Field and Wave Electromagnetic

Chapter.5

Steady Electric Currents

Seoul National Univ.

Introduction

Steady currents
 Conduction current
 Electrolytic current
 Convection current

- N : number of charge carrier / unit volume
- \vec{u} : velocity
 - ① During time interval Δt , distance of charge carrier movement : $\vec{u} \Delta t$
 - ② The amount of charge passing through the surface area Δs

Cf) $Nq = \rho$

 $\Delta Q = Nq\vec{u} \cdot \hat{n}\Delta s\Delta t$ $\therefore \Delta I = \frac{\Delta Q}{\Delta t} = Nq\vec{u} \cdot \hat{n}\Delta s = \vec{J} \cdot \vec{\Delta s}$ and $\vec{J} = Nq\vec{u}$, where $\rho = Nq$: volume charge density $I = \int_{s} \vec{J} \cdot \vec{ds}$

then, $\vec{J} = \rho \vec{u}$: Convection Current density

- Electrons are emitted from a cathode.
- V = 0 at cathode.
- Electrons are collected by an anode.
- $V = V_0$ at anode.
- Electrons at cathode has a zero initial velocity.

Find the relation between \vec{J} and V_0 .

sol)

①
$$\vec{E}(0) = \hat{y}E_{y}(0) = -\hat{y}\frac{dV(y)}{dy}\Big|_{y=0} = 0$$

② In the steady state, the current density is cc and independent of y

$$\vec{J} = -\hat{y}J = \hat{y}\rho(y)u(y)$$

where, $\rho(y) < 0$ (:: electrons)

③ $\vec{u}(y)$ and $\vec{E}(y)$ is governed by Newton's law.

$$m \cdot \frac{du(y)}{dt} = -eE(y) = e\frac{dV(y)}{dy}$$

m=9.11×10⁻³¹ (kg), $e = -1.6 \times 10^{-19}$ (C)

$$m\frac{du}{dt} = m\frac{du}{dy}\frac{dy}{dt} = mu\frac{du}{dy} = \frac{d}{dy}\left(\frac{1}{2}mu^2\right)$$
$$\therefore \quad \frac{d}{dy}\left(\frac{1}{2}mu^2\right) = e\frac{dV}{dy}$$

Integrating both side with a given boundary condition , u(0) = 0, V(0) = 0 at y = 0

$$\frac{1}{2}mu^{2} = eV$$
$$u = \left(\frac{2e}{m}V\right)^{\frac{1}{2}}$$
: analogy to free fall motion in the gravitational field

To find V(y), we have to solve Poisson's equation with ρ expressed in terms of V(y)

$$J = -\rho u, \quad (\rho < 0)$$
$$\rho = -\frac{J}{u} = -J\sqrt{\frac{m}{2e}}V^{-\frac{1}{2}}$$

✓ Poisson's equation

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$$
$$\therefore \frac{d^2 V}{dy^2} = -\frac{\rho}{\varepsilon_0} = \frac{J}{\varepsilon_0} \sqrt{\frac{m}{2e}} V^{-1/2}$$

$$\mathsf{cf}\left(\frac{d^{2}V}{dy^{2}} \cdot \left(2\frac{dV}{dy}\right) = K \cdot V^{-\frac{1}{2}} \cdot 2\frac{dV}{dy}\right)$$
$$\frac{d}{dy}\left[\left(\frac{dV}{dy}\right)^{2}\right] = \frac{d}{dy}\left[K \cdot 4V^{\frac{1}{2}}\right]$$
$$\therefore \left(\frac{dV}{dy}\right)^{2} = 4K \cdot V^{\frac{1}{2}} + c$$

$$\therefore \left(\frac{dV}{dy}\right)^2 = \frac{4J}{\varepsilon_0} \sqrt{\frac{m}{2e}} V^{\frac{1}{2}} + c$$

B.C. at
$$y = 0$$
, $V = 0$, $\frac{dV}{dy} = 0$ (zero initial velocity)
 $\therefore c = 0$
 $\therefore \frac{dV}{dy} = 2\sqrt{\frac{J}{\varepsilon_0}} \cdot \left(\frac{m}{2e}\right)^{\frac{1}{4}} V^{\frac{1}{4}}$
 $\therefore V^{-\frac{1}{4}} dV = 2\sqrt{\frac{J}{\varepsilon_0}} \left(\frac{m}{2e}\right)^{\frac{1}{4}} dy$
 $\therefore \frac{4}{3}V_0^{\frac{3}{4}} = 2\sqrt{\frac{J}{\varepsilon_0}} \left(\frac{m}{2e}\right)^{\frac{1}{4}} d$. B.C. $\begin{cases} \text{at } y = 0, \ V = 0 \\ \text{at } y = d, \ V = V_0 \end{cases}$
 $\therefore \frac{J = \frac{4\varepsilon_0}{9d^2}\sqrt{\frac{2e}{m}V_0^{\frac{3}{2}}} \Rightarrow$ Child Langmuir law

- ✓ In case of conduction currents.
 - electrons, holes

$$J = \sum_{i} N_{i} q_{i} \overrightarrow{u_{i}}$$

- Atoms remain neutral
- Average drift velocity is directly proportional to the electric field intensity
- metallic conductors

 $\vec{u} = -\mu_e \vec{E}$: velocity, μ_e : mobility (m²/V·S)

cf)
$$\mu_{\rm e}$$
: 3.2×10⁻³ for Copper

- : 1.4×10^{-4} for Al
- : 5.2×10^{-3} for Silver

 $\vec{J} = -\rho_e \mu_e \vec{E}, \quad \text{where } \rho_e = -Ne : \text{charge density of drifting electrons.}$ Point function $\vec{J} = \sigma \vec{E}, \quad \sigma = -\rho_e \mu_e \quad \text{conductivity for metallic conductor}$ of $\vec{\sigma} = -\rho_e \mu_e + \rho_h \mu_h \Rightarrow \text{ for semiconductor}$ of $\vec{\sigma} = -\rho_e \mu_e + \rho_h \mu_h \Rightarrow \text{ for germanium, } \mu_e = 0.38, \quad \mu_h = 0.18$ of silicon, $\mu_e = 0.12, \quad \mu_h = 0.03$

- ✓ Conductivity
 - > Isotropic materials obeying, $\vec{J} = \sigma \vec{E}$: ohmic media

Conductivity

$$\sigma: (A/(V \cdot m)) \text{ or Simens per meter (S/m)}$$

$$for copper : 5.80 \times 10^{7} (S/m)$$

$$for germanium : 2.2 (S/m)$$

$$for silicon : 16 \times 10^{-3} (S/m)$$

$$for Hard rubber : 10^{-15} (S/m)$$

✓ Ohm's law

- $\vec{J} = \sigma \vec{E} \implies$ point form of Ohm's law cf) $V_{12} = RI \implies$ Not a point relation
- Assume a piece of homogeneous conducting material with conductivity σ , length *l*, uniform crosssection *S*.

$$V_{12} = El \implies E = \frac{V_{12}}{l}$$

$$I = \int_{s} \vec{J} \cdot \vec{ds} = JS, \quad J = \frac{I}{S}$$

$$\frac{I}{S} = \sigma \cdot \frac{V_{12}}{l}$$

$$\therefore \quad V_{12} = \left(\frac{l}{\sigma S}\right)I = RI$$

$$R = \frac{l}{\sigma S} = \rho \cdot \frac{l}{S} \quad : \text{ Resistance}$$

- ✓ $\oint_C \vec{E} \cdot \vec{dl} = 0 \Rightarrow$ Static E-field is irrotational (i.e. Conservative) For an ohmic material, $\vec{J} = \sigma \vec{E}$ $\therefore \oint_C \frac{1}{\sigma} \vec{J} \cdot \vec{dl} = 0$: Steady current cannot be maintained in the same direction in a closed circuit by an electrostatic field.
 - To have steady current, nonconservative field should supply the energy which will be dissipated by collision
 - The source of nonconservative field : chemical energy, generators.
 - Impressed electric field intensity

Electric battery

↓ driving forces for charge carrier

Equivalent impressed electric field intensity $\vec{E_i}$

- $\overrightarrow{E_i}$ is produced by chemical action
- $(E_i : \text{impressed electric field intensity})$

 $\vec{E}_i = -\vec{E}$:: $\begin{pmatrix} \text{No current flows in the open-circuited battery} \\ \Rightarrow \text{ the net force acting on the charge carriers must vanish} \end{cases}$

$$\int_{2}^{1} \vec{E}_{i} \cdot \vec{dl} = -\int_{2}^{1} \vec{E} \cdot \vec{dl} = \mathcal{V} : \text{ electromotive force}$$

$$\Rightarrow \text{ driving forces for charge carrier}$$

✓ Electro motive force : The line integral of the impressed field intensity $\vec{E_i}$ from the negative to positive electrode inside the battery

✓ Conservative electrostatic field

$$\oint_C \vec{E} \cdot \vec{dl} = \int_1^2 \vec{E} \cdot \vec{dl} + \int_2^1 \vec{E} \cdot \vec{dl} = 0$$

outside the inside the source

$$\mathcal{V} = \int_{1}^{2} \vec{E} \cdot \vec{dl} = V_{12} = V_{1} - V_{2}$$
 : voltage rise
outside the
source

With a resistor connecting two terminals, the total electric field intensity must $(\vec{E} + \vec{E}_i)$ be used in the point form of Ohm's law

$$\vec{J} = \sigma(\vec{E} + \vec{E}_i),$$

 \vec{E}_i exist inside the battery only, \vec{E} exist both inside and outside the battery

$$\vec{E} + \vec{E_i} = \frac{J}{\sigma}, \quad \mathcal{V} = \oint_C \left(\vec{E} + \vec{E_i}\right) \cdot \vec{dl} = \oint_C \frac{1}{\sigma} \vec{J} \cdot \vec{dl} = RI$$

cf) no source of nonconservative field $\oint_C \frac{1}{\sigma} \vec{J} \cdot \vec{dl} = 0$

$$\sum_{j} \mathcal{V}_{j} = \sum_{k} R_{k} I_{k} : \text{ Kirchhoff's voltage law}$$

→ Around a closed path in an electric circuit, the algebraic sum of the emf's (voltage rises) is equal to the algebric sum of the voltage drops across the resistances.

Equation of Continuity and Kirchhoff's current law

✓ The principle of conservation of charge

$$I = \oint_{S} \vec{J} \cdot \vec{ds} = -\frac{dQ}{dt} = -\frac{d}{dt} \int_{V} \rho \, dv$$

total outward flux \Rightarrow Decrease in total charge inside

> Applying divergence theorem, and assuming the stationary volume $\int_{V} \nabla \cdot \vec{J} \, dv = -\int_{V} \frac{\partial \rho}{\partial t} \, dv, \quad \begin{pmatrix} \text{taking partial derivative in the integral since } \rho \\ \text{may be a function of time as well as space} \\ \therefore \quad \nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \\ \vdots \text{ continuity equation} \Rightarrow \text{ point relationship} \end{cases}$

Steady current \Rightarrow Charge density does not vary with time : i.e. $\frac{\partial \rho}{\partial t} = 0$ $\therefore \nabla \cdot \vec{J} = 0, I_{out} = I_{in}$

Equation of Continuity and Kirchhoff's current law

In other words,

Steady current = Divergenceless = Solenoidal

 \Rightarrow The field lines (or stream lines) of steady current close upon themselves.

i.e.
$$\oint_{s} \vec{J} \cdot \vec{ds} = 0 \Rightarrow \sum_{j} I_{j} = 0 \Rightarrow \text{Kirchoff's current law}$$

cf) Relaxation time

$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t}, \text{ and } \vec{J} = \sigma \vec{E}$$

$$\sigma \nabla \cdot \vec{E} = -\frac{\partial \rho}{\partial t}, \text{ and } \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon} \text{ in a simple medium}$$

$$\therefore \quad \frac{\partial \rho}{\partial t} + \frac{\sigma}{\varepsilon} \rho = 0$$

$$\therefore \quad \rho = \rho_0 e^{-\left(\frac{\sigma}{\varepsilon}\right)t},$$

where $\rho_0 = \text{initial charge density at } t = 0$, relaxation time $\tau = \frac{\varepsilon}{\sigma}$ ex) copper : $\sigma = 5.80 \times 10^7$, $\varepsilon = \varepsilon_0 = 8.85 \times 10^{-12}$, $\tau = 1.52 \times 10^{-19}$

Power Dissipation and Joule's law

✓ Macroscopic observation

 $\vec{E} \Rightarrow$ drift motion of conduction electrons \Rightarrow electrons collide with atoms

 \Rightarrow vibration of lattice

i.e. Electric field energy \Rightarrow Thermal vibration

The work Δw by \vec{E} on a charge q

$$\Delta w = q\vec{E} \cdot \Delta \vec{l}$$

$$\therefore \text{ Power } p = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t} = q\vec{E} \cdot \vec{u} \text{ where, } \vec{u} : \text{ drift velocity}$$

Total power in a volume dv

$$dP = \sum_{i} p_{i} = \vec{E} \cdot \left(\sum_{i} N_{i} q_{i} \vec{u}_{i} \right) dv = \vec{E} \cdot \vec{J} dv$$

or
$$\frac{dP}{dv} = \vec{E} \cdot \vec{J} \quad (W/m^{3}) : Power density under steady current conditions$$

For a given volume v

$$P = \int_{V} \vec{E} \cdot \vec{J} \, dv \quad (W) \quad : \quad \text{Joule's law}$$

Power Dissipation and Joule's law

cf) Special case

Conductor : Constant cross section

dv = ds dl, dl measured in the direction \vec{J}

$$P = \int_{L} E \, dl \, \int_{s} J \, ds = VI = I^{2}R$$
 (W)

cf)
$$V = -\int E \, dl$$

note: Justification of \vec{E} in a conductor

① Voltage rise : Source of nonconservative field

② Not P.E.C : relaxation time

③ Steady current driven by non conservation source $\Rightarrow -\frac{\partial \rho}{\partial t} = 0$

(4) resistance \Rightarrow finite , P.E.C $\Rightarrow \sigma = \infty$

Boundary Conditions for Current Density

For steady current,

$$\nabla \cdot \vec{J} = 0, \ \oint_{s} \vec{J} \cdot \vec{ds} = 0 \qquad : \text{ continuity equation}$$
$$\nabla \times \left(\frac{\vec{J}}{\sigma}\right) = 0, \ \oint_{c} \frac{1}{\sigma} \vec{J} \cdot \vec{dl} = 0 \qquad : \text{ conservative electrostatic field}$$

 $\ensuremath{\textcircled{}}$ The normal component of a divergenceless vector field is continuous

$$\therefore J_{1n} = J_{2n}$$

② The tangential component of a curl-free vector field is continuous across an interface

$$\frac{J_{1t}}{\sigma_1} = \frac{J_{2t}}{\sigma_2} \qquad \text{or} \qquad \boxed{\frac{J_{1t}}{J_{2t}} = \frac{\sigma_1}{\sigma_2}}$$

③ Boundary conditions between two different lossy dielectrics

(permitivities ε_1 and ε_2 , finite conductivity σ_1 and σ_2)

- The tangential component of the electric field

$$E_{2t} = E_{1t} \qquad \left(\frac{J_{1t}}{J_{2t}} = \frac{\sigma_1}{\sigma_2}\right)$$

Boundary Conditions for Current Density

- Normal component of the electric field

$$J_{1n} = J_{2n} \implies \sigma_1 E_{1n} = \sigma_2 E_{2n}$$
$$D_{1n} - D_{2n} = \rho_s$$

(with the reference with normal $\hat{n_2}$ from medium 2 to medium 1)

$$\Rightarrow \varepsilon_1 E_{1n} - \varepsilon_2 E_{2n} = \rho_s$$

$$\therefore \rho_s = \left(\varepsilon_1 \frac{\sigma_2}{\sigma_1} - \varepsilon_2\right) E_{2n} = \left(\varepsilon_1 - \varepsilon_2 \frac{\sigma_1}{\sigma_2}\right) E_{1n}$$

if
$$\frac{\sigma_2}{\sigma_1} = \frac{\varepsilon_2}{\varepsilon_1}$$
, then $\rho_s = 0$

Resistance Calculation

$$\checkmark C = \frac{Q}{V} = \frac{\oint_{s} \overrightarrow{D} \cdot \overrightarrow{ds}}{-\int_{L} \overrightarrow{E} \cdot \overrightarrow{dl}} = \frac{\oint \varepsilon \overrightarrow{E} \cdot \overrightarrow{ds}}{-\int_{L} \overrightarrow{E} \cdot \overrightarrow{dl}}$$

When the dielectric medium is lossy, a current will flow from the positive to the negative conductor.

 $\Rightarrow \vec{J} = \sigma \vec{E}$ and \vec{J} and \vec{E} are in the same direction

$$\therefore R = \frac{V}{I} = \frac{-\int_{L} \vec{E} \cdot \vec{dl}}{\oint_{S} \vec{J} \cdot \vec{ds}} = \frac{-\int_{L} \vec{E} \cdot \vec{dl}}{\oint \sigma \vec{E} \cdot \vec{ds}} \Longrightarrow RC = \frac{C}{G} = \frac{\varepsilon}{\sigma}$$