iiii!!

Physical Properties

Reading Assignment:
1. J. F. Nye, Physical Properties of Crystals
—chapter 1
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Physical Properties of Crystals '

RN

— crystalline— translational symmetry, long range order
— amorphous— no long range order
ex) glass
— physical properties
amorphous— isotropic
crystalline— anisotropic
magnitude of physical properties

depends on direction

N QNN



Crystalline vs. Non-crys!a$. -

Crystalline materials...
e atoms pack in periodic, 3D arrays
* typical of: -metals

—many ceramics

—some polymers
crystalline SiO2

*Si e Oxygen
Non-crystalline materials...
e atoms have no periodic packing

e occurs for: —complex structures
—rapid cooling

“amorphous" = non—crystalline
noncrystalline SiOz2
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Thermal Conductivity .

RN

ex) gypsum (CaSO,2H,0) Monoclinic

heated metal tip

WwaxXx

gypsuimn

*xellipsoidal rather than circular
N a Simon & Schuster’s Guide to Rocks and Minerals
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Physical Properties
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— scalar (zero rank tensor)— non-directional physical
quantities, a single number
ex) density, temperature
— vector (first rank tensor)— magnitude and direction
an arrow of definite length and direction
ex) mechanical force, electric field, temperature
gradient
three mutually perpendicular axes 0Ox;,0x,,0x,
components —

E =[E,,E,,E,]
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SUMMARY OF VECTOR NOTATION AND FORMULAE

IN this book vectors are printed in bold-face type, thus, p. The components of
p referred to axes Oz,, Ox,, Ox,; are p,, P,, ps. We write
P = [Py, P2 05)s

and often denote p by p, or [p;].

The magnitude, or length, of p is denoted by p:

p* = pi+pi+0i = pips.

A unit vector is one of unit length.

The scalar product of p and q is denoted by p.q:

P-q = p;q; = pgcosb,
where 8 is the angle between p and q.
The vector product of p and q is denoted by pAq:
PAQ = (pgsinf)l,
where 1 is a unit vector perpendicular to p and q such that p, q, 1 form a right-
handed set. The components of p A q referred to right-handed axes are

[P29s—Ps 92 Pati—P1 95 P1Ta— P2 %1
The gradient of a scalar ¢ which varies with position is a vector denoted by
grad : wag = [2,2 %
= - axl’ 3:!:,’ Oy .
The divergence of a vector p which varies with position is a scalar denoted by

divp:
e divp — P, %P1 OPs _ OBy
ox, ' Oxy Oxy Ox;

+

The curl of a vector p which varies with position is a vector denoted by curl p,
whose components referred to right-handed axes are

Ops _Ops op, Op, ap,_apl]
oxy oy’ oxy Ox,’ 0z, ox,l

LB LB

J. F. Nye, Physical Properties of Crystals



Physical Properties
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— second rank tensor

— mechanical analogy
central ring—2 pairs of springs
at right angle

springs on opposite sides are

identical but have a different
spring constant to perpendicular pair

force (cause vector) = displacement (effect vector)

if a force 1s applied in a general direction, the
displacement will not be 1n the same direction as the

applied force (depends on relative stiffness)
N N N N A. Putnis, Introduction to Mineral Science



Second Rank Tensor—

RN

— problem solving
1. find components of the force F in the direction of
each of the two springs
2. work out the displacement which each force
component would produce parallel to each spring
3. combine two orthogonal displacement to find the

resultant displacement
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Second Rank Tenso—
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K,Fsiné

0 ¢ resuI:tant displacement
E cosd k,F cos@ f

1. force F =[F cos®, F sin d]

2. spring constant along x and y are k, and k,, respectively
3. displacement [k, F cos 8, k,F sin 6]

: K
resultant displacement tan ¢ =—%tané
1
U N R



Second Rank Tenso—r
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— consequences

1. 1n an anisotropic system, the effect vector 1s not,
in general, parallel to the applied cause vector.

2. 1n two—dimensional example, there are two
orthogonal directions along which the effect is
parallel to the cause.

3. an anisotropic system can be analyzed in terms
of components along these orthogonal principal
directions, termed principal axes.

along these principal axes, the values of the physical

property are termed the principal values.
N N N N



Second Rank Tensor —.

. . . . , L B B B
—1in 3—D, general direction— direction cosines, /,m,n

-a force E is applied in a general direction resulting

—_

in a displacement D at some angle @ to F

—component of D in the direction of F .
D =Dcosg .
K — Dcosep Dy F
F F . : ,
K = K(k,,K,,K,)

—-component of F along principal axes |/ Fy

TPe direction cosines /,m,n of the direction

_ _ _ of the Force F are given by the cosines of

I:X — I F y I:y — m I: y FZ — n F the angles between F and the x,y,z axes
respectively.

F

- component of D along principal axes

D, =kIF, D, =k,mF, D, =k,nF

The component
. of D in the

7 direction of F is
defined as
Dr=Dcos ¢

. . . . A. Putnis,mtroductiomtotvimerat-Sciernce



Second Rank Tensor | ..

—De =D,1+D,m+D,n /o
=k FI? +k,Fm?* + k,Fn? '
= (k2 +k,m? + k,n?)F

_K :%:kllz+k2m2+k3n2

— variation of a property K with direction
— representation surface

direction cosine I, m,n

N\
I

k12 +k,m? + k,n2 =k (2)2 +k, (L)2 + k, (£)?
I I r

N N N N A. Putnis, Introduction to Mineral Science



- Second Rank Tensor —
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let r’K =1, r=1/vK

k,x* +k,y* +k,z° =1

if k,,k,,k, are positive, k. x* +k,y* +k,z* =1 (ellipsoid)

normal form of the equation of an ellipsoid

2 2 2
X 4 .

~+ y2 +—=1(a,b.c: semiaxes)
a-~ b® ¢ ¢
representation surface f

semiaxes: 1 L L
In any general direction, the radius is equal
to the value of 1/\/R In that direction.

N N N N A. Putnis, Introduction to Mineral Science



Second Rank Tensor —
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- electric field E — current density ]
1) iIf conductor is isotropic and obeys Ohm's law
j=oE
E:[E11E21E3] ]::[jl’jZ’j3]
},=ck,, J,=0E,, },=0F

11) If conductor Is anisotropic

J
), =ouE +oy,E, + 015,
J, =0,k +0,E, +0,E, J
J; =04 +0y,E, +o33E, E E
a b
1Sotropic anisotropic

N N N N J. F. Nye, Physical Properties of Crystals



o |®® Second Rank Tensor—
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= -
-

- - physical meaning of o;

if field is applied along x,, E =[E,,0,0]
L=ouE J,=0,F J=0yE
- conductivity - nine components speified

In a square array i
Oy O, Oy
O, O, Oy j.o= 05 E,
| O O3 Og3_ infa
second rank tensor, components, ¥ -
leading diagonal y s

* the number of subscripts equals the rank of tensor
N N N N J. F. Nye, Physical Properties of Crystals



in general

p=[p, P, ps] a=1[0,, 0, 0]

— T11q1 + T12 g, + T13q3
— T21q1 + Tzz g, + T23q3
— T31CI1 + T32 g, + T33CI3

Second Rank Tensor —

NN RN

—]

Tll T21
T21 T22
T31 T32

31

—]

23

—]

33

Some examples of second-rank tensors relating two vectors

Tensor property

- Vector given or
applied

Vector resulting or
induced

Electrical conductivity
Thermal conductivity

Permittivity
Dielectric susceptibility
Permeability
Magnetic susceptibility

electric field

(negative) temperature
gradient

electric field

magnetic field

3 ] 1 4

electric current density
heat flow density

dielectric displacement

’s polarization
magnetic induction
intensity of magnetization

L B

J. F. Nye, Physical Properties of Crystals



Second Rank Tenso—r y
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3
P, =T,0, + 15,0, + T;50; = Zleqj

j=1

3 3
P, =T50, + 15,0, + 10, = ZTquj b; :ZTijqj (1=12,3)
j=1

j=1
3
P3 = T5,0; + T50, + T3305 = ZTquj P; :Tijqj (1=1,2,3)

j=1

—Einstein summation convention: when a letter suffix
occurs twice 1n the same term, summation with
respect to that suffix i1s to be automatically understood.

J dummy suffix, 1 free suffix
p, =T;d; =T,

N QNN



) Second Rank Tenso—r <

RN

—1n an equation written in this notation, the free suffixs
must be the same 1n all the terms on both sides of the
equation: while the dummy suffixs must occur as pairs
In each term.

ex)

Aij + BikaI Dlj = Eik ij
, | free suffixs k,| dummy suffixs
(Ckl Bik Dlj — BikaI Dlj)

—1n this book, the range of values of all letter suffixs
1s 1,2,3 unless some other things i1s specified.

N QNN



Transformation —

NN RN
0, = Tp,0; + 11,0, + 1150,

D, = T21q1 T Tzzqz + T23q3
0; = T31CI1 + T32q2 + T33CI3

-q;, = p; (T; determine), arbitrary axes chosen

- different set of axes — different set of coefficients T;

- both sets of coefficents equally well represent the same
physical quantity

- there must be some relation between them

- when we change the axes of reference, it is only our
method of representing the property that changes;

the property itself remains the same.
NN Q&



Transformation —

- transformation of axes veRRRE
a change from one set of mutually perpendicular axes
to another set with same origin
first set: x;, X,, X;, second set: x';,Xx",, X",

Iy

angular relationship
old
Xl X2 X3
Xll all a12 a13
new X, | a, d,, A,y
X'3 aGl a32 a33
a; cosine of the angle between x'. and X; (aij) : matrix

N N N N J. F. Nye, Physical Properties of Crystals




Direction Cosines, a; -

J N R RN

- (a;:)-nine component- not independent
1]

- only three independent quantities are needed to define
the transformation.
- six independent relation between nine coefficients

) + 8y, +ay; =1
a,,8,, +a,,a,, +3;,a,, =0
a,a; =o; (orthogonality relation)
Kronecker delta 6, =1 (i = J)
0(i=])

N QNN



Transformation

_ NN N NN
- transformation of vector components

P PP, P, Withrespectto X,X,,X,

P, P, p's withrespectto x',x",, X",

P’ = P, COS X X', + P, COS X, X', + P53 COS X X",
=y P+, Py + a5 P,

P =8y P+ 8y, P, +a5,P,
P’y =8y Py +85, P, +a5P;
In dummy suffix notation X
new in terms of old: p’; =a;p,

old interms of new: p,=a;p’;, %

e

x,
N N N N J. F. Nye, Physical Properties of Crystals




Transformation —

NN NN
- transformation of components of second rank tensor

0, =T;q; with respectto X, X,, X

0 =T7%Qq"; withrespectto x°,x",, X",
D'>p—>9g—>q' (—:Interms of)
D= P P=Tyq 0 =8,9

0 =& P =8y 10, =8 Tya;q

0 |i — T |ij q |j
T Iij — aikajITkI
Tij = & ale lkl

N QNN



Transformation —

~ NN
T Iij — aikajITkI — aikalekl T aikajZTkZ T aikajBTkS
=q;a lell +a;a j2T12 +a;a j3T13

T aiZale21 T aizajozz T aizaj3T23

+ 385, gy + Q38,15 + 8383155

Transformation laws for tensors

Rg};k Transformation law
Name tensor New in terme of old Old in terms of new
Scalar 0 ¢ = ¢ ¢ = ¢
Vector | ;v:ai = a;;p; P; = a5
— 2 T = a0 Ty | Tyi5 = agiay; Ty
— 3 Tuk = atl im@knl lmn Ti)k = auamjanthmn
— | 4 l T ikt = a:nakoatpT mnop T Tkt = mi%n;@ akaptT mnop

J. F. Nye, Physical Properties of Crystals



—a physical quantity which, with respect to a set of
axes X, has nine components Tij that transform
according to equations T =&,a;T,

—a second rank tensor— physical quantity
existing 1n 1ts own right, and quite independent of
the particular choice of axes

-when we change the axes, the physical quantity does
not change, but only our method of representing it.

- (aij ): array of coefficient relating two set of axes

- symmetric T

=17
. i~ ,
anti-symmetric (skew-symmetric) T, =T

N QNN

Definition of a Tensor —
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Representation Quadric = = © 0

— geometrical representation of a second rank tensor
— consider the equation

SiXX; =1 §;:coefficients
Sllel.2 T S12 X1X2 T Sl3xlx3
+S,, %X +S,,Xo +S,.X, X,
+8,, XX, + S, X, X, + S x5 =1
-if S, =S,
S, X +S,,X5 + S X2 + 28, X, X, + 25, XX, + S, X, X, =1

— general equation of a second—degree surface
(quadric) referred to its center as origin

N QNN



Representation Quaar_

RN

- transformed to new axes Ox".

X; :akixlk X; :aljxll

Sijdidy; X'y X' =1

S’y X'\ X', =1where S’ =2a,3;5;
- compared with second rank tensor transformation law

T% =a,a,T, (identical)

ifS;, =S;

coefficient S;; of the quadric transform like the components

of a symmetrical tensor of the second tank.

N QNN



Representation Quaarllc—
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- a representation quadric can be used to describe any
symmetrical second-rank tensor, and in particular, It
can be used to describe any crystal property which
IS given by such a tensor.

- principal axes
principal axes- three directions at right angles such that

S;; %;X; =1 takes the simpler form

S, X, +S,X5 +S,x2 =1

N QNN



Representation Quadric

N RN
_Sll S21 S31_ _Sl O O ]
1Si|=[Su S Su|—|0 S, O
S31 S32 S33_ _O O SB_

S,,S,,5;: principal components

X Z
2+y2+2:1
a- b ¢

representation quadric- semi axes

1 1 1
\/871’\/82 ,\/83

N QNN



Representation Qu

JCy

(b) ()

The representation quadric for the tensor [S;;], as (a) an ellipsoid,
(b) & hyperboleoid of one sheet, and (¢) a hyperboloid of two sheets.

N N N N J. F. Nye, Physical Properties of Crystals



Representation Quadric —

RN

- In a symmetric tensor refered to arbitrary axes, the
number of independent components Is SIX.

- If the tensor Is refered to its principal axes, the number
of independent components is reduced to three.

- the number of degree of freedom is nevertheless still six,
for three independent quantities are needed to specify the
directions of the axes, and three to fix the magnitudes
of the principal components.

L B



Representation Quadric —

NN
- simplification of equations when referred to pricipal axes
P =S;q; (T; replaced by symmetric S;)

P, =501, Py =5,0,, P3=5;0;
- for example, consider electrical conductivity

=0k, ), =0,E,, J;=03E,
(o,,0,,0,: principal conductivities)
- if E is parallel to Ox,, SO E, = E, =0

9y

j,=j,=0 jisparallel to Ox,
-if E =[E,, E,,0], i
=0k, ),=0,E,, ;=0

—_

E and j not parallel
N N N N J. F. Nye, F’%ysical Properties o‘?’Crystals

0—=J 0,
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- Neumann's Principle
the symmetry elements of any physical properties of
a crystal must include the symmetry elements of
the point group of the crystal

- physical properties may, and often do, possess more
symmetry than the point group.

- ex1) cubic crystals - optically isotropic
physical property (isotropic) possesses the symmetry
elements of all the cubic point groups.

N QNN



Effect of Crystal Symmetry on Crystal Pro

RN

- ex2) trigonal system (tourmaline, 3m) - optical properties
(variation of refractive index with direction - indicatrix)
Indicatrix for 3m- ellipsoid of revolution about triad axis
(optic axis)
ellipsoid of revolution- vertical triad axis
three vertical planes of symmetry
(extra- center of symmetry, other symmetry elements)
- the symmetry of a physical property
a relation between certain measurable quantities associated
with the crystal

L B



@ Effect of Crystal Symmetry on Crystal W
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- all second-rank tensor properties are centrosymmetric.
P = Tijqj
-p; =T;(=q;) T, :unchanged
- symmetric second-rank tensor- 6 independent components
- symmetry of crystal reduces the number of independent
components
- consider representation quadric for symmetric second rank
tensor

N QNN



The effect of crystal symmetry on properties represented by symmetrical -
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)
G

iIQ

second-rank tensors

Nature of repre- | Number | Tensor referred
Optical Characteristic | sentation quadric | of inde- to axes in the
classt- symmetry and its pendent conventional
Jication Systemn (see p. 280)F orientation coefficients | orientation}
Isotropic | Cubic 4 3-fold axes | Sphere 1 S 0 0 7
(anaxial) o S 0
0 0 S .
Tetragonal | 1 4-fold axis Quadric of revo- 2 S, 0 0 1
Uniaxial{| Hexagonal | 1 6-fold axis lution about the 1o &, O
Trigonal 1 3-fold axis principal sym- 0 0 S,
metry axis |
(23)(2)
Orthorhom- | 3 mutually General quadric 3 & 0 O
( bic perpendicular| with axes [0 S; O ]
2-fold axes; (zy, x5, z4) || to 0O 0 &
no axes of the diad axes
higher order (z, v, 2) -
Monoclinic | 1 2-fold axis General quadric 4 'S 0 Sy
Biaxial { with one axis o S5 0
(273) ” to the '-Sll 0 Sa'.
diad axis (y)
Triclinic A centre of General quadric. 6 Sy Sy Sa
- gymmetry or | No fixed rela- Sis S Sp
no symmetry | tion to crystal- 1Sy Sgs  Sial

lographic axes

N N NN

J. F. Nye, Physical Properties of Crystals



» »*  Anisotropic Diffusion o! Hm
* ¢ LR

Fick's first law

Ji = _Dij PV
OX;

ex) Ni diffusion in olivine((Mg,Fe),SIO,, orthorhombic)
at 1150°C
D, =4.40x10"“cm?/s, D, =3.35x10"*cm®/s, D,=124x10™“cm*®/s

1 1 1
JyD, D, D,

=0.48:0.55:0.09

a:b:c=

N N N N /.I A. Putnis, Introduction to Mineral Science
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» /#»* Magnitude of a Property in a Given. W
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- defintion
In general, If p; = 5;q;, the magnitude S of the property [S; ]
in a certain direction is obtained by applying q in that
direction and measuring p, / q,

where p, is the componet of B parallel to E]

- ex) electrical conductivity
the conductivity o in the direction of E is defined j
to be the component of j parallel
to E divided by E,
thatis, J, / E

N N N N J. F. Nye, Physical Properties of Crystals




1= Magnitude of a Property in a

RN

- analytical expression
(1) referred to principal axes
direction cosine: |, 1,1,
E=[LE, LE, LE] j=[oLE, o,lE, o,E]
component of | parallel to E
j =l oE+o,E+ljo,E
magnitude of conductivity in the direction |.

12 2 2

N QNN



Towe Magnitude of a Property in a leer;

NN RN

- analytical expression
(11) referred to general axes
. : direction cosine of E referred to general axes
E = El
component of ] parallel to E
JeE/E  in suffix notation j.E, /E
conductivity in the direction |,

_JE _oEE
°TEE T
o= o.ll.

1]

N QNN



Geometrical Properties of RepresenW
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- length of the radius vector
let P be a general point on the ellipsoid: o;;x;x; =1
direction cosines of OP: . x. =rl. where OP =r

2

o=1/r* r=1/Jo
special cases- radius vectors in the directions of semi-axes

of lengths 1/, 11/, ,1/\[o,

N N N N J. F. Nye, Physical Properties of Crystals



p» Geometrical Properties of Represen!am
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- In general, any symmetric second-rank tensor property S;

S=1/r> r=1/S

- the length r of any radius vector of representation quadric
IS equal to the reciprocal of square root of magnitude S
of the property in that direction

N QNN



Geometrical Properties of RepresenW

RN

- radius-normal property
Ox; principal axes of o;
E=[lLE, LE, LE] j=[oE, o,l,E, o,E]
direction cosines of j are proportional to

aily, o,l,, oyl;
if P is a point on o,x; +o,X; + o,%: =1
such that OP is parallel to E
P=(rl,rl,,rl,) where OP =r
tangent plane at P

rlox, +rl,o,x, +rl,o,x, =1

N N N N J. F. Nye, Physical Properties of Crystals



, @ Geometrical Properties of RepresenW
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- radius-normal property
normal at P has direction cosines proportional to
Loy, |,0,, l;0;

hence normal at P is parallel to j

if p, = S, q,, the direction of p for a given g

may be found by first drawing, parallel to E{
a radius vector OP of the representation quadric,
and then taking the normal to the quadric at P.

N QNN



