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Direct Observation of Superlattice Formation in a Semiconductor Heterostructure

R. Dingle, A. C. Gossard, and W. Wiegmann
Bell Laboratories, Murvay Hill, New Jersey 07974
(Received 17 March 1975)

We demonstrate, via low-temperature optical-absorption measurements on ultrathin,
coupled potential wells in molecular-beam—grown AL Ga,., As-GaAs heterostructures,
the evolution of resonantly split discrete well states into the lowest band of a one-dimen-
sional superlattice. Both electron and hole superlattices appear to be practical.

The evolution of molecular-beam epitaxy® as a
technique for the growth of ultrathin layers of
high-quality III-V-semiconductor single crystals
has allowed access to a new regime of quantum
effects in structures approaching atomic dimen-
sions. Quantum states of electrons®® and holes?®
Al _Ga,., As barriers have been observed in tun-
neling® as well as in optical absorption® and stim-
ulated emission.* Coupling between wells through
thin penetrable barriers is expected to split the
bound quantum states® into symmetrical and anti-
symmetrical combinations.® In the limit of super
lattice formation, multiple energy gaps occur in
the Brillouin zone, and new and useful transport
properties are anticipated. Tunneling measure-
ments in AlGaAs-GaAs superlattices have been
reported.” althoueh effects due to the bound-state

coupled wells is increased from one to ten, we
are able to present unequivocal evidence for the
tunneling of electrons and holes through the
Al,Ga,.,As barriers. Structures with ten or
more coupled wells appear to approximate the
superlattice regime, whereas structures with
fewer wells are well described in terms of inter-
acting single wells. The experimental data are
interpreted with an exact solution of the Schro-
dinger equation for transmission through multiple
rectangular potential barriers.

A series of structures, with GaAs well widths
in the range 50 A <L,<200 A and Al,Ga,_, As bar-
rier widths in the range 12 A<L,<18 A (8-12
monolayers), were grown by molecular-beam
epitaxy on GaAs substrates with use of a previ-
ously outlined procedure.” Al concentrations in
the rance from »=0.19 to 0.27 were studied. At
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FIG. 1. (a) Optical-density spectrum of a series of
eighty single GaAs wells isolated by thick (~ 180 A)
Aly 07Gay r3As barriers. Peaks 1 and 2 correspond to
exciting an electron from »n =1 heavy-mass and light-
mass valence-band bound states, respectively, to the
n =1 conduction-band bound state, as shown in inset.
Calculated predictions of peak positions for rectangular
wells, based on growth parameters, are shown on ab-
scissa. Black bars refer to heavy holes, white bars to
light holes. (b) Spectrum of a series of sixty double
GaAs wells coupled through thin (~ 15 A) ALy 14Gay gAs
barriers. Both the n=1 hole and electron bound states
are split by resonant coupling through the penetrable
barriers, with symmetric (bonding) combinations of
single-well states closest to the well bottoms. Each
pair of wells is isolated from the adjacent pairs by 206
A of Aly,19Gag,51As barrier. Light- and heavy-hole
states extend through both wells.

AE =E AxC%1-288 _F GCAS- AR o +AE,. Values
of AE c3/AE =0.85+ 0.03 and AE y/AE =0.15+0,03
were used for the conduction-band and valence-
band potential-barrier heights.? At the Al concen-
trations used, AE is proportional to x and equal
to 250 meV at x =0.20.

In Fig. 1(a) we present optical-absorption spec-
tra (2 K) from a series of eighty rectangular
GaAs wells of width L, =50+ 2 A, interleaved by
Al Ga,.,As layers ~ 180 A thick. At the operat-
ing temperature (2 K), tunneling of either bound
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of remarkably reproducible thin potential wells
and barriers, essentially rectangular and uni-
form to the order of a monolayer, can be creat-
ed with molecular-beam epitaxy. The coupling
behavior of the wells proves that synthetic super-
lattices can indeed be created. The molecular-
beam-epitaxy technique for fabrication and the
optical technique for energy-level determination
should be applicable to additional configurations
and compositions of interest for both basic and
applied studies.
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ry and M. B. Panish for helpful discussions.
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THE FUTURE OF AMERICAN AGRICULTURE, by Sandra S. Batie and Robert G.
Healy The main factors are the supply of land, water and energy and the demand for exports.

THE LATTICE THEORY OF QUARK CONFINEMENT, by Claudio Rebbi
The force between quarks is simulated by imposing a lattice on the structure of space and time.

SYNTHETIC VACCINES, by Richard A. Lerner
Chains of amino acids made in the laboratory mimic viral proteins and give rise to antibodies.

THE OPTICAL COMPUTER, by Eitan Abraham, Colin T. Seaton and S. Desmond Smith
An optical analogue of the transistor is the crucial element of a computer based on beams of light.

‘HIDDEN VISUAL PROCESSES, by Jeremy M. Wolfe

The visual system includes subsystems whose operation is normally not apparent to the perceiver.

THE ACTIVE SOLAR CORONA, by Richard Wolfson
The dynamics of the sun’s outer atmosphere reflect the interaction of matter and magnetic fields.
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PARALLEL PROCESSING .is a capacity of optical switches that could lead to new designs
and new capabilities in the computer. Multiple laser beams can be focused so that they remain
separate as they pass through a crystal of nonlinear material. Each radiation path could serve
as the site of a separate operation, and the operations carried out on the various beams could be
different. For example, if there were three paths, one could be an AND gate, one an Or gate
and one a transistor. If three incident beams came from one beam that had been split, three op-
erations at once could be done on the original signal. Such a capacity would require a new form
of information processing; in electronic computers one operation at a time is done on a signal,
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Band-Edge Electroabsorption in Quantum Well Structures:
The Quantum-Confined Stark Effect

D. A. B. Miller, D. S. Chemla, and T. C. Damen
AT&T Bell Laboratories, Holmdel, New Jersey 07733

A. C. Gossard and W. Wiegmann
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

T. H. Wood and C. A. Burrus
AT&T Bell Laboratories, Crawford Hill, New Jersey 07733
(Received 27 April 1984)

We present theory and extended experimental results for the large shift in optical absorp-
tion in GaAs-AlGaAs quantum well structures with electric field perpendicular to the layers.
In contrast to the Stark effect on atoms or on excitons in bulk semiconductors, the exciton
resonances remain resolved even for shifts much larger than the zero-field binding energy
and fields > 50 times the classical ionization field, The model explains these results as a
consequence of the quantum confinement of carriers.

PACS numbers: 78.20.Jq, 42.80.Ks, 71.35.+z, 73.40.Lq

When semiconductors are fabricated in very thin
layers (e.g., ~ 100 A), the optical absorption spec-
trum changes radically as a result of the quantum
confinement of carriers in the resulting one-dimen-
sional potential wells.! In such multiple quantum
wells of GaAs, sandwiched between barrier layers
of Al,Ga;_,As of thickness sufficient to prevent
significant coupling between adjacent GaAs layers,
the confinement changes the absorption spectrum
from the smooth function of bulk material to a
series of steps. Additionally, the confinement also
increases the binding energy of excitons, resulting
in exceptionally clear exciton resonances at room
temperature in GaAs-AlGaAs quantum wells. >3

When electric fields are applied to bulk sermican.

layers.® The shifts can exceed the exciton binding

energy and yet the exciton resonances remain well
resolved. Extended room-temperature measure-
ments reported in this paper confirm the existence
of exciton resonances up to ~ 50E; (~ 10° V/cm).
The purpose of this paper is to explain (i) the large
shifts and (ii) the persistence of the exciton peaks
to these large fields.

In contrast with the Franz-Keldysh effect which
is independent of crystal size, the mechanism which
we propose here requires the quantum confinement
in the thin semiconductor layers. Large effects are
to be expected with moderate fields because the
particle-in-a-box envelope functions of electrons
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For the sake of simplification, we shall take AE, as infinite. (This is a close approx-
imation for barriers >100 A and x > 0.3.) The wavefunction u(r) of the electrons
in this well obeys the time independent Schrédinger equation [2].

ﬁz 62 62 82
Vizu(r) — = (;}; + e + a—yz)u(r) = Eu(r) (16.1-1)

E is the energy of the electron while V(z) = E.(z) is the potential energy function
confining the electrons in the z direction. We will measure the energy relative to that
of an electron at the bottom of the conduction band in the GaAs active region as
shown in Figure 16-1. The eigenfunction u(r) can be separated into a product

u(r) = Yo (ru(z) (16.1-2)
which, when substituted in (16.1-1), leads to

2 2
[V(z) = ﬁ— 5%5]“(2) = Eu(z) (16.1-3)

2m,

where E, is a separation constant to be determined. Since we agreed to take the
height of V(z) the well region as infinite, u(z) must vanish at z = = L2,

el TR | b £
uz) = 2 (16.1-4)
o
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Using (16.1-3, 16.1-4, and 16.1-5) in (16.1-1) leads to
H(r)¥(r)) = (E - E)¥()) (16.1-6)
We can take y(r,) as a two-dimensional Bloch wavefunction (see 15.1-1).
Y(r,) = w (r,)e™er2 (16.1-7)

where 1 (r,) possesses the crystal periodicity. The wavefunction W(r,) obeys the
Schrodinger equation

A2
Hr)W(r) = — ¥(r)) (16.1-8)
2m,
and from Equations (16.1-6, 7+ 8)
ﬁzkz 2 2 242
Ek, €)= — 4 €2~E:%+Eec £=1,2,3 ... (16.1-9)

2m, 2m L2 2m,

where the zero energy is taken as the bottom of the conduction band.
uy () possesses the lattice (two-dimensional) periodicity. Similar results with
M. — m, apply to the holes in the valence band. We recall that the hole energy E,
is measured downward in our electronic energy diagrams so that
ﬁ2k2 4 lz ﬁ27.r2 ﬁZki

E(k,) =4 + E, =ibDpdwin o (16:1210
k.. D 2m, b B Sy : : 3 ( )

measured (downward) from the top of the valence band. The complete wavefunctions

are then
2
(1) = \/l; wkﬂm)cs(e {5 z) (16.1-11)

U, (r) = \/g ‘Ifkw(rl)CS(E f z)

for holes. We defined CS5(x) = cos(x) or sin(x) in accordance with (16.1-4).
The lowest-lying electron and hole wavefunctions are

2 m
!nbc(r)ground state \/I—T; wki“(rl) COS([: Z)

2
wv(r)gmund state — \/-L—vz [!Ik_w(r.L) COs (;T: Z) ( 16. ]'] 2)

for electrons and
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where pow(k) is given by (16.1-15) and is independent of k. The effective inversion
population density due to carriers between k and k + dk is thus

kdk
No S lNi—r— [f('(Ec) 5 fu(Eu):l (16.2-3)
7L,

The division of pgw by L, is due to the need, in deriving the gain constant to use
the volumetric density of inverted population consistent with the definition of N,
and N, in (15.2-4). E, and E, are, respectively, the upper and lower energies of the
carriers involved in a transition. We use (15.2-4) and (16.2-3) to write the contri-
bution to the gain due to electrons within dk and in a single, say £ = 1, sub-band
as

A3 T
4n*r mll + (0 — we)’T3

7L,
where T, is the coherence collision time of the electrons and 7 is the electron-hole
recombination lifetime assumed to be a constant. We find it more convenient to
transform from the & variable to the transition frequency w (see Equation 16.2-1).
From (16.2-1) it follows that

so that (16.2-4) becomes

TQd(U
M1 + (0 — ©)*T3]
where we used the convention that f,(A®) is the Fermi function at the upper transition
(electron) energy E., while f,(fiw) is the valence band Fermi function at the lower

transition energy. To include, as we should, the contributions from all other sub-
bands (€ = 2, 3,...) we replace, using (16.1-16)

__m&f‘” hw) — £, 16.2-5
7(2’0)—471_&LG27 ! [f.(hw) — f,(fiw)] (16.2-5)

¥ o

m¥ m
77,{2 LB % E} Hw — w,) (16.2-6)
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Multiquantum Well Laser

The small thickness of the quantum well relative to that of the mode height (L./d =
2 % 1072 typically) makes it practical to employ more than one quantum well as
the active region. To first approximation, the total electronic inversion is divided
equally among the quantum wells, and the total modal gain is the sum of the indi-
vidual modal gains of each well. The advantage of multiple-quantum well lasers is
that, as shown in Figure 16-4, the gain from a single well tends to saturate with
carrier density, hence with current, because of the flat-top nature of the density of
states. The use of multiple-quantum wells enables each well to operate much within
its linear gain-current region, thus extracting the maximum modal gain at a given
total injected carrier density. This effect also results in a large differential gain A =
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Figure 16-4 A theoretical plot of the exponential {modal) gain constant vs. wavelength of a
quantum well laser, (Courtesy of Michael Mittelstein, The California Institute of Technology)
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ESAKI LEAVES IBM TO BECOME PRESIDENT
OF JAPAN'S TSUKUBA UNIVERSITY

When Leo Esaki, the creator of the
tunnel {or Esaki) diode, was elected
president of the University of Tsu-
kuba, it made front-page news in the
Japanese press—not too surprising,
given that he is the country's only
living physics Nobel laureate. Be-
sides, the circumstances of Esaki's
election were most unusual: He is the
first president of any of Japan’s 97
national universities to come from
outside academia, and, what's more,
he has spent most of the past 32 vears
working and living outside Japan.
“In physics terms,” Esaki says, “it
was almost a forbidden transition.”

Esaki assumed his new position in
April after retiring from IBM, with
whom he was a fellow at the T.J.
Watson Research Center in Yorktown

Heights, New York. A native of

Japan, he earned a BS from the
University of Tokve in 1947, and
then, while working for Sony Corp, he
received a PhD) in physics from Tokvo
in 1858, Shortly afterward he moved
to the US to join IBM, where his
research included work on semicon-
ductor superlattices. {The article by
Leray Chang and Esaki on page 36
describes this work.)

Insrant srarus

Leo Esaki, right, listens to a talk given at his retirement symposium
hebd near IBM's Watson Research Center on 1 May. The event was
sponsared by IBM, Esaki’s employer for 32 years before he became

president of Tsukuba University in April.  Seated next to Fsaki is

C. N, Yang
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ABSTRACT

means responsive Lo light for gencrating a photocurrent,
a structure having a semiconductor quantum well re-
gion, and meuns responsive to the photocurrent for
electrically controlling an optical absorption of the
semiconductor quantum well region. The optical ab-
sorption of the semiconductor gquantum well region
vitries in response (o variations in the photocurrent, A
photadiode or phototransistor may be used as the means
responsive to light, and may be made integral with the
structure having the semiconductor quantum well re-
gion, An array of devices may be labricated on a single
chip for parallel logic processing.
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168 INTERACTION OF RADIATION AND ATOMIC SYSTEMS

of the degenerate |2p) states:

- 1 (Z)sfz

X s + u —| e
0= 7 -+ )i (2 2

Sl - o (Z.)SQ ~7ri2ag
l}')*\/z(“zu MZl—l)q 335 \dg € y

1 (Z)SIZ 77

=y = s e~ Zr'2ap

) =t = e G ‘

Referring to the ground state u,4, as |1), we have

1 I . e a kB 2
{1lx|x) = WL rhe=32a0 4y Jo sin’f df L cos? @ 4

V3272 (do
where a; = ay/Z. Using
A

J‘m er—'irlzaf} dr = Iﬂ(s)
0

(3/2a5)°

leads to

(Ul = Alylyy = (1lzlz) = 0.7449 L

(8.3.11)

All the other matrix elements connecting the upper and lower states are zero

as determined by symmetry consideration, so we can write
[x12]2 = [Flx|x)]2 = 1.5539 x 10-21/22
12 = [1yly)]? = 1.5539 x 10-2!/22
2122 = [{1]z]2)|? = 1.5539 x 10-21/72

To finish the calculation, we recall that for a hydrogenic transition

_ R i pnZiet
Rdplitim 2> =1) = (1 32w lgih?
S Aegh?
0 “2

M—l = me—l + m;l

which when used in (8.3-9) gives

3 1 _1.595% 107°

SPONI2ph—|1s) Wspont == 74 sec.

XA

(8.3-12)
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The interaction Hamiltonian is (see Appendix 5)
H' = —eE)r, t) r (8.3-1)

Let the mode [ correspond to a plane-wave propagating along k with a
polarization A. If we use (5.6-15), the interaction Hamiltonian is

f B
%' = ie \!2";1; [af e~ *T — ay,e™@, T (8.3-2)

Consider the transition depicted in Figure 8.3. The initial state is |2, 7;) in
which the atom is in level 2 and the mode (k, A) has #, quanta. The final state
finds the atom in level 1, whereas the mode has gained a quantum and is in
the state (1, + 1). The transition rate of the system from the initial state |2,
ny) to the final |1, n, + 1) state is obtained from (3.12-14) as

29T it
HaE |%5:128 ( Einiial — Efinal) (8.3-3)
2me? (hw .
= % (j_z“/—:) K}, M + 1|(1I(’Aekl;\ ol |2 S(EZ = El == ﬁwk)
el wk

= [K1]@xn = T2 (m + 1) 8(E, — E, — fiwy)) (8.3-4)

where we used

(my + 1]afalme) = Vi + 1



Plane-Wave Quantization

The discussion just concluded uses a generalized resonator of unspecified
shape. We will find it useful to consider the form of the field operators in the
case of a plane-wave resonator. Although such a resonator, which requires an
infinite cross-sectional area does not exist, most optical resonators that em-
ploy curved mirrors as reflectors involve nearly plane-wave propagation.

To be specific, consider the /th mode of a resonator of length L along the
axis and mode volume V. Let the electric and magnetic field vectors point
along the y and x directions, respectively. Equations (5.5-3, 4, 9) are satisfied
by

T @ 2oy B .
E(r, 1) = IX(VE) [ai (t) — a;(1)] sin kz i
A 112
Hr, 1) = § (VLE) [af (t) + ai(t)] cos kg

where Vis the mode volume. In the case of plane wave modes, the total field
can be written as a summation over all modes k

o ﬁmk -
= 2 —_ lek‘)\ A m(a};-?‘ e—zk-r o ak“\ezk-r)
—mﬁwk T ik ik
ka'V2uv (“k,a et ay e 'r)

(5.6-15)
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