Dielectrics in Static Electric Field

- No free charge in dielectrics to make interior charge density and electric field vanish
- Dielectrics contain bound charge
 - $\rightarrow~$ effect on the electric field
- ◆ E-field → small displacement of positive and negative charges (bound charge) → polarize a dielectric material
 - > a. <u>Polar molecules</u> : permanent dipole moments
 - ex) H₂O (two or more dissimilar atoms) \rightarrow P ~ 10⁻³⁰ (C·m)
 - Individual dipoles are randomly oriented
 - \rightarrow macroscopically no net dipole
 - The second seco
 - ▷ b. <u>nonpolar molecules</u> : no permanent dipole moments

Equivalent Charge Distribution of Polarized Dielectrics

\diamond Define polarization vector, \vec{P}

$$\vec{P} = \lim_{\Delta v \to 0} \frac{\sum_{k=1}^{n\Delta v} \vec{p}_k}{\Delta v} [C/m^2] : \text{volume density of electric dipole moment}$$

 $d\vec{P}$ of an elemental volume $d\vec{p} = \vec{P}dv'$

$$dV = \frac{\vec{P} \cdot \hat{R}}{4\pi\varepsilon_0 R^2} dv' \qquad \left(\text{cf) potential due to a dipole } V = \frac{\vec{P} \cdot \hat{R}}{4\pi\varepsilon_0 R^2} \right)$$

$$\therefore V = \frac{1}{4\pi\varepsilon_0} \int_{v'} \frac{\vec{P} \cdot \hat{R}}{R^2} dv', \text{ where } R \text{ is the distance from } dv' \text{ to a fixed field point.}$$

cf)
$$R^{2} = (x - x')^{2} + (y - y')^{2} + (z - z')^{2}$$
 in Cartesian coordinate.
 $\nabla' \left(\frac{1}{R}\right) = \nabla' \left(\frac{1}{\sqrt{(x - x')^{2} + (y - y')^{2} + (z - z')^{2}}}\right) = \frac{\vec{R}}{R^{3}} = \frac{\hat{R}}{R^{2}}$
 $\vec{R} = (x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}$

Equivalent Charge Distribution of Polarized Dielectrics

$$\therefore V = \frac{1}{4\pi\varepsilon_0} \int_{v'} \vec{P} \cdot \nabla'\left(\frac{1}{R}\right) dv'$$
cf) $\nabla' \cdot (f\vec{A}) = f\nabla' \cdot \vec{A} + \vec{A} \cdot \nabla' f \Rightarrow \therefore \vec{P} \cdot \nabla'\left(\frac{1}{R}\right) = \nabla' \cdot \left(\frac{\vec{P}}{R}\right) - \frac{1}{R} (\nabla' \cdot \vec{P})$

$$\therefore V = \frac{1}{4\pi\varepsilon_0} \left[\int_{v'} \nabla' \cdot \left(\frac{\vec{P}}{R}\right) dv' - \int_{v'} \frac{\nabla' \cdot \vec{P}}{R} dv' \right]$$

$$= \underbrace{\frac{1}{4\pi\varepsilon_0} \oint_{s'} \frac{\vec{P} \cdot \hat{n}'}{R} ds'}_{\text{surface}} + \underbrace{\frac{1}{4\pi\varepsilon_0} \int_{v'} \frac{(-\nabla' \cdot \vec{P})}{R} dv'}_{\text{volume}}$$
cf) potential due to surface and volume charge
$$V = \frac{1}{4\pi\varepsilon_0} \int_{v'} \frac{\rho_v}{R} dv' (3-61), \qquad V = \frac{1}{4\pi\varepsilon_0} \int_{s'} \frac{\rho_s}{R} ds' (3-62)$$

$$\therefore \underbrace{\left[\underbrace{\rho_{ps} = \vec{P} \cdot \hat{n}}_{\downarrow} \right]}_{\text{Equivalent polarization}} \underbrace{\rho_p = -\nabla' \cdot \vec{P}}_{\text{equivalent polarization}} \xrightarrow{\text{Polarization charge density}}$$

Equivalent Charge Distribution of Polarized Dielectrics

cf) Imaginary elemental surface Δs of a nonpolar dielectric, net charge crossing the surface Δs is,

 $\Delta Q = nq (\vec{d} \cdot \hat{n}) \Delta s$, where *n* is the number of molecules per unit volume $nq\vec{d}$: dipole moment per unit volume \Rightarrow polarization vector \vec{P}

$$\Delta Q = \vec{P} \cdot \hat{n} (\Delta s) \implies \rho_{ps} = \frac{\Delta Q}{\Delta s} = \vec{P} \cdot \begin{bmatrix} \hat{n} \\ \searrow \end{bmatrix}$$
 outward normal

cf) For a surface S bounding a volume V,
the net total charge flowing out of V
= negative of the net charge remaining within the volume V

$$Q = -\oint_{S} \vec{P} \cdot \hat{n} \, ds = \int_{v} -(\nabla \cdot \vec{P}) \, dv = \int_{v} \rho_{p} \, dv$$

Electric Flux density and Dielectric Constant

- equivalent volume charge density of polarization
- Define new fundamental quantity

 $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} (C/m^2)$: electric flux density or electric displacement

$$\nabla \cdot \vec{D} = \rho \ (C/m^3) \rightarrow \text{valid everywhere}$$

$$free \ charge \ density \ \underline{\text{note}} \quad \text{no } \varepsilon_0 \ \text{appear}$$

→ Two of static maxwell equations

$$\therefore \qquad \oint_{s} \vec{D} \cdot d\vec{s} = Q \qquad \Rightarrow \text{Gauss's law} \left(\oint \vec{E} \cdot d\vec{s} = \frac{Q}{\varepsilon_{0}} \right)$$

Electric Flux density and Dielectric Constant

- Permittivity of dielectric material
 - linear and isotropic dielectric media :
 - Polarization is directly proportional to the electric field intensity $\vec{P} = \varepsilon_0 \chi_e \vec{E}$ where χ_e : electric susceptibility (dimensionless quantity)
 - cf) medium is linear if χ_e is independent of \vec{E} medium is homogeneous if χ_e is independent of space coordinate.

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi_e \vec{E}$$
$$= \varepsilon_0 (1 + \chi_e) \vec{E}$$
$$= \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}$$

 $\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0}$: relative permittivity or dielectric constant of the medium $\varepsilon = \varepsilon_0 \varepsilon_r$: absoulte permittivity (permittivity)

Electric Flux density and Dielectric Constant

- > anisotropic medium
 - Dielectric constant is different for different directions of the electric field
 - $\Rightarrow \vec{D}$ and \vec{E} vectors generally have different directions.
 - \Rightarrow permittivity is a tensor.

$$\begin{bmatrix} D_x \\ D_y \\ D_z \end{bmatrix} = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$

- Dielectric strength
 - Maximum electric field intensity that dielectric material can withstand without breakdown.

Ex) 3-13. Two connected conducting spheres

- ✓ Two spherical conductors with radius b_1 and b_2 ($b_2 > b_1$)
- ✓ Connected by a conducting wire
- ✓ Distance is large enough to ignore influence of each sphere on the other
- \checkmark Total charge Q is deposited on the sphere

a)
$$\frac{Q_1}{4\pi\varepsilon_0 b_1} = \frac{Q_2}{4\pi\varepsilon_0 b_2}$$

b) $E_{1n} = \frac{Q_1}{4\pi\varepsilon_0 b_1^2}, E_{2n} = \frac{Q_1}{4\pi\varepsilon_0}$
 $\frac{Q_1}{Q_2} = \frac{b_1}{b_2}, \quad Q_1 + Q_2 = Q$
 $\therefore \frac{E_{1n}}{E_{2n}} = \left(\frac{b_2}{b_1}\right)^2 \frac{Q_1}{Q_2} = \frac{b_2}{b_1}$
 $Q_1 = \frac{b_1}{b_1 + b_2}Q, \quad Q_2 = \frac{b_2}{b_1 + b_2}Q$

larger curvature \Rightarrow smaller sphere : higher electric field intensity

Boundary Conditions for Electrostatic Fields

(1)
$$\Delta h \rightarrow 0$$

 $\oint_{abcda} \vec{E} \cdot d\vec{l} = \vec{E}_1 \cdot \Delta \vec{w} + \vec{E}_2 \cdot (-\Delta \vec{w})$
 $= E_{1t} \Delta w - E_{2t} \Delta w = 0$
 $\therefore [E_{1t} = E_{2t}]$ or $\frac{D_{1t}}{\varepsilon_1} = \frac{D_{2t}}{\varepsilon_2}$
 \Leftrightarrow the tangential component of an \vec{E} fields

(2) Cylinder
$$\Delta h \rightarrow 0$$

 $\oint_{s} \vec{D} \cdot d\vec{s} = (\vec{D}_{1} \cdot \hat{n}_{2} + \vec{D}_{2} \cdot \hat{n}_{2}) \Delta S = \hat{n}_{2} \cdot (\vec{D}_{1} - \vec{D}_{2}) \Delta S = Q = \rho_{s} \Delta S$
 $\therefore \hat{n}_{2} \cdot (\vec{D}_{1} - \vec{D}_{2}) = \rho_{s} \text{ Or } \hat{n}_{1} \cdot (\vec{D}_{2} - \vec{D}_{1}) = \rho_{s}$
i.e., $D_{1n} - D_{2n} = \rho_{s} (C/m^{2})$ reference normal is \hat{n}_{2}

Ex) 3-15 Boundary conditions

Tangential \vec{E} should be continuous at boundary.

 $E_2 \sin \alpha_2 = E_1 \sin \alpha_1$

 \clubsuit Normal \overrightarrow{D} should be continuous at boudary.

$$\varepsilon_2 E_2 \cos \alpha_2 = \varepsilon_1 E_1 \cos \alpha_1$$

$$\therefore E_2 = \sqrt{E_{2t}^2 + E_{2n}^2} = \sqrt{(E_2 \sin \alpha_2)^2 + (E_2 \cos \alpha_2)^2}$$

$$=\sqrt{\left(E_{1}\sin\alpha_{1}\right)^{2}+\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}E_{1}\cos\alpha_{1}\right)^{2}}=E_{1}\left[\sin^{2}\alpha_{1}+\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\cos\alpha\right)^{2}\right]^{\frac{1}{2}}$$

note 1

Radio Technology Lab. Wireless / Channel / Microwave

The normal component of \overrightarrow{D} field is discontinuous across an interface where a surface charge exists.

note 2

If,
$$\rho_s = 0$$
, then $D_{1n} = D_{2n}$

Summary :

 $E_{1t} = E_{2t}$ $\hat{n}_1 \cdot (\vec{D}_2 - \vec{D}_1) = \rho_s$

Ex) 3-16. coaxial cable

- \checkmark The radius of the inner conductor : 0.4 cm
- ✓ Concentric layers of rubber $\varepsilon_{rr} = 3.2$
- ✓ Polystyrene , ε_{rp} = 2.6
 - > Design a cable that is to work at a voltage rating of 20kV. \rightarrow E field are not to exceed 25% of their dielectric strength.
 - sol) Dielctric strength of rubber : $25 \times 10^6 \text{ V/m}$ Dielctric strength of polystyrene : $20 \times 10^6 \text{ V/m}$ Cylindrical symmetry \rightarrow Consider only E_r component $\max E_r = 0.25 \times 25 \times 10^6 = \frac{\rho_l}{2\pi\varepsilon_0} \left(\frac{1}{3.2 r_i}\right)$

$$\max E_{p} = 0.25 \times 20 \times 10^{6} = \frac{\rho_{l}}{2\pi\varepsilon_{0}} \left(\frac{1}{2.6r_{p}}\right)$$
$$r_{p} = 1.54r_{i} = 0.616 \text{ [cm]}$$

Ex) 3-16. coaxial cable

Potential difference

$$-\int_{r_0}^{r_p} E_p \, dr - \int_{r_p}^{r_i} E_r \, dr = 20,000$$

$$\frac{\rho_l}{2\pi\varepsilon_0} \left[\frac{1}{\varepsilon_{r_p}} \left(-\int_{r_o}^{r_p} \frac{1}{r} \, dr \right) + \frac{1}{\varepsilon_{rr}} \left(-\int_{r_p}^{r_i} \frac{1}{r} \, dr \right) \right] = \frac{\rho_l}{2\pi\varepsilon_0} \left(\frac{1}{2.6} \ln \frac{r_o}{r_p} + \frac{1}{3.2} \ln \frac{r_p}{r_i} \right) = 20,000$$

$$r_i = 0.4, \ r_p = 0.616,$$

$$\therefore \frac{\rho_l}{2\pi\varepsilon_0} = 0.25 \times 20 \times 10^6 \times 2.6r_p = 8 \times 10^4, \ \therefore r_o = 2.08r_i = 0.832 \ [\text{cm}]$$

$$\text{cf}) \ \frac{5}{4} = \frac{2.6r_p}{3.2r_i} \implies r_p = \frac{5}{4} \times \frac{3.2}{2.6}r_i$$
if order is reversed,
$$0.25 \times 20 \times 10^6 = \frac{\rho_l}{2\pi\varepsilon_0} \cdot \frac{1}{2.6} \cdot \frac{1}{r_i}, \quad 0.25 \times 25 \times 10^6 = \frac{\rho_l}{2\pi\varepsilon_0} \cdot \frac{1}{3.2} \cdot \frac{1}{r_r}$$

$$\frac{4}{5} = \frac{3.2r_r}{2.6r_i}, \qquad \therefore r_r = \frac{4}{5} \times \frac{2.6}{3.2}r_i = \frac{10.4}{16}r_i, \ r_r < r_i \implies \text{Non sense}$$

Homework

✓ (Cheng 3-6) Two very small conducting spheres, each of a mass 1.0×10^{-4} (kg), are suspended at a common point by very thin nonconducting threads of a length 0.2 (m). A charge Q is placed on a each sphere. The electric force of repulsion separates the spheres, and an equilibrium is reached when the suspending threads make an angle of 10°. Assuming a gravitational force of 9.90 (N/kg) and a negligible mass of the threads, find Q

✓ (Cheng 3-12) Two infinitely long coaxial cylindrical surfaces, r = a and r = b (b > a), carry suirface charge densities ρ_{sa} and ρ_{sb} , respectively.

a) Determine \overline{E} everywhere.

b) What must be the relation between a and b in order that E vanishes for r > b?

Homework

- ✓ (Cheng 3 27) What are the boundary conditions that must be satisfied by the electrics potential at an interface between two perfect dielectrics with dielectric constants ε_{r_1} and ε_{r_2} ?
- ✓ A point charge q is enclosed in a linear, isotropic, and homogeneous dielectric medium of infinite extent. Calculate the \overline{E} field, the \overline{D} field, the polarization vector \overline{P} , the bound surface charge density ρ_{sb} , and the bound volume charge density ρ_{vb} .

✓ A very thin, finite and uniformly charged line of length 10 m carries a charge of 10 μ C/m. Calculate the electric field intensity in a plane bisecting the line at ρ = 5m.

✓ Show that the magnitude of the electric field intensity of an electric dipole is

$$E = \frac{p}{4\pi\varepsilon_0 r^3} \Big[1 + 3\cos^2\theta \Big]^{1/2}$$

14