Dielectrics in Static Electric Field

- No free charge in dielectrics to make interior charge density and electric field vanish

- Dielectrics contain bound charge
 \(\Rightarrow \) effect on the electric field

- E-field \(\Rightarrow \) small displacement of positive and negative charges (bound charge) \(\Rightarrow \) polarize a dielectric material

 - a. Polar molecules: permanent dipole moments
 - \(\text{ex) } \text{H}_2\text{O (two or more dissimilar atoms) } \Rightarrow \, P \sim 10^{-30} \, \text{(C\cdot m)} \)
 - Individual dipoles are randomly oriented
 \(\Rightarrow \) macroscopically no net dipole
 - Some have a permanent dipole moment even in the absence of external field \(\Rightarrow \) electrets

 - b. nonpolar molecules: no permanent dipole moments
Equivalent Charge Distribution of Polarized Dielectrics

Define polarization vector, \overrightarrow{P}

$$\overrightarrow{P} = \lim_{\Delta v \to 0} \sum_{k=1}^{n_{\Delta v}} P_k \Delta v$$

: volume density of electric dipole moment

$d\overrightarrow{P}$ of an elemental volume $d\overrightarrow{p} = \overrightarrow{P}dv'$

$$dV = \frac{\overrightarrow{P} \cdot \hat{R}}{4\pi \varepsilon_0 R^2} dv'$$

(cf) potential due to a dipole

$$V = \frac{\overrightarrow{P} \cdot \hat{R}}{4\pi \varepsilon_0 R^2}$$

$$\therefore V = \frac{1}{4\pi \varepsilon_0} \int_{V'} \frac{\overrightarrow{P} \cdot \hat{R}}{R^2} dv'$$

where R is the distance from dv' to a fixed field point.

(cf) $R^2 = (x-x')^2 + (y-y')^2 + (z-z')^2$ in Cartesian coordinate.

$$\nabla' \left(\frac{1}{R} \right) = \nabla' \left(\frac{1}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}} \right) = \frac{\overrightarrow{R}}{R^3} = \frac{\hat{R}}{R^2}$$

$$\overrightarrow{R} = (x-x') \hat{x} + (y-y') \hat{y} + (z-z') \hat{z}$$
Equivalent Charge Distribution of Polarized Dielectrics

\[V = \frac{1}{4\pi\varepsilon_0} \int v' \bar{P} \cdot \nabla' \left(\frac{1}{R} \right) dv' \]

cf) \(\nabla' \cdot (f A) = f \nabla' \cdot A + A \nabla' f \) \(\Rightarrow \) \(\bar{P} \cdot \nabla' \left(\frac{1}{R} \right) = \nabla' \left(\frac{\bar{P}}{R} \right) - \frac{1}{R} (\nabla' \cdot \bar{P}) \)

\[V = \frac{1}{4\pi\varepsilon_0} \left[\int v' \nabla' \left(\frac{\bar{P}}{R} \right) dv' - \int v' \frac{\nabla' \cdot \bar{P}}{R} dv' \right] \]

\[= \frac{1}{4\pi\varepsilon_0} \int_{s'} \frac{\bar{P} \cdot \hat{n}'}{R} ds' + \frac{1}{4\pi\varepsilon_0} \int_{v'} \left(-\nabla' \cdot \bar{P} \right) dv' \]

cf) potential due to surface and volume charge

\[V = \frac{1}{4\pi\varepsilon_0} \int v' \frac{\rho_v}{R} dv' \quad (3-61), \quad V = \frac{1}{4\pi\varepsilon_0} \int_{s'} \frac{\rho_s}{R} ds' \quad (3-62) \]

\[\rho_{ps} = \bar{P} \cdot \hat{n} \]

\[\rho_p = -\nabla' \cdot \bar{P} \]

Equivalent polarization surface charge density

Equivalent polarization volume charge density

Polarization charge density or bound charge density
Equivalent Charge Distribution of Polarized Dielectrics

cf) Imaginary elemental surface Δs of a nonpolar dielectric, net charge crossing the surface Δs is,

$$\Delta Q = nq (\vec{d} \cdot \hat{n}) \Delta s,$$

where n is the number of molecules per unit volume $nq\vec{d}$: dipole moment per unit volume \Rightarrow polarization vector \vec{P}

$$\Delta Q = \vec{P} \cdot \hat{n} (\Delta s) \Rightarrow \rho_{ps} = \frac{\Delta Q}{\Delta s} = \vec{P} \cdot [\hat{n}] \text{ outward normal}$$

cf) For a surface S bounding a volume V, the net total charge flowing out of V = negative of the net charge remaining within the volume V

$$Q = - \oint_S \vec{P} \cdot \hat{n} \, ds = \int_V - (\nabla \cdot \vec{P}) \, dv = \int_V \rho_p \, dv$$
Electric Flux density and Dielectric Constant

\[\nabla \cdot \vec{E} = \frac{1}{\varepsilon_0} (\rho + \rho_p) \]

\[\rho_p = -\nabla \cdot \vec{P} \]

\[\therefore \nabla \cdot (\varepsilon_0 \vec{E} + \vec{P}) = \rho \]

Define new fundamental quantity

\[\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \text{ (C/m}^2\text{)} \]: electric flux density or electric displacement

\[\nabla \cdot \vec{D} = \rho \text{ (C/m}^3\text{)} \]

valid everywhere

\[\text{cf} \) \nabla \times \vec{E} = 0 \]

Free charge density note no \(\varepsilon_0 \) appear

Two of static Maxwell equations

\[\therefore \int_s \vec{D} \cdot d\vec{s} = Q \Rightarrow \text{Gauss's law} \left(\int_s \vec{E} \cdot d\vec{s} = \frac{Q}{\varepsilon_0} \right) \]
Electric Flux density and Dielectric Constant

- Permittivity of dielectric material
 - linear and isotropic dielectric media:
 - Polarization is directly proportional to the electric field intensity
 \[\vec{P} = \varepsilon_0 \chi_e \vec{E} \]
 where \(\chi_e \): electric susceptibility (dimensionless quantity)

 - cf) medium is linear if \(\chi_e \) is independent of \(\vec{E} \)
 - medium is homogeneous if \(\chi_e \) is independent of space coordinate.

\[
\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi_e \vec{E} \\
= \varepsilon_0 (1 + \chi_e) \vec{E} \\
= \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon \vec{E}
\]

\(\varepsilon_r = 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0} \): relative permittivity or dielectric constant of the medium
\(\varepsilon = \varepsilon_0 \varepsilon_r \): absolute permittivity (permittivity)
Electric Flux density and Dielectric Constant

- anisotropic medium
 - Dielectric constant is different for different directions of the electric field
 \[\vec{D} \text{ and } \vec{E} \text{ vectors generally have different directions.} \]
 \[\Rightarrow \text{ permittivity is a tensor.} \]
 \[
 \begin{bmatrix}
 D_x \\
 D_y \\
 D_z
 \end{bmatrix} = \begin{bmatrix}
 \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\
 \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\
 \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33}
 \end{bmatrix}
 \begin{bmatrix}
 E_x \\
 E_y \\
 E_z
 \end{bmatrix}
 \]

- Dielectric strength
 - Maximum electric field intensity that dielectric material can withstand without breakdown.
Ex) 3-13. Two connected conducting spheres

✓ Two spherical conductors with radius \(b_1 \) and \(b_2 \) (\(b_2 > b_1 \))
✓ Connected by a conducting wire
✓ Distance is large enough to ignore influence of each sphere on the other
✓ Total charge \(Q \) is deposited on the sphere

sol) Two conductors are at the same potential

\[\frac{Q_1}{4\pi\varepsilon_0 b_1} = \frac{Q_2}{4\pi\varepsilon_0 b_2} \]

\[\frac{Q_1}{Q_2} = \frac{b_1}{b_2}, \quad Q_1 + Q_2 = Q \]

\[Q_1 = \frac{b_1}{b_1 + b_2} Q, \quad Q_2 = \frac{b_2}{b_1 + b_2} Q \]

\[\therefore \frac{E_{1n}}{E_{2n}} = \left(\frac{b_2}{b_1} \right)^2 \frac{Q_1}{Q_2} = \frac{b_2}{b_1} \]

larger curvature \(\Rightarrow \) smaller sphere: higher electric field intensity
Boundary Conditions for Electrostatic Fields

1. $\Delta h \to 0$
 \[
 \oint_{abcd} \mathbf{E} \cdot d\mathbf{l} = \mathbf{E}_1 \cdot \Delta \mathbf{w} + \mathbf{E}_2 \cdot (-\Delta \mathbf{w})
 = E_{1t} \Delta w - E_{2t} \Delta w = 0
 \]
 \[
 \therefore \mathbf{E}_{1t} = \mathbf{E}_{2t} \quad \text{or} \quad \frac{D_{1t}}{\varepsilon_1} = \frac{D_{2t}}{\varepsilon_2}
 \]

 the tangential component of an \mathbf{E} field is continuous across an interface.

2. Cylinder $\Delta h \to 0$
 \[
 \oint_s \mathbf{D} \cdot d\mathbf{s} = (\mathbf{D}_1 \cdot \mathbf{n}_2 + \mathbf{D}_2 \cdot \mathbf{n}_2) \Delta S = \mathbf{n}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) \Delta S = Q = \rho_s \Delta S
 \]
 \[
 \therefore \mathbf{n}_2 \cdot (\mathbf{D}_1 - \mathbf{D}_2) = \rho_s \quad \text{or} \quad \mathbf{n}_1 \cdot (\mathbf{D}_2 - \mathbf{D}_1) = \rho_s

 \text{i.e.,} \quad D_{1n} - D_{2n} = \rho_s \, (C/m^2)
 \]

 reference normal is \mathbf{n}_2.

(outward normal to medium 1)
Ex) 3-15 Boundary conditions

- Tangential \vec{E} should be continuous at boundary.

 $$E_2 \sin \alpha_2 = E_1 \sin \alpha_1$$

- Normal \vec{D} should be continuous at boundary.

 $$\varepsilon_2 E_2 \cos \alpha_2 = \varepsilon_1 E_1 \cos \alpha_1$$

 $$\therefore E_2 = \sqrt{E_{2t}^2 + E_{2n}^2} = \sqrt{(E_2 \sin \alpha_2)^2 + (E_2 \cos \alpha_2)^2}$$

 $$= \sqrt{(E_1 \sin \alpha_1)^2 + \left(\frac{\varepsilon_1}{\varepsilon_2} E_1 \cos \alpha_1\right)^2} = E_1 \left[\sin^2 \alpha_1 + \left(\frac{\varepsilon_1}{\varepsilon_2} \cos \alpha_1\right)^2\right]^{1/2}$$

Note 1

The normal component of \vec{D} field is discontinuous across an interface where a surface charge exists.

Note 2

If $\rho_s = 0$, then $D_{1n} = D_{2n}$

Summary:

$$\begin{bmatrix} E_{1t} = E_{2t} \\ \hat{n}_1 \cdot (\vec{D}_2 - \vec{D}_1) = \rho_s \end{bmatrix}$$
Ex) 3-16. coaxial cable

- The radius of the inner conductor : 0.4 cm
- Concentric layers of rubber $\varepsilon_{rr} = 3.2$
- Polystyrene $\varepsilon_{rp} = 2.6$

Design a cable that is to work at a voltage rating of 20kV. \rightarrow E field are not to exceed 25% of their dielectric strength.

sol) Dielectric strength of rubber : 25×10^6 V/m
Dielectric strength of polystyrene : 20×10^6 V/m
Cylindrical symmetry \rightarrow Consider only E_r component

$$\text{max } E_r = 0.25 \times 25 \times 10^6 = \frac{\rho_i}{2\pi \varepsilon_0} \left(\frac{1}{3.2 \ r_i} \right)$$

$$\text{max } E_p = 0.25 \times 20 \times 10^6 = \frac{\rho_i}{2\pi \varepsilon_0} \left(\frac{1}{2.6 \ r_p} \right)$$

$$r_p = 1.54 r_i = 0.616 \ [\text{cm}]$$
Ex) 3-16. coaxial cable

Potential difference

\[-\int_{r_0}^{r_p} E_p \, dr - \int_{r_p}^{r_i} E_r \, dr = 20,000\]

\[
\frac{\rho_l}{2\pi\varepsilon_0} \left[\frac{1}{\varepsilon_r} \left(-\int_{r_0}^{r_p} \frac{1}{r} \, dr \right) + \frac{1}{\varepsilon_r} \left(-\int_{r_p}^{r_i} \frac{1}{r} \, dr \right) \right] = \frac{\rho_l}{2\pi\varepsilon_0} \left(\frac{1}{2.6} \ln \frac{r_o}{r_p} + \frac{1}{3.2} \ln \frac{r_p}{r_i} \right) = 20,000
\]

\[r_i = 0.4, \quad r_p = 0.616,\]

\[\therefore \frac{\rho_l}{2\pi\varepsilon_0} = 0.25 \times 20 \times 10^6 \times 2.6r_p = 8 \times 10^4, \quad \therefore r_o = 2.08r_i = 0.832 \text{ [cm]}
\]

cf) \[
\frac{5}{4} = \frac{2.6r_p}{3.2r_i} \Rightarrow r_p = \frac{5}{4} \times \frac{3.2}{2.6} r_i
\]

If order is reversed,

\[0.25 \times 20 \times 10^6 = \frac{\rho_l}{2\pi\varepsilon_0} \cdot \frac{1}{2.6} \cdot \frac{1}{r_i}, \quad 0.25 \times 25 \times 10^6 = \frac{\rho_l}{2\pi\varepsilon_0} \cdot \frac{1}{3.2} \cdot \frac{1}{r_r}
\]

\[\frac{4}{5} = \frac{3.2r_r}{2.6r_i}, \quad \therefore r_r = \frac{4}{5} \times \frac{2.6}{3.2} r_i = \frac{10.4}{16} r_i, \quad r_r < r_i \Rightarrow \text{Non sense}\]
(Cheng 3 - 6) Two very small conducting spheres, each of a mass $1.0 \times 10^{-4} \text{ (kg)}$, are suspended at a common point by very thin nonconducting threads of a length 0.2 (m). A charge Q is placed on each sphere. The electric force of repulsion separates the spheres, and an equilibrium is reached when the suspending threads make an angle of 10°. Assuming a gravitational force of 9.90 (N/kg) and a negligible mass of the threads, find Q.

(Cheng 3 - 12) Two infinitely long coaxial cylindrical surfaces, $r = a$ and $r = b$ ($b > a$), carry surface charge densities ρ_{sa} and ρ_{sb}, respectively.

a) Determine \vec{E} everywhere.

b) What must be the relation between a and b in order that E vanishes for $r > b$?
(Cheng 3 - 27) What are the boundary conditions that must be satisfied by the electrics potential at an interface between two perfect dielectrics with dielectric constants ε_{r1} and ε_{r2}?

A point charge q is enclosed in a linear, isotropic, and homogeneous dielectric medium of infinite extent. Calculate the \vec{E} field, the \vec{D} field, the polarization vector \vec{P}, the bound surface charge density ρ_{sb}, and the bound volume charge density ρ_{vb}.

A very thin, finite and uniformly charged line of length 10 m carries a charge of 10 μC/m. Calculate the electric field intensity in a plane bisecting the line at $\rho = 5$m.

Show that the magnitude of the electric field intensity of an electric dipole is

$$E = \frac{p}{4\pi\varepsilon_0 r^3} \left[1 + 3 \cos^2 \theta \right]^{1/2}$$