Earthquake-resistant Design of Geotechnical Structures

- Procedure of Earthquake-Resistant Design of Geotechnical Structures
 - 1. Determination of design seismic loadings
 - A. Construction locations of structures
 - B. Importance level of structures
 - C. Performance level of structures
 - D. Soil type etc.
 - 2. Ground Response Analysis considering characteristics of Soil
 - A. Peak acceleration at surface
 - B. Profile of the maximum acceleration and shear strain with depth
 - 3. Evaluation of Liquefaction
 - A. Simple prediction method
 - B. Detail prediction method

4. Dynamic analysis of geotechnical structures

- A. Pseudo static analysis with peak acceleration
- B. Dynamic analysis considering Soil-Structure Interaction
- C. Model tests with similitude
- Geotechnical structures for earthquake-resistant Design
 - 1. Foundations
 - 2. Slope
 - 3. Retaining walls etc.

- 1. Earthquake resistant Design of Foundations
 - A. Foundations = substructure of a whole structure system
 - \Rightarrow Structure design \Leftrightarrow Foundation Design
 - E.g. Foundation Design -> Structure design: Soil Stiffness for modeling of whole system

Structure Design -> Foundation Design: Design Load for foundation

- B. Flowchart of Earthquake resistant Design of Foundations
 - i. Pseudo static analysis
 - ⇒ Similar with static analysis but different loading and FOS
 - ii. Shallow foundations
 - ⇒ Sliding, overturning, bearing capacity, settlement
 - iii. Pile foundation
 - ⇒ Displacement, member forces

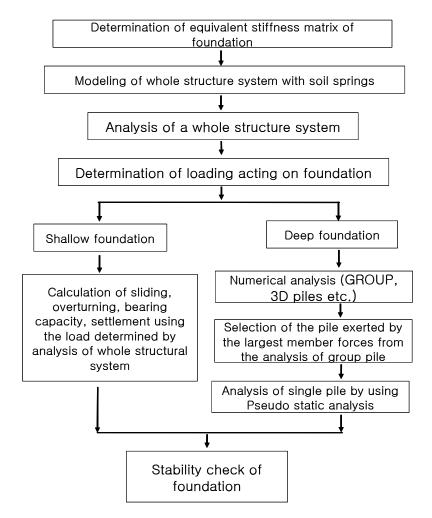


Fig. 1 flowchart of Earthquake resistant Design of Foundations

Soil Dynamics

- C. Modeling technique of foundation and soil
 - i. Fixed end
 - ⇒ Simple but too conservative
 - ii. Spring (6th DOF spring, p-y spring)
 - \Rightarrow How to determine the spring coefficients is very important
 - iii. Whole modeling (Solid and beam modeling of whole foundation and soil system)
 - ⇒ Complicated and rigorous

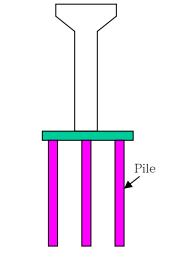
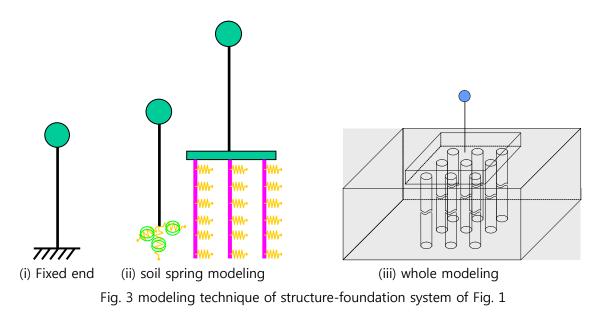



Fig. 2 Structure-foundation system

- D. Shallow foundation
 - i. Flowchart

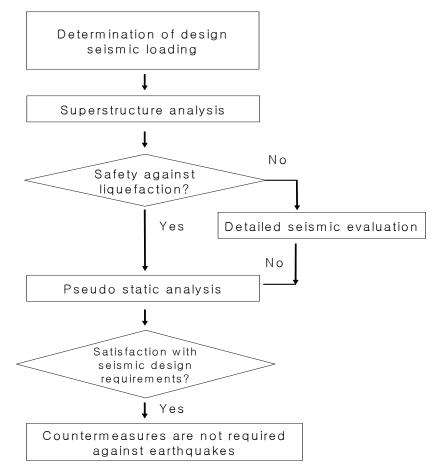


Fig. 4 flowchart of earthquake resistant design of shallow foundation

- ii. Design requirements
 - \Rightarrow Satisfaction with static requirements
 - \Rightarrow No liquefaction
 - ⇒ Factor of safety

Table 1	Factor	of	safety	for	shallow	foundation
	ractor	U1	Surcty	101	Shanow	loundation

	Translation	Bearing Capacity	Overturning	Settlement
During earthquake	1.2	2.0	e < B/3	Allowable value
Ordinary	2.0	3.0	e < B/6	Allowable value

e : eccentricity, B : width of shallow foundation

- E. Pile foundations
 - i. Considerations
 - ⇒ Liquefaction : deterioration of vertical/lateral bearing capacity of soils
 - ⇒ Batter pile : too excessive axial force at pile heads
 - ⇒ Soil-Structure Interaction
 - A. Mechanical behaviors between piles and their surrounding soils
 - B. Variation of soil profile and soil properties with depth
 - C. Pile spacing, superstructures etc.
 - ⇒ Interaction between piles and submerged slopes
 - A. likely to install piles for pile-supported wharves on submerged slopes which is highly possible to move and slide during earthquakes
 - ⇒ Dynamic group effect
 - A. In the case that C.T.C. of piles is less than 6 times of diameter of pile
 - \Rightarrow Separation of pile and its surrounding soils
 - A. Decrease of vertical/lateral bearing capacity
 - ii. Flowchart

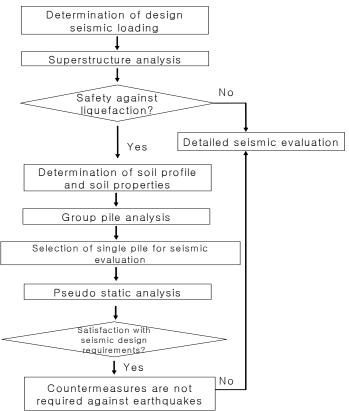


Fig. 5 flowchart of earthquake resistant design of pile foundation

iii. Design requirements

- ⇒ Satisfaction with static requirements including displacement requirement
- ⇒ OLE(Operating Level Earthquake)
 - A. Only elastic deformation is allowable
 - B. Same criteria with static conditions
 - i. 1% of Diameter of pile if D > 1500mm
 - ii. 1.5 cm if D <= 1500mm
- ⇒ CLE(Collapse Level Earthquake)
 - A. Displacement (=elastic displacement X displacement ductility coefficient) < allowable maximum displacement
 - B. Allowable maximum displacement is usually increased by 50% of ordinary condition

|--|

Port and harbor structures		displacement ductility coefficient					
	Turne	C	oncrete pi	Steel pile			
	Туре	Within	Pile head	Batter pile	Vertical	Vertical +	
		ground		head		batter	
Pile-supported wharves	PS Concrete	1.5	3.0	1.5	-	-	
	Steel or Composite of steel and concrete	-	-	-	5.0	3.0	
Gravity quay wall	PS Concrete	2.0	5.0	2.5	-	-	
	Steel or Composite of steel and concrete	-	-	-	5.0	3.0	

- 2. Earthquake resistant Design of Slopes
 - A. Design criteria
 - i. Factor of Safety
 - ⇒ Pseudo static analysis, limit equilibrium analysis
 - ii. Displacement
 - ⇒ Newmark sliding block method
 - ⇒ Dynamic numerical analysis
 - B. Pseudo static analysis
 - i. Factor of safety with circular failure surface
 - Seismic forces => pseudo static force(= horizontal seismic coefficient X Weight of slices)
 - iii. Horizontal seismic coefficient = $(1/2)x a_{max}$

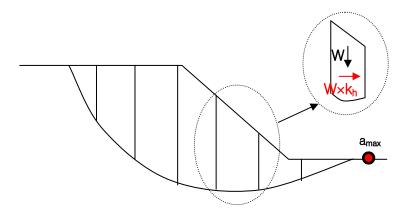
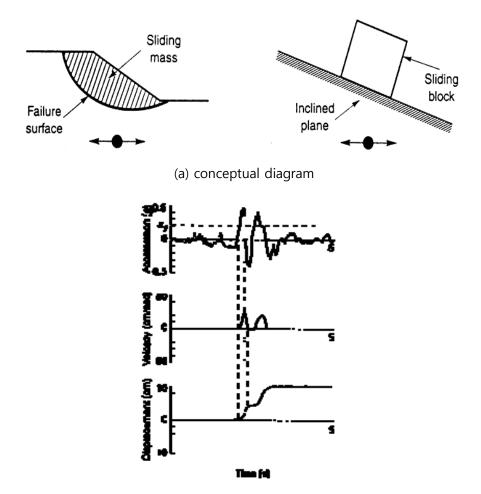
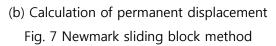
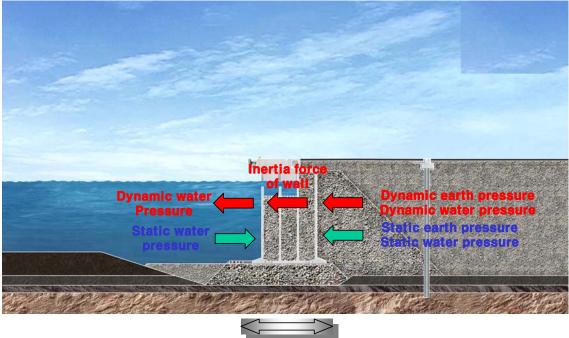




Fig. 6 Pseudo static analysis of slopes


- C. Newmark sliding block method
 - i. Calculation of displacement of slope during earthquakes
 - ii. Definition
 - \Rightarrow Yielding acceleration : acceleration when FOS of slope becomes 1
 - iii. Assumption
 - ⇒ Sliding mass in slope = rigid sliding block on inclined plane
 - ⇒ Displacement occurs only when earthquake acceleration exceeds yielding acceleration
 - Permanent displacement of sliding mass = twice integration of acceleration difference between earthquake acceleration exceeding yielding acceleration and yielding acceleration

- D. Design requirements
 - i. Satisfaction with static requirements
 - ii. No liquefaction
 - iii. To ensure the safety against CLE(Collapse Level Earthquake) of 2nd importance level (return period = 500 years)
 - iv. Pseudo static analysis
 - v. Criteria of FOS = 1.1
 - vi. Allowable displacement
 - \Rightarrow OLE : 10 cm
 - ⇒ CLE : 30 cm

- 3. Earthquake resistant Design of Retaining walls
 - A. Design criteria
 - i. Factor of Safety
 - ⇒ Pseudo static analysis, limit equilibrium analysis
 - ii. Displacement
 - ⇒ Richard-Elms method(upper bound of displacement)
 - ⇒ Whitman-Liao method(average of displacement)
 - ⇒ Dynamic numerical analysis
 - B. Forces acting on the wall during earthquakes
 - i. Static components
 - ⇒ Static water force in front of the wall
 - \Rightarrow Static water force in the back of the wall
 - ⇒ Static earth pressure in the back of the wall
 - ii. Dynamic components
 - ⇒ Dynamic water force in front of the wall
 - ⇒ Dynamic water force in the back of the wall
 - ⇒ Dynamic earth pressure in the back of the wall
 - ⇒ Inertia force of the wall

earthquakes

Fig. 8 Forces acting on the wall during earthquakes

- C. Horizontal seismic coefficient for pseudo static analysis
 - i. Horizontal seismic coefficient $k_h = 1/2 \times a_{max}$
 - ii. Horizontal seismic coefficient $k_h = (1.5 \text{ or } 1.0) \times a_{max}$ only when displacement of wall is restrained
 - iii. Maximum acceleration, a_{max}
 - ⇒ Maximum acceleration at surface without backfill if height of wall is smaller than 10 m
 - ⇒ Maximum acceleration in backfill considering magnification of acceleration if height of wall is larger than 10 m
- D. Dynamic earth pressure
 - i. Mononobe-Okabe method
 - ⇒ Expansion of Coulomb theory (adding equivalent seismic force to Coulomb's earth pressure)
 - ⇒ Including the static earth pressure
 - ii. M-O dynamic earth pressure

$$P_{AE} = \frac{1}{2} K_{AE} \gamma H^{2} (1 - K_{v})$$

$$K_{AE} = \frac{\cos^{2}(\phi - \theta - \psi)}{\cos \psi \cdot \cos^{2} \theta \cdot \cos(\delta + \theta + \psi) \cdot \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta - \psi)}{\cos(\delta + \theta + \psi)\cos(\beta - \theta)}}\right]^{2}}$$

$$\tan \psi = \frac{K_{h}}{1 - K_{v}}$$

where, γ : unit weight of backfill soil(tf/m)

 $\phi\colon$ internal friction angle of backfill soil(°)

eta : inclination angle of backfill surface from horizontal line(°)

heta: internal friction angle of backfill soil(°)

 $\delta \operatorname{:}$ wall friction(°)

$$\varphi = \tan^{-1} \frac{K_h}{1 - K_v}$$

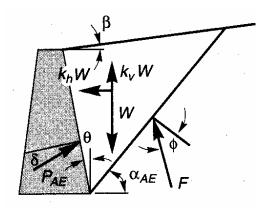


Fig. 9 forces acting on wall in M-O method

iii. Permeability coefficient in backfill

 $\Rightarrow k < 5x10-4 \text{ m/sec}$ $\gamma^* = \gamma_{sub}$

$$\psi = \tan^{-1} \left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 - k_{v}} \right)$$
$$F_{WD} = 0$$

$$\Rightarrow$$
 k > 5x10-4 m/sec

$$\gamma^* = \gamma_{sub}$$

$$\psi = \tan^{-1} \left(\frac{\gamma_d}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 - k_v} \right)$$

$$F_{WD} = \frac{7}{12} k_h \gamma_w H^{'2}$$

- iv. Locations where M-O dynamic forces are acting
 - ⇒ M-O dynamic earth force : 0.5 H
 - A. Static component : (1/3)H
 - B. Dynamic component : 0.6 H
 - ※ H: height of wall
- E. Inertia force of wall
 - i. Inertia force = mass of wall x horizontal seismic coefficient

- F. Dynamic water force
 - i. Westergaard's solution

$$F_{FWD} = \frac{7}{12} k_h \gamma_w H_w^2$$

- ii. Locations where dynamic water forces are acting ⇒ 0.4H
- iii. Dynamic water force in backfill should be considered when the permeability is large(k > 5x10-4 m/sec)
- G. Design method considering displacement of wall
 - i. Richard-Elms method
 - ⇒ Upper bound of displacement

$$\Rightarrow d_{\text{perm}} = 0.087 \frac{v_{\text{max}}^2 a_{\text{max}}^3}{a_y^4}$$

- A. v_{max} : maximum velocity (m/sec)
- B. a_{max} : maximum acceleration (m/sec2)
- C. a_y : yielding acceleration (m/sec2)
- ii. Whitman-Liao method
 - ⇒ Average of displacement

$$\Rightarrow d_{\text{perm}} = \frac{37 v_{\text{max}}^2}{a_{\text{max}}} \exp\left(\frac{-9.4 a_{\text{y}}}{a_{\text{max}}}\right)$$

- H. Design requirements
 - i. Satisfaction with static design requirements
 - ii. No liquefaction
 - iii. Criteria of FOS = 1.1 (translation, overturning, bearing capacity)
 - iv. Allowable displacement
 - \Rightarrow OLE : 10 cm
 - ⇒ CLE : 30 cm