^i &= \mu_{D}^s + \mathsf{RTIn(0)} = -\infty \end{split}$$ $$A + B \Rightarrow C_e + D$$ Driving force for forward reaction = ? $$\begin{split} \Delta \mu &= \sum \left(\mu_{j}^{right\,side} - \mu_{j}^{left\,side} \right) \\ &= \mu_{\mathcal{C}}^{i} + \mu_{D}^{i} - \mu_{A}^{i} - \mu_{B}^{i} \\ &= \mu_{\mathcal{C}}^{s} + RTInP_{\mathcal{C}}^{i} + \mu_{D}^{s} + RTInP_{D}^{i} \\ &- \mu_{A}^{s} - RTInP_{A}^{i} - \mu_{B}^{s} - RTInP_{B}^{i} \\ &= \Delta \mu^{s} + RTIn \left(\frac{P_{\mathcal{C}}^{i} P_{D}^{i}}{P_{A}^{i} P_{B}^{i}} \right) \end{split}$$ $$\Delta \mu = \Delta \mu^{\text{s}} + \text{RTIn} \Bigg(\frac{\text{O}}{\text{P}_{\text{A}}^{\text{i}} \text{ P}_{\text{B}}^{\text{i}}} \Bigg) = -\infty$$