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Class Handout: Chapter 2 Second-Order Systems

2006 Fall

• Analytic function, smooth function

We consider

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

where f1 and f2 are smooth.

* “vector field” f(x)

I. Qualitative Behavior of Linear Systems

ẋ = Ax, A ∈ R2×2

Let

A = MJrM
−1

where Jr is a real Jordan matrix. That is,

Jr =


λ1 0

0 λ2


 , or


λ k

0 λ


 , or


α −β

β α




where k = 0 or 1.

For more on real Jordan matrix, refer to http://algebra.math.ust.hk/eigen/02 complex/exercise2 answer.shtml.

If A has a zero eigenvalue, then the equilibrium is a set (so, we will treat the case later).

Case 1. Real e.v. λ1 6= λ2 6= 0.

z = M−1x, ż =


λ1 0

0 λ2


 z

Then,

z2(t) =
(

z20/z
λ2
λ1
10

)
z1(t)

λ2
λ1

Case 2. Complex e.v. λ1,2 = α± jβ
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In z,

ż1 = αz1 − βz2

ż2 = βz1 + αz2.

With r :=
√

z2
1 + z2

2 and θ := tan−1 z2/z1, we have

ṙ = αr, θ̇ = β.

Then,

r(t) = r0e
αt, θ(t) = θ0 + βt.

Case 3. λ1 = λ2 = λ 6= 0

In z,

ż1 = λz1 + kz2, ż2 = λz2.

Then,

z2(t) = eλtz20

z1(t) = eλtz10 +
∫ t

0

eλ(t−τ)keλτz20dτ

= eλtz10 + kteλtz20.

Case 4.

Jr =


0 0

0 λ


 , or


0 1

0 0


 .

* Perturbation: ẋ = (A + ∆A)x

Since e.v. is continuous to its parameters, saddle, node, and focus are robust to a small

perturbation. However, the center is not robust, e.g.,

 µ 1

−1 µ


 .
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II. Multiple Equilibria

For example, consider a pendulum equation with friction:

ẋ1 = x2

ẋ2 = −10 sinx1 − x2

where x1: position (angle), x2: angular velocity. See Figure 2.16.

Fig. 1. Figure 2.16

III. Qualitative Behavior Near Equilibrium Points

Consider

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

in which (p1, P2) is an equilibrium. Then, by Taylor series expansion, we have:

ẏ = Ay
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Local behavior can be determined when the linearization is

• stable/unstable node with distinct eigenvalues

• stable/unstable focus

• saddle.

Example: The pendulum case:

∂f

∂x
=


 0 1

−10 cos x1 −1


 .

Then,

J(0,0) =


 0 1

−10 −1


 , e.v.: −0.5± j3.12

J(π,0) =


 0 1

10 −1


 , e.v.: −3.7, 2.7

“hyperbolic” equilibrium

Example: Consider

ẋ1 = −x2 − µx1(x2
1 + x2

2)

ẋ2 = x1 − µx2(x2
1 + x2

2).

The origin is the center, but it resembles an unstable focus when µ < 0. (See the book for

the detail.)

IV. Limit Cycles

* Oscillation / Nontrivial periodic solution / Periodic orbit / Closed trajectory

* Harmonic oscillator / Linear oscillator is not structurally stable.

* Nonlinear oscillator / Isolated closed orbit / Limit cycle

Van der Pol equation:

ẋ1 = x2

ẋ2 = −x1 + ε(1− x2
1)x2

* Jump phenomenon / Relaxation oscillation

* Stable/unstable limit cycle

V. Numerical Construction of Phase Portraits

In Matlab, try quiver.
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VI. Existence of Periodic Orbits

Consider

ẋ = f(x), x ∈ R2

where f(·) is continuously differentiable.

Lemma 1. Poincare-Bendixson Criterion Consider a closed bounded region M s.t.

• M contains no equilibrium, or contains only one equilibrium at which the Jacobian has

eigenvalues with positive real parts,

• every trajectory starting in M stays in M for all future time.

Then, M contains a periodic solution.

Example 1.(Example 2.8) Consider

ẋ1 = x1 + x2 − x1(x2
1 + x2

2)

ẋ2 = −2x1 + x2 − x2(x2
1 + x2

2).

Apply the Poincare-Bendixson Criterion to determine the existence of periodic solution.

(Hint: use V (x) = x2
1 + x2

2.)
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Lemma 2. Bendixson Criterion If, on a simply connected (=“no holes”) region D, the

quantity
∂f1

∂x1
+

∂f2

∂x2

is not identically zero and does not change sign, then the system has no periodic solution

within D.

Example 2. (Example 2.10) Consider

ẋ1 = x2

ẋ2 = ax1 + bx2 − x2
1x2 − x3

1

and D = R2. Determine b so that there’s no periodic solution.

* Index of an equilibrium:

• Index of a node, a focus, or a center is +1.

• Index of a saddle is -1.

• Index of a closed orbit is +1.

• Index of a closed curve not encircling any equilibrium is 0.

• Index of a closed curve is equal to the sum of the indices of the equilibrium within it.

Lemma 3. Index Theorem Inside any periodic orbit γ, there must be at least one equilib-

rium.

Suppose the equilibrium points inside γ are hyperbolic, then if N is the number of nodes

and foci and S is the number of saddles, it must be that N − S = 1.

Example 3. Consider

ẋ1 = −x1 + x1x2

ẋ2 = x1 + x2 − 2x1x2.

There are two equilibria at (0, 0) and (1, 1). At each, we have

J(0,0) =


−1 0

1 1


 , which is a saddle,

J(1,1) =


 0 1

−1 −1


 , which is a stable focus.

Therefore, the only possibility is that the periodic orbit encircles the point (1, 1).
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VII. Bifurcation

• ẋ = µ− x2: saddle-node bifurcation

• ẋ = µx− x2: transcritical bifurcation

• ẋ = µx− x3: supercritical pitchfork bifurcation

• ẋ = µx + x3: subcritical pitchfork bifurcation

• Supercritical Hopf bifurcation

ẋ1 = x1(µ− x2
1 − x2

2)− x2

ẋ2 = x2(µ− x2
1 − x2

2) + x1

that is,

ṙ = µr − r3, θ̇ = 1.

• Subcritical Hopf bifurcation

ẋ1 = x1(µ + (x2
1 + x2

2)− (x2
1 + x2

2)
2)− x2

ẋ2 = x2(µ + (x2
1 + x2

2)− (x2
1 + x2

2)
2) + x1

that is,

ṙ = µr + r3 − r5, θ̇ = 1.

* global bifurcation

ẋ1 = x2

ẋ2 = µx2 + x1 − x2
1 + x1x2

See Fig. 2.32.

“Homoclinic orbit”

CDSL, Seoul Nat’l Univ. September 4, 2006


