Class Handout: Chapter 4 Lyapunov Stability

2006 Fall

- Lyapunov stability (stability in the sense of Lyapunov): Stability of an equilibrium, Stability of a trajectory (limit cycle)
- Input-output stability

I. Autonomous Systems

$$\dot{x} = f(x)$$

where $f: D \subset \mathbb{R}^n \to \mathbb{R}^n$ is locally Lipschitz, and f(0) = 0.

In most cases, we consider an equilibrium as the origin. (Why?)

Definition 4.1

• We say the origin is stable if, for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$||x(0)|| \le \delta$$
 \Rightarrow $||\phi(t, x(0))|| \le \epsilon, \quad t \ge 0.$

 $(\phi(t,x))$ is the solution starting at x when t=0.)

• We say the origin is *globally attractive* if, for each x(0),

$$\|\phi(t, x(0))\| \to 0, \qquad t \to \infty.$$

• We say the origin is (locally) attractive if there exists $\delta > 0$ such that

$$||x(0)|| < \delta$$
 \Rightarrow $\lim_{t \to \infty} \phi(t, x(0)) = 0.$

- We say the origin is globally asymptotically stable (GAS) if it is stable and globally attractive
- We say the origin is (locally) asymptotically stable (LAS/AS) if it is stable and (locally) attractive.
 - * exponential stability / uniform asymptotic stability
 - * Issue of global existence of solution in the definition.
 - * strong / weak stability

Example. Consider a model of pendulum

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -a \sin x_1 - bx_2, \qquad b > 0$

Read Figure 2.2 for the system with b = 0.

Read Figure 2.16 for the system with b > 0.

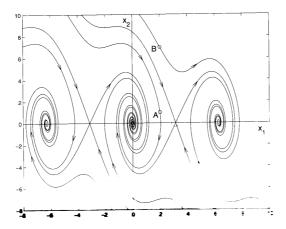


Fig. 1. Figure 2.16

Theorem 4.1

If $\exists C^1$ positive definite function $V: D \to \mathbb{R}$ s.t.

$$\dot{V}(x) \le 0 \text{ in } D$$

then, the origin is stable.

If, in addition,

$$\dot{V}(x) < 0 \text{ in } D - \{0\}$$

then, the origin is asymptotically stable.

- \bullet The function V is called Lyapunov function. (cf. "Lyapunov function candidate")
- $\dot{V}(x) = \frac{\partial V}{\partial x}(x)f(x) =: L_fV(x)$: Directional derivative of V(x) along the direction of f(x)
- = Lie derivative of V along f.
- Level set, Lyapunov surface: $\{x : V(x) = c\}, c > 0.$
- Sublevel set: $\{x: V(x) \leq c\}, c > 0.$
- Meaning of $\dot{V}(x) \leq 0$ on the level set:
- Example of a positive definite function: $V(x) = x^T P x$ where P > 0 (positive definite matrix).
- Summary of positive (semi)definite matrix P: (symmetry is assumed)
- for all nonzero $x \in \mathbb{R}^n$, $x^T P x > (\geq)0$.
- all eigenvalues of P are positive(nonnegative) real.

- all the leading principal minors of P are positive (all principal minors of P are nonnegative).
- there is a nonsingular matrix N s.t. $P = N^T N$ (there is $N \in \mathbb{R}^{m \times n}$ s.t. $P = N^T N$).
- Example 4.1:

$$P = \begin{bmatrix} a & 0 & 1 \\ 0 & a & 2 \\ 1 & 2 & a \end{bmatrix}$$

which is positive definite for $a > \sqrt{5}$, and negative definite for $a < -\sqrt{5}$.

- Lyapunov function approach is a generalization of decreasing energy concept.
- Lyapunov function is *not* unique.
- Theorem 4.1 is only *sufficient*. (cf. converse theorem of Section 4.7.)

Example 4.2 For $\dot{x} = -g(x)$ where g(0) = 0, xg(x) > 0 for $x \neq 0$. Try with $V(x) = \int_0^x g(y) dy$. Consider also $V(x) = x^2$ which is simpler. In fact, it is known that, for a scalar system, $V(x) = x^2$ always becomes a Lyapunov function.

Example 4.3 Consider the pendulum without friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1$$

Try $V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$. Note that, V(0) = 0 and is positive definite only over $-\pi < x_1 < \pi$. What is your conclusion about the stability?

Example 4.4 Consider the pendulum with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2, \qquad b > 0$$

Try $V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$. What is your conclusion about the stability? Now try again with

$$V(x) = \frac{1}{2}x^{T}Px + a(1 - \cos x_{1})$$

$$= \frac{1}{2} \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + a(1 - \cos x_{1})$$

For P to be positive definite, we must have

$$p_{11} > 0, p_{11}p_{22} - p_{12}^2 > 0.$$

Also,

$$\dot{V}(x) = (p_{11}x_1 + p_{12}x_2 + a\sin x_1)x_2 + (p_{12}x_1 + p_{22}x_2)(-a\sin x_1 - bx_2)$$
$$= a(1 - p_{22})x_2\sin x_1 - ap_{12}x_1\sin x_1 + (p_{11} - p_{12}b)x_1x_2 + (p_{12} - p_{22}b)x_2^2$$

To cancel the indefinite terms, we take $p_{22} = 1$ and $p_{11} = bp_{12}$. Also, let $0 < p_{12} < b$ for V(x) to be positive definite. Let $p_{12} = b/2$. Then, $\dot{V}(x)$ is negative definite on $\{x \in \mathbb{R}^2 : |x_1| < \pi\}$.

Useful facts:

$$\begin{split} &\frac{\partial}{\partial x} y^T x = \frac{\partial}{\partial x} x^T y = y \\ &\frac{\partial}{\partial x} y^T A^T x = \frac{\partial}{\partial x} x^T A y = A y \\ &\frac{\partial}{\partial x} x^T A x = A x + A^T x \end{split}$$

Proof. Roughly stated,

$$V(x(t)) \le V(x(0)), \quad \forall t \ge 0$$

because $\dot{V}(x(t)) \leq 0$, and this proves the stability. To be precise, the above argument need to be converted with the norm ||x|| to fit in the stability definition.

Given $\epsilon > 0$, choose $r \in (0, \epsilon]$ s.t.

$$B_r = \{x : ||x|| < r\} \subset D.$$

Let $\alpha = \min_{\|x\|=r} V(x) > 0$. Take $\beta \in (0, \alpha)$ and let

$$\Omega_{\beta} = \{x \in B_r : V(x) \le \beta\} \subset B_r.$$

Any trajectory started in Ω_{β} remains in it. (Why?) Thus, the trajectory (solution) exists for all $t \geq 0$. (Why?)

Since V(x) is continuous and V(0) = 0, $\exists \delta > 0$ s.t.

$$||x|| < \delta \qquad \Rightarrow \qquad V(x) < \beta.$$

So, $B_{\delta} \subset \Omega_{\beta} \subset B_r$ and

$$||x(0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < r \le \epsilon, \qquad \forall t \ge 0$$
 (Stability).

We now show that $x(t) \to 0$; that is, for each a > 0, $\exists T > 0$ s.t. ||x(t)|| < a for all t > T. Since for each a > 0, we can choose b s.t. $\Omega_b \subset B_a$, it is enough to show that $V(x(t)) \to 0$. (Why?)

Since V(x(t)) is nonincreasing and bounded from below by zero,

$$V(x(t)) \to c \ge 0$$
 as $t \to \infty$.

Suppose c > 0. Let d > 0 s.t. $B_d \subset \Omega_c$. Let

$$-\gamma = \max_{d \le ||x|| \le r} \dot{V}(x) < 0.$$

Then.

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(s))ds \le V(x(0)) - \gamma t$$

which implies that V(x(t)) eventually goes below c, which is a contradiction. (Attractivity).

Region of Attraction (Basin of attraction, Domain of attraction)

If the origin is asymptotically stable, we can consider its region of attraction (ROA) = $\{x : \lim_{t\to\infty} \phi(t,x) = 0\}.$

Estimating ROA

One (conservative) way to find a subset of ROA is to use the level set of a Lyapunov function, that is, if $\Omega_c = \{x : V(x) \leq c\}$ is bounded and contained in D, then every trajectory starting in Ω_c remains in Ω_c and approaches the origin as $t \to \infty$.

Theorem 4.2 (Barbashin-Krasovskii theorem)

If $\exists C^1$ positive definite radially unbounded function $V: \mathbb{R}^n \to \mathbb{R}$ s.t.

$$\dot{V}(x) < 0 \qquad \forall x \neq 0$$

then, the origin is globally asymptotically stable.

• A positive definite function $V: D \to \mathbb{R}$ is proper on a set D if, for each c > 0, the sublevel set $\Omega_c := \{x: V(x) \le c\}$ is compact and contained in D. This is equivalent to

$$V(x) \to \infty$$
 as $x \to \partial D$.

• radially unbounded = proper on \mathbb{R}^n , that is,

$$V(x) \to \infty$$
 as $||x|| \to \infty$.

• Radially unboundedness is needed in the theorem. See Exercise 4.8 for a counterexample. The problem is that for large c, the set Ω_c is not necessarily bounded. See Figure 4.4 for

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2.$$

For small c, Ω_c is closed and bounded (because V(x) is continuous and positive definite). But, for large c, it is unbounded. For Ω_c to be in the interior of a ball B_r , c must satisfy $c < \inf_{\|x\| \ge r} V(x)$. If

$$l = \lim_{r \to \infty} \inf_{\|x\| \ge r} V(x) < \infty$$

then Ω_c will be bounded if c < l.

• If an equilibrium is GAS, it means there is no other equilibrium.

Proof. First, prove that radially unboundedness is equivalent to being proper on \mathbb{R}^n ; that is, prove that

$$V(x) \to \infty$$
 as $||x|| \to \infty$

is equivalent to that, for each c > 0, the set Ω_c is compact. (See the textbook.)

Now, for the given initial condition x_0 , let $c = V(x_0)$. Then, Ω_c is compact and, since x(t) remains in Ω_c , the previous proof can be employed.

Theorem 4.3 (Chetaev's Theorem) Instability theorem

If \exists C^1 function $V:D\to\mathbb{R}$ s.t. V(0)=0 and V(x)>0 for some x arbitrarily close to the origin, and

$$\dot{V}(x) > 0$$
 on $U := \{x \in B_r : V(x) > 0\}, r > 0,$

then, the origin is unstable.

- \bullet U is non-empty.
- The boundary of U is the surface V(x) = 0 and ||x|| = r. The origin is on the boundary. (See Figure 4.5).

Proof.

We show that the trajectory x(t), from $x(0) = x_0$ where x_0 is in the *interior* of U, must leave U.

CDSL, Seoul Nat'l Univ.

Let $a = V(x_0) > 0$. Then, since $\dot{V}(x) > 0$, it follows that $V(x(t)) \ge a$ for all $t \ge 0$. This means that x(t) cannot cross the boundary (V(x) = 0) of U. We thus show that x(t) will cross the boundary (||x|| = r) of U.

Let $\gamma := \min\{\dot{V}(x) : x \in U \text{ and } V(x) \geq a\} > 0$ which exists since it is a minimization of a continuous function over a compact set. Then,

$$V(x(t)) = V(x_0) + \int_0^t \dot{V}(x(s))ds \ge a + \int_0^t \gamma ds = a + \gamma t.$$

Hence, x(t) cannot stay in U forever because V(x) is bounded on U, which means x(t) crosses the curve ||x|| = r. Because this happens for any x_0 arbitrarily close to the origin, the origin is unstable.

Example 4.7 Consider

$$\dot{x}_1 = x_1 + g_1(x)$$
$$\dot{x}_2 = -x_2 + g_2(x)$$

where $|g_i(x)| \leq k||x||_2^2$ in the neighborhood of the origin.

Let
$$V(x) = \frac{1}{2}(x_1^2 - x_2^2)$$
. Then,

$$\dot{V}(x) = x_1^2 + x_2^2 + x_1 g_1(x) - x_2 g_2(x) \ge ||x||_2^2 - 2k ||x||_2^3 = ||x||_2^2 (1 - 2k ||x||_2)$$

So, with B_r , r < 1/(2k), we conclude the origin is unstable.

II. THE INVARIANCE PRINCIPLE

Recall Example 4.4 (Pendulum with friction):

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -a \sin x_1 - bx_2, \qquad b > 0$

With
$$V(x) = a(1 - \cos x_1) + \frac{1}{2}x_2^2$$
,

$$\dot{V}(x) = -bx_2^2$$
.

For the system to maintain $\dot{V}(x) = 0$, the trajectory should be confined to line $x_2 = 0$. But, this is impossible unless $x_1 = 0$. This makes it possible to claim $V(x(t)) \to 0$ even though $\dot{V}(x) \leq 0$.

• Positive limit point p of the solution x(t): \exists a seq. $\{t_n\}$ with $t_n \to \infty$ as $n \to \infty$, s.t., $x(t_n) \to p$ as $n \to \infty$.

(Ex. AS equilibrium / any point in AS limit cycle)

• Positive limit set of x(t): set of all positive limit points of x(t).

(Ex. AS limit cycle)

• Invariant set M (of the system): a set M s.t.

$$x(0) \in M$$
 \Rightarrow $x(t) \in M$, $\forall t \in (-\infty, \infty)$.

(Ex. limit cycle, equilibrium, ...)

• Positive(negative) invariant set M: in the above, replace $t \in (-\infty, \infty)$ with $t \in [0, \infty)$ $(t \in (-\infty, 0])$.

(Ex. Ω_c with $\dot{V}(x) \leq 0$.)

• Distance of a point x from a set M: $\operatorname{dist}(x, M) = \inf_{y \in M} \|x - y\| = \|x\|_M$

Lemma 4.1

If a sol. $x(t) \in D$ is bounded for all $t \geq 0$,

then, its positive limit set L^+ is nonempty, compact, and invariant.

Moreover, $x(t) \to L^+$ as $t \to \infty$.

Proof. By Bolzano-Weierstrass theorem, L^+ is nonempty because x(t) is bounded.

 L^+ is bounded because, for any $y \in L^+$, there is a seq. $\{t_i\}$ s.t. $x(t_i) \to y$. Since x(t) is bounded, y is bounded, too.

 L^+ is closed. Let $\{y_i\} \in L^+$ be a seq. s.t. $y_i \to y$. We will prove that $y \in L^+$. For each i, \exists a seq. $\{t_{ij}\}$ s.t.

$$t_{ij} \to \infty$$
, $x(t_{ij}) \to y_i$, as $j \to \infty$.

Among the sequence elements $\{t_{ij}\}$, we will pick some of them to construct another seq. $\{\tau_i\}$ as follows: choose τ_2 among $\{t_{2j}\}$ s.t. $\tau_2 > t_{12}$ and $\|x(\tau_2) - y_2\| < 1/2$; choose τ_3 among $\{t_{3j}\}$ s.t. $\tau_3 > t_{13}$ and $\|x(\tau_3) - y_3\| < 1/3$; and so on. As a result, $\tau_i \to \infty$ and $\|x(\tau_i) - y_i\| < 1/i$. Now, given $\epsilon > 0$, $\exists N_1, N_2 > 0$ s.t.

$$||x(\tau_i) - y_i|| < \frac{\epsilon}{2}, \quad \forall i > N_1 \quad \text{and} \quad ||y_i - y|| < \frac{\epsilon}{2}, \quad \forall i > N_2.$$

From the above, we have

$$||x(\tau_i) - y|| < \epsilon, \quad \forall i > N = \max\{N_1, N_2\},$$

which implies that y is also a limit point (so, $y \in L^+$).

 L^+ is invariant. Let $y \in L^+$ and $\phi(t;y)$ be the sol. that passes through y at t=0. We show that $\phi(t;y) \in L^+$, $\forall t \in (-\infty,\infty)$. There is a seq. $\{t_i\}$ s.t. $t_i \to \infty$ and $x(t_i) \to y$. Write $x(t_i) = \phi(t_i; x_0)$ where $x_0 = x(0)$. By uniqueness of the sol.,

$$\phi(t + t_i; x_0) = \phi(t; \phi(t_i; x_0)) = \phi(t; x(t_i)).$$

Then, for any $t \in (-\infty, \infty)$, (by continuity)

$$\lim_{i \to \infty} \phi(t + t_i; x_0) = \lim_{i \to \infty} \phi(t; x(t_i)) = \phi(t; y)$$

which shows $\phi(t;y) \in L^+$.

We now show that $x(t) \to L^+$ as $t \to \infty$. Suppose this is not the case. Then, $\exists \epsilon > 0$ and $\{t_i\}$ with $t_i \to \infty$ s.t. $\|x(t_i)\|_{L^+} > \epsilon$. Since $\{x(t_i)\}$ is bounded, there is a subsequence of it $\{x(t_i')\}$ s.t. $x(t_i') \to x^*$ with some x^* . Then, x^* must be in L^+ because it is a limit point. This contradicts that $\|x(t_i)\|_{L^+} > \epsilon$.

Theorem 4.4 (LaSalle's Invariance Theorem)

 $\Omega \subset D$: a positively invariant compact set.

 $V: D \to \mathbb{R}: C^1$ function s.t. $\dot{V}(x) \leq 0$ in Ω .

 $E \subset \Omega$: the set of points s.t. $\dot{V}(x) = 0$ in Ω .

 $M \subset E$: the largest invariant set in E.

Then, every solution starting in Ω approaches M as $t \to \infty$.

Proof. First, since $\dot{V}(x(t)) \leq 0$ and V(x) is bounded below, $\exists a \text{ s.t. } V(x(t)) \to a \text{ as } t \to \infty$. On the other hand, since Ω is compact and positively invariant, \exists a positive limit set L^+ of x(t) in Ω . We will show that

$$L^+ \subset M \subset E \subset \Omega$$
,

which proves the claim since x(t) is bounded, so $x(t) \to L^+$.

Pick any $p \in L^+$, then there is a seq. $\{t_n\}$ with $t_n \to \infty$ and $x(t_n) \to p$. Then,

$$V(p) = \lim_{n \to \infty} V(x(t_n)) = a,$$

which means V(x) = a on L^+ . Since L^+ is invariant, $\dot{V}(x) = 0$ on L^+ , so $L^+ \subset M$.

- Only applicable to autonomous (time-invariant) system.
- V(x) need not be positive definite.
- Ω can be found by a sublevel set of V(x), or by other ways.
- If M consists only of the origin, then it is claimed that $x(t) \to 0$. This is done by showing that no solution can stay identically in E, other than the trivial solution $x(t) \equiv 0$.

Corollary 4.1

 $V:D\to\mathbb{R}:\ C^1$ positive definite function s.t. $\dot{V}(x)\leq 0.$

$$S = \{ x \in D : \dot{V}(x) = 0 \}.$$

If no sol. can stay identically in S other than x(t) = 0, then the origin is AS.

Corollary 4.2

In addition, if $D = \mathbb{R}^n$ and V(x) is radially unbounded, then the origin is GAS.

Example. Show that the system

$$\dot{x}_1 = x_2^3$$

$$\dot{x}_2 = -x_1 - x_2$$

is globally asymptotically stable (using $V(x) = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4$).

Example 4.10 Consider

$$\dot{y} = ay + u$$

with an adaptive control law

$$u = -ky, \qquad \dot{k} = \gamma y^2, \qquad \gamma > 0.$$

Taking $x_1 = y$, $x_2 = k$, the closed-loop system becomes

$$\dot{x}_1 = -(x_2 - a)x_1$$

$$\dot{x}_2 = \gamma x_1^2$$

The line $x_1 = 0$ is an equilibrium set. (Meaning?)

Consider

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2\gamma}(x_2 - b)^2, \quad b > a$$

Then,

$$\dot{V}(x) = -x_1^2(x_2 - a) + x_1^2(x_2 - b) = -x_1^2(b - a) \le 0.$$

Then, V(x) is radially unbounded, Ω_c is compact for any c > 0. The set $E = M = \{x : x_1 = 0\}$. So, we conclude that $y(t) \to 0$.

Since we do not know a, we cannot determine the value b. But, the whole argument still holds.

III. LINEAR SYSTEMS AND LINEARIZATION

$$\dot{x} = Ax, \qquad x \in \mathbb{R}^n$$

Theorem 4.5 The origin is stable if and only if

- all eigenvalues of A satisfy Re $\lambda_i \leq 0$
- rank $(A \lambda_i I) = n q_i$ for every eigenvalue with Re $\lambda_i = 0$ and algebraic multiplicity $q_i \geq 2$.

The origin is (globally) asymptotically stable if and only if all eigenvalues of A satisfy Re $\lambda_i < 0$ (Hurwitz or stable matrix).

Proof.

$$T^{-1}AT = J = \text{blockdiag}[J_1, J_2, \cdots, J_r]$$

where J_i is a Jordan block of order m_i corresponding to the eigenvalue λ_i . Then,

E.g.,
$$\exp(Jt) =$$

$$\exp(At) = T \exp(Jt)T^{-1} = \sum_{i=1}^{r} \sum_{k=1}^{m_i} t^{k-1} \exp(\lambda_i t) R_{ik}$$

 $\begin{bmatrix} e^{-\lambda_1 t} & t e^{-\lambda_1 t} \\ 0 & e^{-\lambda_1 t} \end{bmatrix}$

where R_{ik} is an appropriate $n \times n$ matrix. Note that

$$x(t) = \exp(At)x(0).$$

With all the above, the claim can be argued.

 $Example\ 4.12$ Series and parallel connections of the identical model

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

The resulting system has the system matrix of

$$A_p = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, \qquad A_s = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{bmatrix}.$$

Both A_p and A_s has the same e.v. $\pm j$ with the algebraic multiplicity $q_i = 2$. Since rank $(A_p - jI) = 2$, A_p is stable, and since rank $(A_s - jI) = 3$, A_s is unstable.

* "resonance" for the series connection.

Consider a quadratic Lyapunov function $V(x) = x^T P x$ where P > 0 for the system $\dot{x} = A x$. Then,

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x$$

where Q is symmetric given by

$$PA + A^T P = -Q.$$

We know that, if Q > 0, then the system is (globally) asymptotically stable. (Why?)

Theorem 4.6 The following are equivalent:

- 1. A matrix A is Hurwitz.
- 2. For any Q > 0, \exists a P > 0 that satisfies

$$PA + A^T P = -Q$$
, (Lyapunov equation).

Moreover, if A is Hurwitz, the P is unique for each Q in the above.

* $Q = C^T C$, where (A, C) is observable, gives the same result. (Exercise 4.22)

* Sylvester equation: PA + BP + C = 0.

Proof. $(2) \rightarrow (1)$: DIY.

 $(1)\rightarrow(2)$: Since A is Hurwitz, define

$$P := \int_0^\infty \exp(A^T t) Q \exp(At) \ dt,$$

which is well-defined. (Why?)

From the definition, P is symmetric. In addition, P is positive definite. Indeed, supposing it is not so, $\exists x \neq 0$ s.t. $x^T P x = 0$. Then,

$$\int_0^\infty x^T \exp(A^T t) Q \exp(At) x \ dt = 0$$

$$\Rightarrow \exp(At) x \equiv 0 \Rightarrow x = 0$$

which is a contradiction.

Therefore,

$$PA + A^T P = \int_0^\infty \exp(A^T t) Q \exp(At) A dt + \int_0^\infty A^T \exp(A^T t) Q \exp(At) dt$$
$$= \int_0^\infty \frac{d}{dt} \exp(A^T t) Q \exp(At) dt = \exp(A^T t) Q \exp(At)|_0^\infty = -Q$$

which means that P is actually a solution of the Lyapunov equation.

Finally, P is unique because, if not, with another solution $\tilde{P} \neq P$, we have

$$(P - \tilde{P})A + A^{T}(P - \tilde{P}) = 0.$$

Premultiplying by $\exp(A^T t)$ and postmultiplying by $\exp(At)$, we obtain

$$0 = \exp(A^T t)[(P - \tilde{P})A + A^T (P - \tilde{P})] \exp(At) = \frac{d}{dt} \left\{ \exp(A^T t)(P - \tilde{P}) \exp(At) \right\}.$$

Hence.

$$\exp(A^T t)(P - \tilde{P}) \exp(At) \equiv \text{a constant}, \quad \forall t.$$

Then.

$$(P - \tilde{P}) = \exp(A^T t)(P - \tilde{P}) \exp(At) \to 0 \text{ as } t \to \infty,$$

which proves that $P = \tilde{P}$.

$$\dot{x} = f(x)$$

where f is C^1 and f(0) = 0.

By the mean value theorem, for each x, $\exists z_i$ s.t.

$$f_i(x) = f_i(0) + \frac{\partial f_i}{\partial x}(z_i)x = \frac{\partial f_i}{\partial x}(0)x + \left[\frac{\partial f_i}{\partial x}(z_i) - \frac{\partial f_i}{\partial x}(0)\right]x.$$

Hence

$$\dot{x} = f(x) = Ax + g(x)$$

where

$$|g_i(x)| \le \left\| \frac{\partial f_i}{\partial x}(z_i) - \frac{\partial f_i}{\partial x}(0) \right\| \|x\|$$

which implies that

$$\frac{\|g(x)\|}{\|x\|} \to 0$$
 as $\|x\| \to 0$.

Theorem 4.7. (Lyapunov indirect method) Let $A = \frac{\partial f}{\partial x}(0)$.

- 1. The origin is locally asymptotically stable if A is Hurwitz.
- 2. The origin is unstable if $\operatorname{Re}\lambda_i > 0$ for one or more of the eigenvalues of A.
- A is called the 'first order approximation of f(x) at the origin' or 'Jacobian of f(x) at the origin'.
- The theorem does not say anything for the case $\operatorname{Re} \lambda_i \leq 0$ for all i.

Proof. (1) Pick any Q > 0 and solve P s.t. $PA + A^TP = -Q$. Let $V(x) = x^TPx$. Then,

$$\dot{V}(x) = x^T P f(x) + f^T(x) P x$$

$$= x^T P [Ax + g(x)] + [x^T A^T + g^T(x)] P x$$

$$= x^T (PA + A^T P) x + 2x^T P g(x)$$

$$= -x^T Q x + 2x^T P g(x)$$

Pitfall: There's no mean value theorem for multi-variable functions. That is, for a C^1 function $f: \mathbb{R}^n \to \mathbb{R}^n$ such that f(0) = 0, it is not true that there exists q for each x such that $f(x) = \frac{\partial f}{\partial x}(q)x$. For example, try with $f(x_1, x_2) = [x_1^2, \exp(x_1) - 1]^T$.

 \Rightarrow Small o notation: g(x) = o(||x||). Since g(x) = o(||x||), for any $\gamma > 0$, $\exists r > 0$ s.t.

$$||g(x)|| < \gamma ||x||, \quad \forall ||x|| < r, x \neq 0.$$

Hence,

$$\dot{V}(x) < -x^T Q x + 2\gamma ||P|| ||x||^2, \qquad \forall ||x|| < r, x \neq 0,$$

$$\leq -[\lambda_{\min}(Q) - 2\gamma ||P||] ||x||^2$$

which proves (1).

(2) First suppose that A is hyperbolic. Then, \exists a nonsingular T s.t.

'Diffeomorphism' See Exercise 4.26.

$$TAT^{-1} = \begin{bmatrix} -A_1 & 0\\ 0 & A_2 \end{bmatrix}$$

where A_i 's are Hurwitz. Let $z = Tx = [z_1; z_2]$. Then, in z-coordinates, the system becomes

$$\dot{z}_1 = -A_1 z_1 + g_1(z)$$

$$\dot{z}_2 = A_2 z_2 + q_2(z)$$

Pick any $Q_1 > 0$ and $Q_2 > 0$, and solve $P_i A_i + A_i^T P_i = -Q_i$. Let

$$V(z) = z_1^T P_1 z_1 - z_2^T P_2 z_2.$$

In the subspace $z_2 = 0$, V(z) > 0 at points arbitrarily close to the origin. Let

$$U = \{ z \in \mathbb{R}^n : ||z|| < r, \ V(z) > 0 \}.$$

In U,

$$\begin{split} \dot{V}(z) &= -z_1^T (P_1 A_1 + A_1^T P_1) z_1 + 2 z_1^T P_1 g_1(z) \\ &- z_2^T (P_2 A_2 + A_2^T P_2) z_2 - 2 z_2^T P_2 g_2(z) \\ &= z_1^T Q_1 z_1 + z_2^T Q_2 z_2 + 2 z^T [P_1 g_1(z); -P_2 g_2(z)] \\ &\geq \lambda_{\min}(Q_1) \|z_1\|^2 + \lambda_{\min}(Q_2) \|z_2\|^2 - 2 \|z\| \sqrt{\|P_1\|^2 \|g_1(z)\|^2 + \|P_2\|^2 \|g_2(z)\|^2} \\ &> (\alpha - 2\sqrt{2}\beta\gamma) \|z\|^2 \quad \text{with some } \alpha > 0 \text{ and } \beta > 0, \end{split}$$

which leads to the conclusion. Note that the analysis also can be done in x-coordinates with

$$P = T^T \begin{bmatrix} P_1 & 0 \\ 0 & -P_2 \end{bmatrix} T; \qquad Q = T^T \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} T.$$

If A has some eigenvalues on the imaginary axis (as well as some eigenvalues in the open

The Lyapunov equation $PA + A^TP = -Q$ has, in fact, a unique solution P if and only if $\lambda_i + \lambda_j \neq 0$ for all i and j, where λ_i is an eigenvalue of A.

CDSL, Seoul Nat'l Univ.

September 18, 2006

right-half plane), then consider a matrix $[A - (\delta/2)I]$ that is hyperbolic. With it, we find $P = P^T$ and Q > 0 s.t.

$$P\left[A - \frac{\delta}{2}I\right] + \left[A - \frac{\delta}{2}I\right]^T P = Q.$$

Again, $V(x) = x^T P x$ is positive for points arbitrarily close to the origin. With it, we have

$$\begin{split} \dot{V}(x) &= x^T (PA + A^T P) x + 2 x^T P g(x) \\ &= x^T \left[P \left(A - \frac{\delta}{2} I \right) + \left(A - \frac{\delta}{2} I \right)^T P \right] x + \delta x^T P x + 2 x^T P g(x) \\ &= x^T Q x + \delta V(x) + 2 x^T P g(x) \end{split}$$

In the set

$${x \in \mathbb{R}^n : ||x|| \le r, \ V(x) > 0}$$

it follows that

$$\dot{V}(x) \ge \lambda_{\min}(Q) ||x||^2 - 2||P|| ||x|| ||g(x)||,$$

from which the proof is done.

Example 4.14 Consider $\dot{x} = ax^3$.

Example 4.15 The pendulum system:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

Inspect stability at $(x_1, x_2) = (0, 0)$ and $(\pi, 0)$.

$$\frac{\partial f}{\partial x}(x) = \begin{bmatrix} 0 & 1\\ -a\cos x_1 & -b \end{bmatrix}$$

Consider two cases: a, b > 0 and a > 0, b = 0 for both equilibria.

IV. Comparison Functions

Definition 4.2

A continuous function $\alpha:[0,a)\to[0,\infty)$ belongs to class- \mathcal{K} if it is strictly increasing and $\alpha(0)=0$.

If $a = \infty$ and $\alpha(r) \to \infty$ as $r \to \infty$, then it is called class- \mathcal{K}_{∞} .

Definition 4.3

A continuous function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ belongs to class- \mathcal{KL} if, for each fixed $s,\ \beta(r,s)$ is of class- \mathcal{K} with respect to r, and, for each fixed r, it is decreasing w.r.t. s and $\beta(r,s)\to 0$ as $s\to\infty$.

Lemma 4.2 Let α_1 , α_2 be class- \mathcal{K} functions on [0, a), α_3 , α_4 be class- \mathcal{K}_{∞} functions, β be a class- \mathcal{KL} function.

- α_1^{-1} is of class- \mathcal{K} on $[0, \alpha_1(a))$.
- α_3^{-1} is of class- \mathcal{K}_{∞} .
- $\alpha_1 \circ \alpha_2$: class- \mathcal{K} .
- $\alpha_3 \circ \alpha_4$: class- \mathcal{K}_{∞} .
- $\alpha_1(\beta(\alpha_2(r), s))$: class- \mathcal{KL} .

Lemma 4.3

 $V:D\to\mathbb{R}$ a continuous positive definite function where $0\in D\subset\mathbb{R}^n$.

 $B_r \subset D$ with some r > 0.

Then, \exists class- \mathcal{K} functions α_1 and α_2 defined on [0, r] s.t.

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$$

for all $x \in B_r$.

In addition, if V(x) is radially unbounded, such α_1 and α_2 can be of class- \mathcal{K}_{∞} .

Example. If $V(x) = x^T P x$ with P > 0, then $\alpha_1(s) = \lambda_{\min}(P) s^2$ and $\alpha_2(s) = \lambda_{\max}(P) s^2$.

Proof.

$$\psi(s) := \inf_{s \le \|x\| \le r} V(x) \quad \text{for } 0 \le s \le r$$

$$\phi(s) := \sup_{\|x\| \le s} V(x) \quad \text{for } 0 \le s \le r$$

Then, ψ and ϕ are nondecreasing. So, take class- \mathcal{K} α_1 and α_2 s.t.

$$\alpha_1(s) < \psi(s), \qquad \phi(s) < \alpha_2(s).$$

Then the claim follows.

The case for V(x) that is radially unbounded is the same with $r = \infty$.

Lemma 4.4

Scalar system

$$\dot{y} = -\alpha(y), \qquad y(t_0) = y_0 \ge 0$$

where α is locally Lipschitz and of class- \mathcal{K} . There exists a unique solution y(t) defined for all $t \geq t_0$ s.t.

$$y(t) = \sigma(y_0, t - t_0)$$

where σ is a class- \mathcal{KL} function.

Examples.

- For $\dot{y} = -ky, k > 0, y(t) = y_0 \exp[-k(t t_0)].$
- For $\dot{y} = -ky^2, k > 0, y(t) = y_0/(ky_0(t-t_0)+1).$

Proof.

$$\frac{dy}{dt} = -\alpha(y)$$
 \Rightarrow $-\int_{y_0}^{y} \frac{dx}{\alpha(x)} = \int_{t_0}^{t} dt.$

Define

$$\eta(y) := -\int_{y_0}^y \frac{dx}{\alpha(x)}.$$

Then, it is strictly decreasing and $\lim_{y\to 0} \eta(y) = \infty$ because, from the system equation, $y(t) \to 0$ as $t \to \infty$.

Let $c = -\lim_{y \to \infty} \eta(y)$ $(\in \mathbb{R} \cup \{\infty\})$. Then, the range of $\eta(y)$ is $(-c, \infty)$. So, η^{-1} is defined on $(-c, \infty)$.

Then,

$$\eta(y(t)) - \eta(y_0) = t - t_0$$

 $y(t) = \eta^{-1}(\eta(y_0) + t - t_0)$

Now, let

$$\sigma(r,s) = \begin{cases} \eta^{-1}(\eta(r)+s), & r > 0 \\ 0, & r = 0 \end{cases},$$

which is our class- \mathcal{KL} function because

- it is continuous because $\lim_{x\to\infty} \eta^{-1}(x) = 0$,
- \bullet it is strictly increasing in r because

$$\frac{\partial}{\partial r}\sigma(r,s) = \frac{\alpha(\sigma(r,s))}{\alpha(r)} > 0,$$

 \bullet it is strictly decreasing in s because

$$\frac{\partial}{\partial s}\sigma(r,s) = -\alpha(\sigma(r,s)) < 0,$$

• $\sigma(r,s) \to 0$ as $s \to \infty$.

Note: Since
$$\eta^{-1}(\eta(x)) = x$$
,

$$D_x \eta^{-1}(\eta(x)) \cdot D\eta(x) = I.$$

$$\frac{\partial}{\partial r}\sigma = D\eta^{-1}(\eta(r) + s)D\eta(r)$$

$$= \frac{\alpha(\sigma(r, s))}{\alpha(r)}$$

$$\frac{\partial}{\partial s}\sigma = D\eta^{-1}(\eta(r) + s)$$

$$= -\alpha(\sigma(r, s))$$

An Example: Usefulness in Lyapunov Stability Analysis (Proof of Theorem 4.1)

We have chosen β and δ s.t. $B_{\delta} \subset \Omega_{\beta} \subset B_r$. This can also be done as follows: With α_1 and α_2 s.t.

$$\alpha_1(||x||) \le V(x) \le \alpha_2(||x||),$$

choose $\beta \leq \alpha_1(r)$ and $\delta \leq \alpha_2^{-1}(\beta)$, because

$$V(x) \le \beta \quad \Rightarrow \quad \alpha_1(\|x\|) \le \alpha_1(r) \Leftrightarrow \|x\| \le r$$

 $\|x\| \le \delta \quad \Rightarrow \quad V(x) \le \alpha_2(\delta) \le \beta.$

Now we show (again) that $\dot{V}(x)$ is negative definite, x(t) tends to zero. There exists a class- \mathcal{K} function α_3 s.t. $\dot{V}(x) \leq -\alpha_3(\|x\|)$. Hence,

$$\dot{V} \le -\alpha_3(\alpha_2^{-1}(V)).$$

Since the differential equation

$$\dot{y} = -\alpha_3(\alpha_2^{-1}(y)), \qquad y(0) = V(x(0))$$

has a solution $y(t) = \beta(y(0), t)$ where β is a class- \mathcal{KL} function, we know that

$$V(x(t)) \le \beta(V(x(0)), t).$$

This is nice because we can go beyond the proof of Theorem 4.1. Now we have

$$\alpha_1(||x(t)||) \le V(x(t)) \le V(x(0)) \le \alpha_2(||x(0)||),$$

which leads to $||x(t)|| \leq \alpha_1^{-1}(\alpha_2(||x(0)||))$. Also,

$$\alpha_1(||x(t)||) \le V(x(t)) \le \beta(V(x(0)), t) \le \beta(\alpha_2(||x(0)||), t),$$

which leads to $||x(t)|| \le \alpha_1^{-1}(\beta(\alpha_2(||x(0)||), t)).$

V. Nonautonomous Systems

$$\dot{x} = f(t, x)$$

where $f:[0,\infty)\times D\to\mathbb{R}^n$ is piecewise continuous in t and locally Lipschitz in x, and

$$f(t,0) = 0, \qquad \forall t \ge 0.$$

An equilibrium at the origin could be a translation of a nonzero equilibrium point or, more generally, a translation of a nonzero solution of the system. Read p. 147 of the textbook to see what this means.

locally Lipschitz? Yes, without loss of generality by modifying α_2 if necessary.

Is the function $\alpha_3(\alpha_2^{-1}(s))$

Example 4.17

$$\dot{x} = (6t \sin t - 2t)x$$

$$x(t) = x(t_0) \exp\left[\int_{t_0}^t (6\tau \sin \tau - 2\tau) d\tau\right]$$

$$= x(t_0) \exp\left[6\sin t - 6t \cos t - t^2 - 6\sin t_0 + 6t_0 \cos t_0 + t_0^2\right]$$

For any t_0 , \exists a constant $c(t_0)$ s.t.

$$|x(t)| < |x(t_0)|c(t_0), \qquad \forall t \ge t_0.$$

For any $\epsilon > 0$, take $\delta = \epsilon/c(t_0)$, which shows that the origin is (not uniformly) stable.

Now consider $t_0 = 2n\pi$ for $n = 0, 1, 2, \dots$, and let $t = t_0 + \pi$. Then,

$$x(t_0 + \pi) = x(t_0) \exp[(4n + 1)(6 - \pi)\pi],$$

which shows that it is impossible to take δ independently of t_0 .

Example 4.18

$$\dot{x} = -\frac{x}{1+t}$$

$$x(t) = x(t_0) \exp\left(\int_{t_0}^t \frac{-1}{1+\tau} d\tau\right) = x(t_0) \frac{1+t_0}{1+t}$$

In this case, uniformly stable, but not uniformly convergent; that is, given any $\epsilon > 0$, $\exists T = T(\epsilon, t_0) > 0$ s.t. $|x(t)| < \epsilon$ for $t \ge t_0 + T$, but T depends on t_0 .

Definition 4.4 The origin is

• stable if, for each $\epsilon > 0$, $\exists \delta(\epsilon, t_0) > 0$ s.t.

$$||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge t_0 \ge 0$$

- uniformly stable if the origin is stable but the δ is independent of t_0
- unstable if it is not stable
- asymptotically stable if the origin is stable and $\exists c(t_0) > 0$ s.t.

$$x(t) \to 0$$
 as $t \to \infty$, for all $||x(t_0)|| < c(t_0)$

• uniformly asymptotically stable if the origin is uniformly stable, the c above is independent of t_0 , and the convergence is uniform, i.e., for each $\eta > 0$, $\exists T = T(\eta) > 0$ s.t.

$$||x(t)|| < \eta, \quad \forall t \ge t_0 + T(\eta), \ \forall ||x(t_0)|| < c$$

• globally uniformly asymptotically stable (UGAS) if the origin is uniformly stable, $\delta(\epsilon)$ can be chosen to satisfy $\lim_{\epsilon \to \infty} \delta(\epsilon) = \infty$, and, for each (η, c) , $\exists T = T(\eta, c) > 0$ s.t.

$$||x(t)|| < \eta$$
, $\forall t \ge t_0 + T(\eta, c), \ \forall ||x(t_0)|| < c$

• exponentially stable if $\exists c, k, \lambda > 0$ s.t.

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \quad \forall ||x(t_0)|| < c$$

• globally exponentially stable (GES) if, in addition, $c = \infty$.

Lemma 4.5 The origin is

• uniformly stable if and only if \exists a \mathcal{K} -function α and c > 0 independent of t_0 s.t.

$$||x(t)|| \le \alpha(||x(t_0)||), \quad \forall t \ge t_0 \ge 0, \ \forall ||x(t_0)|| < c$$

• uniformly asymptotically stable if and only if \exists a \mathcal{KL} -function β and c > 0 independent of t_0 s.t.

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t \ge t_0 \ge 0, \ \forall ||x(t_0)|| < c$$

• UGAS if and only if \exists a \mathcal{KL} -function β s.t.

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t \ge t_0 \ge 0, \ \forall x(t_0)$$

Proof. Read Appendix C.6.

Homework: Summarize Appendix C.6.

A function V(t,x) is

- positive definite if $V(t,x) \geq W_1(x)$ where W_1 is a positive definite function
- radially unbounded if $V(t,x) \geq W_1(x)$ where W_1 is radially unbounded
- decrescent if $V(t,x) \leq W_2(x)$ with a function W_2

Theorem 4.8

IF \exists a C^1 V(t,x) s.t.

$$W_1(x) \le V(t, x) \le W_2(x)$$
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le 0$$

for all $t \ge 0$ and $x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions, Recall $t_0 \ge 0$. THEN x = 0 is uniformly stable.

Proof. Read the book. The key is

$$\{x \in B_r : W_2(x) \le c\} \subset \Omega_{t,c} \subset \{x \in B_r : W_1(x) \le c\} \subset B_r \subset D.$$

CDSL, Seoul Nat'l Univ.

Theorem 4.9

• IF, in addition to the assumptions of Theorem 4.8,

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -W_3(x)$$

for all $t \ge 0$ and $x \in D$, where $W_3(x)$ is a continuous positive definite function, THEN x = 0 is uniformly asymptotically stable.

In particular, let r and c be s.t. $B_r \subset D$ and $c < \min_{\|x\|=r} W_1(x)$. Then,

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t \ge t_0 \ge 0, \ x(t_0) \in \{x \in B_r : W_2(x) \le c\}$$

where β is a \mathcal{KL} -function.

• IF $D = \mathbb{R}^n$ and $W_1(x)$ is radially unbounded, THEN x = 0 is UGAS. Note. $\dot{V}(t,x) < 0$ for $x \neq 0$ is not enough. W_3 is necessary. Consider

$$\dot{x} = -\frac{1}{(1+t)^2}x$$

Then, with $V = x^2$, $\dot{V} < 0$ for $x \neq 0$, but

$$x(t) = x(t_0)e^{1/(1+t)-1}$$
.

Proof. \exists a \mathcal{K} -function $\alpha_3 : [0, r] \to \mathbb{R}$ s.t.

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -W_3(x) \le -\alpha_3(||x||).$$

Then,

$$\dot{V} \le -\alpha_3(\alpha_2^{-1}(V)) =: -\bar{\alpha}(V) \le -\alpha(V)$$

where α is a *locally Lipschitz* class- \mathcal{K} function defined on [0, r].

By the comparison lemma (Lemma 3.4) and Lemma 4.4, \exists a \mathcal{KL} -function $\sigma:[0,r]\times[0,\infty)$ s.t.

$$V(t, x(t)) < \sigma(V(t_0, x(t_0)), t - t_0), \quad \forall V(t_0, x(t_0)) \in [0, c].$$

Thus,

$$||x(t)|| \le \dots \le \beta(||x(t_0)||, t - t_0)$$

for $x(t_0) \in \{x \in B_r : W_2(x) \le c\}$, where β is a \mathcal{KL} -function. (Fill the blank.)

The rest is omitted. See the book.

Theorem 4.10

IF V is a C^1 function s.t.

$$k_1 ||x||^a \le V(t, x) \le k_2 ||x||^a$$
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -k_3 ||x||^a$$

for all $t \geq 0$ and $x \in D$, where k_i 's and a are positive constants,

THEN x = 0 is exponentially stable.

If $D = \mathbb{R}^n$, then x = 0 is GES.

Proof.

It can be seen that trajectories starting in $\{k_2||x||^a \leq c\}$, for sufficiently small c, remain bounded for all $t \geq t_0$, and satisfies

$$\dot{V} \le -\frac{k_3}{k_2}V.$$

By the comparison lemma,

$$V(t, x(t)) \le V(t_0, x(t_0))e^{-(k_3/k_2)(t-t_0)}$$
.

Hence,

$$||x(t)|| \le \left[\frac{V(t, x(t))}{k_1}\right]^{1/a} \le \left[\frac{V(t_0, x(t_0))e^{-(k_3/k_2)(t-t_0)}}{k_1}\right]^{1/a}$$

$$\le \left[\frac{k_2||x(t_0)||^a e^{-(k_3/k_2)(t-t_0)}}{k_1}\right]^{1/a} = \left(\frac{k_2}{k_1}\right)^{1/a} ||x(t_0)||e^{-(k_3/k_2a)(t-t_0)}.$$

If all the assumptions hold globally, GES follows.

Example 4.19

$$\dot{x} = -[1 + g(t)]x^3$$

where continuous $g(t) \ge 0$. Take $V(x) = \frac{1}{2}x^2$.

Result: UGAS.

Example 4.20

$$\dot{x}_1 = -x_1 - g(t)x_2$$

$$\dot{x}_2 = x_1 - x_2$$

where

$$0 \le g(t) \le k, \qquad \dot{g}(t) \le g(t).$$

Take $V(t,x) = x_1^2 + [1 + g(t)]x_2^2$, which satisfies

$$x_1^2 + x_2^2 \le V(t, x) \le x_1^2 + (1+k)x_2^2$$
.

Then,

$$\dot{V} = -2x_1^2 + 2x_1x_2 - [2 + 2g(t) - \dot{g}(t)]x_2^2 \le -2x_1^2 + 2x_1x_2 - 2x_2^2 = -x^TQx$$

where Q > 0.

Result: GES

Example 4.21

$$\dot{x} = A(t)x$$

where A(t) is continuous. Suppose that \exists a C^1 bounded P(t) > 0; that is,

$$0 < c_1 I \le P(t) \le c_2 I, \qquad \forall t \ge 0$$

which satisfies

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + Q(t)$$

where continuous $Q(t) \ge c_3 I > 0$.

Then, with $V(t,x) = x^T P(t)x$,

$$\dot{V} = x^T \dot{P}x + x^T P \dot{x} + \dot{x}^T P x = x^T [\dot{P} + PA + A^T P] x = -x^T Q x \le -c_3 ||x||^2.$$

Result: GES

VI. LINEAR TIME-VARYING SYSTEMS AND LINEARIZATION

$$\dot{x} = A(t)x$$

$$x(t) = \Phi(t, t_0)x(t_0)$$

where $\Phi(t, t_0)$ is the state transition matrix. (Note that the local and the global behaviors are the same in linear systems.)

Theorem 4.11 The origin is UGAS if and only if

$$\|\Phi(t,t_0)\| \le ke^{-\lambda(t-t_0)}$$

for some $k, \lambda > 0$.

Note. For linear systems, GES = UGAS = ES = UAS.

Proof. (Sufficiency)

$$||x(t)|| \le ||\Phi(t, t_0)|| ||x(t_0)|| \le k ||x(t_0)|| e^{-\lambda(t-t_0)}.$$

(Necessity) From UGAS,

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t \ge t_0, \forall x(t_0) \in \mathbb{R}^n$$

On the other hand,

$$\|\Phi(t,t_0)\| = \max_{\|x\|=1} \|\Phi(t,t_0)x\| \le \max_{\|x\|=1} \beta(\|x\|,t-t_0) = \beta(1,t-t_0).$$

Pick T s.t. $\beta(1,T) \leq 1/e$. For any $t \geq t_0$, let N be the smallest positive integer s.t. $t \leq t_0 + NT$. Divide the interval $[t_0, t_0 + (N-1)T]$ into (N-1) equal subintervals. Then,

$$\Phi(t, t_0) = \Phi(t, t_0 + (N-1)T)\Phi(t_0 + (N-1)T, t_0 + (N-2)T)\cdots\Phi(t_0 + T, t_0).$$

Hence,

$$\|\Phi(t,t_0)\| \le \|\Phi(t,t_0+(N-1)T)\|\Pi_{k=1}^{k=N-1}\|\Phi(t_0+kT,t_0+(k-1)T)\|$$

$$\le \beta(1,0)\Pi_{k=1}^{k=N-1}\frac{1}{e} = e\beta(1,0)e^{-N}$$

$$< e\beta(1,0)e^{-(t-t_0)/T} = ke^{-\lambda(t-t_0)}$$

where $k = e\beta(1,0)$ and $\lambda = 1/T$.

Is there easier characterization of the stability for $\dot{x} = A(t)x$?

Wrong conjecture: If A(t) is Hurwitz for every fixed t, then the origin is UGAS.

Example 4.22

$$A(t) = \begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t \cos t \\ -1 - 1.5\sin t \cos t & -1 + 1.5\sin^2 t \end{bmatrix}$$

For each t, the eigenvalues of A(t) are $-0.25 \pm 0.25\sqrt{7}j$. But,

$$\Phi(t,0) = \begin{bmatrix} e^{0.5t} \cos t & e^{-t} \sin t \\ -e^{0.5t} \sin t & -e^{-t} \cos t \end{bmatrix}.$$

Theorem 4.12

Suppose that the origin of $\dot{x} = A(t)x$ where A(t) is continuous and bounded is GES. If Q(t) is continuous, bounded, positive definite, then \exists continuously differentiable, bounded, positive definite P(t) satisfying

P(t) is bounded and positive definite (so, symmetric):

 $0 < c_1 I \le P(t) \le c_2 I$

for all t.

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + Q(t).$$
(1)

Thus, $V(t,x) = x^T P(t) x$ is a suitable Lyapunov function for the system. (See also Example 4.21.)

Proof. Let

$$P(t) := \int_{t}^{\infty} \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) d\tau$$

and $\phi(\tau;t,x)$ be the solution that starts at (t,x) (so that $\phi(\tau;t,x) = \Phi(\tau,t)x$). (We also know $c_1I \leq Q(t) \leq c_2I$.)

(a) P(t) is positive definite and bounded.

Note that

$$x^{T}P(t)x = \int_{t}^{\infty} \phi^{T}(\tau; t, x)Q(\tau)\phi(\tau; t, x)d\tau.$$

Since $\|\Phi(t,t_0)\| \leq ke^{-\lambda(t-t_0)}$, we have

$$x^{T} P(t)x \leq \int_{t}^{\infty} c_{4} \|\Phi(\tau, t)\|^{2} \|x\|^{2} d\tau$$

$$\leq \int_{t}^{\infty} k^{2} e^{-2\lambda(\tau - t)} d\tau c_{4} \|x\|^{2} = \frac{k^{2} c_{4}}{2\lambda} \|x\|^{2} =: c_{2} \|x\|^{2}$$

On the other hand, since

$$||A(t)|| \le L, \quad \forall t \ge 0$$

by Exercise 3.17, we have

$$\|\phi(\tau;t,x)\|^2 > \|x\|^2 e^{-2L(\tau-t)}$$
.

Exercise 3.17 was your homework.

Hence,

$$x^{T} P(t) x \ge \int_{t}^{\infty} c_{3} \|\phi(\tau; t, x)\|^{2} d\tau$$
$$\ge \int_{t}^{\infty} e^{-2L(\tau - t)} d\tau c_{3} \|x\|^{2} = \frac{c_{3}}{2L} \|x\|^{2} =: c_{1} \|x\|^{2}$$

Thus,

$$c_1 ||x||^2 \le x^T P(t) x \le c_2 ||x||^2.$$

- (b) P(t) is symmetric and C^1 by the definition.
- (c) P(t) satisfies (1).

Note that

$$\frac{\partial}{\partial t}\Phi(\tau,t) = -\Phi(\tau,t)A(t). \tag{2}$$

In particular,

$$\begin{split} \dot{P}(t) &= \int_{t}^{\infty} \Phi^{T}(\tau,t)Q(\tau)\frac{\partial}{\partial t}\Phi(\tau,t)d\tau \\ &+ \int_{t}^{\infty} \left[\frac{\partial}{\partial t}\Phi^{T}(\tau,t)\right]Q(\tau)\Phi(\tau,t)d\tau - Q(t) \\ &= -\int_{t}^{\infty} \Phi^{T}(\tau,t)Q(\tau)\Phi(\tau,t)d\tau A(t) - A^{T}(t)\int_{t}^{\infty} \Phi^{T}(\tau,t)Q(\tau)\Phi(\tau,t)d\tau - Q(t) \\ &= -P(t)A(t) - A^{T}(t)P(t) - Q(t) \end{split}$$

Stability of

$$\dot{x} = f(t, x)$$

through linearization.

Theorem 4.13 Let

• the Jacobian $\frac{\partial f}{\partial x}(t,x)$ be Lipschitz on D uniformly in t, that is,

$$\left\| \frac{\partial f}{\partial x}(t, x_1) - \frac{\partial f}{\partial x}(t, x_2) \right\| \le L \|x_1 - x_2\|, \quad \forall x_1, x_2 \in D, \forall t \in \mathbb{R}$$

• $A(t) := \frac{\partial f}{\partial x}(t,x)\big|_{x=0}$ be bounded for all t.

If the origin of

$$\dot{x} = A(t)x$$

is exponentially stable, then the origin of nonlinear system is also exponentially stable.

Proof. By Theorem 4.12, we have $V(t,x) = x^T P(t)x$. Since f(t,x) = A(t)x + g(t,x) where

$$g_i(t,x) = \left[\frac{\partial f_i}{\partial x}(t,z_i) - \frac{\partial f_i}{\partial x}(t,0)\right]x,$$

From the property of state transition matrix, we know that

$$\frac{\partial}{\partial t}\Phi(t,\tau) = A(t)\Phi(t,\tau)$$

From this, derive (2).

Ans.:
$$A^{-1}(t)A(t) = I$$
, thus,

$$\frac{d}{dt}A^{-1} \cdot A + A^{-1} \cdot \frac{d}{dt}A^{-1} = 0,$$

and so.

$$\frac{dA^{-1}}{dt} = -A^{-1}\frac{dA}{dt}A^{-1}.$$

Therefore,

$$\begin{split} \frac{\partial}{\partial t} \Phi(\tau, t) &= \frac{\partial}{\partial t} \Phi^{-1}(t, \tau) \\ &= -\Phi^{-1}(t, \tau) \frac{\partial}{\partial t} \Phi(t, \tau) \Phi^{-1}(t, \tau). \end{split}$$

with which, we have

$$||g(t,x)|| \le L||x||^2$$
.

So,

$$\dot{V}(t,x) = x^{T} (PA + A^{T}P + \dot{P})x + 2x^{T}Pg(t,x)$$

$$= -x^{T}Q(t)x + 2x^{T}P(t)g(t,x)$$

$$\leq -c_{3}||x||^{2} + 2c_{2}L||x||^{3}$$

$$\leq -(c_{3} - 2c_{2}L\rho)||x||^{2}$$

for all $||x|| < \rho$.

VII. Converse Theorems

What is converse theorem?

Theorem 4.14 Consider

$$\dot{x} = f(t, x)$$

where f is C^1 on $[0, \infty) \times D$, $D = B_r$, and $\frac{\partial f}{\partial x}(t, x)$ is bounded on D uniformly in t. IF

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \quad \forall x(t_0) \in D_0, \forall t \ge t_0 \ge 0,$$

where $D_0 = B_{r_0}$ with $r_0 < r/k$,

THEN \exists a C^1 function $V:[0,\infty)\times D_0\to\mathbb{R}$ s.t.

$$c_1 \|x\|^2 \le V(t, x) \le c_2 \|x\|^2$$

$$\frac{\partial V}{\partial t}(t, x) + \frac{\partial V}{\partial x} f(t, x) \le -c_3 \|x\|^2$$

$$\left\|\frac{\partial V}{\partial x}\right\| \le c_4 \|x\|$$

Moreover, if the origin is GES, then global Lyapunov function V(t,x) exists, and if the system is autonomous, then V can be independent of t.

Proof. DIY while comparing the proof of Theorem 4.12. A Lyapunov function will be given by

$$V(t,x) = \int_{t}^{t+\delta} \phi^{T}(\tau;t,x)\phi(\tau;t,x)d\tau.$$

Theorem 4.15 Consider

$$\dot{x} = f(t, x)$$

where f is C^1 on $[0,\infty) \times D$, $D=B_r$, and $\frac{\partial f}{\partial x}(t,x)$ is bounded on D uniformly in t.

Suppose also that $\frac{\partial f}{\partial x}(t,x)$ is Lipschitz on D uniformly in t.

The origin is ES if and only if the origin of

$$\dot{x} = \frac{\partial f}{\partial x}(t, x)\big|_{x=0} x$$

is ES.

Corollary 4.3 Consider

$$\dot{x} = f(x)$$

where f(x) is C^1 and f(0) = 0.

The origin is ES if and only if $A = \frac{\partial f}{\partial x}(0)$ is Hurwitz.

* Note that AS (rather than ES) has no such simple relation as above.

Proof. DIY.

Theorem 4.16 Consider

$$\dot{x} = f(t, x)$$

where f is C^1 on $[0,\infty) \times D$, $D = B_r$, and $\frac{\partial f}{\partial x}(t,x)$ is bounded on D uniformly in t.

IF

$$||x(t)|| < \beta(||x(t_0)||, t - t_0), \quad \forall x(t_0) \in D_0, \forall t > t_0 > 0,$$

where $D_0 = B_{r_0}$ with r_0 s.t. $\beta(r_0, 0) < r$,

THEN \exists a C^1 function $V:[0,\infty)\times D_0\to\mathbb{R}$ s.t.

$$\alpha_1(\|x\|) \le V(t, x) \le \alpha_2(\|x\|)$$

$$\frac{\partial V}{\partial t}(t, x) + \frac{\partial V}{\partial x}f(t, x) \le -\alpha_3(\|x\|)$$

$$\left\|\frac{\partial V}{\partial x}\right\| \le \alpha_4(\|x\|)$$

If the system is autonomous, then V can be independent of t.

Theorem 4.17 Consider

$$\dot{x} = f(x)$$

where f is locally Lipschitz.

IF the origin is AS with its region of attraction R_A ,

THEN \exists a C^{∞} positive definite function V(x) (defined on R_A) s.t.

$$V(x) \to \infty$$
 as $x \to \partial R_A$ $(V(x)$ is proper on R_A)
$$L_f V(x) \le -W(x)$$

for all $x \in R_A$ where W(x) is a continuous positive definite function defined on R_A . When $R_A = \mathbb{R}^n$, V(x) is radially unbounded.

Proofs of Theorems 4.16 and 17: Skipped.

VIII. BOUNDEDNESS AND ULTIMATE BOUNDEDNESS

$$\dot{x} = f(t, x)$$

Case 1: $\dot{V}(x(t)) \leq 0$

Case 2: $\dot{V}(x(t)) \leq -V(x) + d$ (e.g., $\dot{x} = -x + \delta \sin t$)

Definition 4.6 The solution x(t) is

• uniformly bounded if $\exists c > 0$, indep. of t_0 , and for every $a \in (0, c)$, $\exists \beta = \beta(a) > 0$, indep. of t_0 , s.t.

$$||x(t_0)|| \le a \qquad \Rightarrow \qquad ||x(t)|| \le \beta, \quad \forall t \ge t_0$$

- globally uniformly bounded if $c = \infty$ in the above,
- uniformly ultimately bounded with ultimate bound b if $\exists b, c > 0$, indep. of t_0 , and for every $a \in (0, c)$, $\exists T = T(a, b) \geq 0$, indep. of t_0 , s.t.

$$||x(t_0)|| \le a$$
 \Rightarrow $||x(t)|| \le b$, $\forall t \ge t_0 + T$

• globally uniformly ultimately bounded if $c = \infty$ in the above. For time-invariant systems, we may drop the word 'uniformly' in the above.

Theorem 4.18 Let $V:[0,\infty)\times D\to\mathbb{R}$ and take r s.t. $B_r\subset D$.

IF $\exists C^1$ function V(t, x), class- \mathcal{K} functions α_1 and α_2 , continuous positive definite function $W_3(x)$, s.t.

$$\alpha_1(\|x\|) \le V(t,x) \le \alpha_2(\|x\|)$$

$$\frac{\partial V}{\partial t}(t,x) + \frac{\partial V}{\partial x}f(t,x) \le -W_3(x), \qquad \forall \|x\| \ge \mu > 0,$$

where

$$\mu < \alpha_2^{-1} \circ \alpha_1(r)$$

THEN \exists a class- \mathcal{KL} function β , and for each $||x(t_0)|| \leq \alpha_2^{-1}(\alpha_1(r))$, there is $T(x(t_0), \mu) \geq 0$ s.t.

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \qquad \forall t_0 \le t \le t_0 + T$$

 $||x(t)|| \le \alpha_1^{-1}(\alpha_2(\mu)), \qquad \forall t \ge t_0 + T$

IF $D = \mathbb{R}^n$ and α_1 is of class- \mathcal{K}_{∞} , THEN the conclusion holds globally.

Proof. Two key points follow:

 \bullet Let

$$\dot{x} = f(t,x)$$

$$\exists V(x) \quad \text{and} \quad \Lambda := \{x: \epsilon \leq V(x) \leq c\}$$

$$\dot{V} \leq -W_3(x) \quad \text{on } \Lambda$$

where W_3 is continuous positive definite.

Then, both Ω_{ϵ} and Ω_{c} are positively invariant. Any trajectory with initial condition in Λ reaches in Ω_{ϵ} in finite time and remains there (because, $\dot{V} \leq -W_{3}(x) \leq -k$ and thus, $V(t) \leq V(0) - kt$).

• In many cases, we have

$$\dot{V} \le -W_3(x), \qquad \forall \mu \le ||x|| \le r$$

where the range is given in terms of the norm, not of the sub-level set.

Then, if μ and r are too close, it may happen there's no Λ in $\{x: \mu \leq ||x|| \leq r\}$. Recall that,

- If
$$c \leq \alpha_1(r)$$
, then $\Omega_c \subset B_r$. (Why?)

- If
$$\epsilon \geq \alpha_2(\mu)$$
, then $B_{\mu} \subset \Omega_{\epsilon}$. (Why?)

So, in order to have $\epsilon < c$, it should be

$$\mu < \alpha_2^{-1}(\alpha_1(r)).$$

The ultimate bound b, in this case, is

$$b = \alpha_1^{-1}(\alpha_2(\mu)).$$

For details, see the Appendix C.9.

IX. INPUT-TO-STATE STABILITY (ISS)

Example.

$$\dot{x} = Ax + Bu, \quad x \in \mathbb{R}^n, A: \text{Hurwitz}$$

$$\dot{x} = -x + x^2 u, \qquad x \in \mathbb{R}, u \in \mathbb{R}$$

$$\dot{x} = -x^3 + x^2 u, \qquad x \in \mathbb{R}, u \in \mathbb{R}$$

$$\dot{x} = f(t, x, u), \qquad x \in \mathbb{R}^n, u \in \mathbb{R}^m$$

Definition 4.7 (ISS) The system is input-to-state stable if \exists a class \mathcal{KL} function β and a class \mathcal{K} function γ s.t.

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0) + \gamma \left(\sup_{t_0 \le \tau \le t} ||u(\tau)|| \right).$$

- With $u(t) \equiv 0$, the system is UGAS.
- For any bounded input $u(\cdot)$, the solution x(t) is bounded. (In fact, it is uniformly ultimately bounded with a bound determined by $\sup_{t\geq t_0} \|u(t)\|$).
- If $u(t) \to 0$ as $t \to \infty$, then x(t) also goes to zero. (Exercise 4.58)
- Local version of ISS is also available. See Exercise 4.60.

Theorem 4.19

IF \exists C^1 function V(t,x), class- \mathcal{K} function ρ , class- \mathcal{K}_{∞} functions α_1 and α_2 , continuous positive definite function $W_3(x)$, s.t.

$$\alpha_1(\|x\|) \le V(t,x) \le \alpha_2(\|x\|)$$

$$\frac{\partial V}{\partial t}(t,x) + \frac{\partial V}{\partial x}f(t,x,u) \le -W_3(x), \qquad \forall \|x\| \ge \rho(\|u\|) > 0,$$

THEN the system is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$.

Proof. The proof is done by employing Theorem 4.18 with a bounded input u(t) and $\mu = \sup_{\tau \geq t_0} \|u(\tau)\|$. Then, we have

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0) + \gamma \left(\sup_{t_0 \le \tau} ||u(\tau)|| \right).$$

Here, $\sup_{t_0 \le \tau}$ can be substituted by $\sup_{t_0 \le \tau \le t}$ due to causality.

Additional Theorem (from [183])

For the system

$$\dot{x} = f(x, u)$$

the following are equivalent.

- the system is ISS,
- there exists a smooth ISS-Lyapunov function (a function satisfying the assumption of Theorem 4.19),
- \exists a smooth positive definite radially unbounded function V and class- \mathcal{K}_{∞} functions ρ_1 and ρ_2 s.t.

$$\frac{\partial V}{\partial x}f(x,u) \le -\rho_1(\|x\|) + \rho_2(\|u\|).$$

CDSL, Seoul Nat'l Univ.

Lemma 4.6

IF f(t, x, u) is C^1 and globally Lipschitz in (x, u) uniformly in t, and the origin of $\dot{x} = f(t, x, 0)$ is GES,

THEN the system $\dot{x} = f(t, x, u)$ is ISS.

Proof. Apply the converse Lyapunov Theorem 4.14 for the unforced system, obtain a Lyapunov function satisfying

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$

$$\frac{\partial V}{\partial t}(t, x) + \frac{\partial V}{\partial x} f(t, x, 0) \le -c_3 ||x||^2$$

$$\left|\left|\frac{\partial V}{\partial x}(t, x)\right|\right| \le c_4 ||x||$$

Then, the derivative of V along $\dot{x} = f(t, x, u)$ is

$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x, 0) + \frac{\partial V}{\partial x} [f(t, x, u) - f(t, x, 0)]$$

$$\leq -c_3 ||x||^2 + c_4 ||x|| L ||u||$$

Then, with $0 < \theta < 1$,

$$\dot{V} \le -c_3(1-\theta)\|x\|^2 - c_3\theta\|x\|^2 + c_4L\|x\|\|u\|$$

That it,

$$\dot{V} \le -c_3(1-\theta)||x||^2, \quad \forall ||x|| \ge \frac{c_4L||u||}{c_3\theta}.$$

Two examples that do not satisfy the assumption of Lemma 4.6.

Ex.1.: $\dot{x} = -3x + (1+x^2)u$. GES with u = 0. Not globally Lipschitz. Not ISS.

Ex.2.: $\dot{x} = -\frac{x}{1+x^2} + u$. Globally Lipschitz. Not GES (but, LES) with u = 0. Not ISS.

Example 4.25 Not GES, but ISS.

$$\dot{x} = -x^3 + u$$

GAS with u = 0. Let $V = x^2/2$.

$$\dot{V} = -x^4 + xu = -(1 - \theta)x^4 - \theta x^4 + xu \le -(1 - \theta)x^4, \quad \forall |x| \ge \left(\frac{|u|}{\theta}\right)^{1/3}$$

where $0 < \theta < 1$.

Example 4.26 GES with u = 0. Not globally Lipschitz, but ISS.

$$\dot{x} = -x - 2x^3 + (1+x^2)u^2$$

Let $V = x^2/2$. Then

$$\dot{V} = -x^2 - 2x^4 + x(1+x^2)u^2 \le -x^4, \qquad \forall |x| \ge u^2.$$

Cascaded system:

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
$$\dot{x}_2 = f_2(t, x_2)$$

Lemma 4.7 (ISS of Cascade)

IF the second system is UGAS and the first system is ISS with x_2 as an input, THEN the whole system is UGAS.

Proof.

Let t_0 be the initial time. The solution satisfies that

$$||x_1(t)|| \le \beta_1(||x_1(s)||, t - s) + \gamma_1 \left(\sup_{s \le \tau \le t} ||x_2(\tau)|| \right)$$
$$||x_2(t)|| < \beta_2(||x_2(s)||, t - s)$$

where $t \geq s \geq t_0$. Then, we obtain

$$||x_{1}(t)|| \leq \beta_{1} \left(\left\| x_{1} \left(\frac{t+t_{0}}{2} \right) \right\|, \frac{t-t_{0}}{2} \right) + \gamma_{1} \left(\sup_{\frac{t+t_{0}}{2} \leq \tau \leq t} ||x_{2}(\tau)|| \right)$$

$$||x_{1} \left(\frac{t+t_{0}}{2} \right) || \leq \beta_{1} \left(||x_{1}(t_{0})||, \frac{t-t_{0}}{2} \right) + \gamma_{1} \left(\sup_{t_{0} \leq \tau \leq \frac{t+t_{0}}{2}} ||x_{2}(\tau)|| \right)$$

$$\sup_{t_{0} \leq \tau \leq \frac{t+t_{0}}{2}} ||x_{2}(\tau)|| \leq \beta_{2} (||x_{2}(t_{0})||, 0)$$

$$\sup_{\frac{t+t_{0}}{2} \leq \tau \leq t} ||x_{2}(\tau)|| \leq \beta_{2} \left(||x_{2}(t_{0})||, \frac{t-t_{0}}{2} \right)$$

Then, since

$$||x_1(t_0)|| \le ||x(t_0)||, \quad ||x_2(t_0)|| \le ||x(t_0)||, \quad ||x(t)|| \le ||x_1(t)|| + ||x_2(t)||,$$

we have

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0)$$

where

$$\beta(r,s) = \beta_1 \left(\beta_1 \left(r, \frac{s}{2} \right) + \gamma_1 (\beta_2(r,0)), \frac{s}{2} \right) + \gamma_1 \left(\beta_2 \left(r, \frac{s}{2} \right) \right) + \beta_2(r,s).$$

Chapter Comments.

- A time-varying system can be written as a time-invariant system by augmenting a time state.
- \bullet Simple statement of LaSalle's theorem:

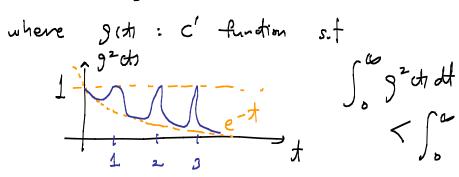
Consider $\dot{x} = f(x)$. Let $V(\cdot)$ be positive definite, radially unbounded and such that

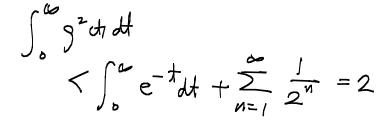
$$\dot{V}(x) \le 0, \quad \forall x.$$

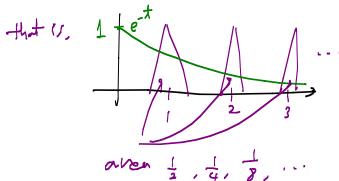
Then, the state x(t) converges to the 'largest invariant set' that is contained in the set $\{x:\dot{V}(x)=0\}.$

• Intrinsic robustness: $\dot{x} = f(x) + g(x)$.

Consider $\dot{x} = \frac{\dot{y}(t)}{\dot{y}(t)} \dot{x}$







$$\cot V(t,x) = \frac{x^2}{y^2 dx} \left[3 - \int_0^x y^2(x) dx \right]$$

then, x2 < V(+,x), but NOT decrescent.

$$\frac{\bullet}{\sqrt{}} = - \varkappa^2$$

However,
$$\chi G = \frac{3 H}{3 G} \chi G$$

and the origin is NOT A.S.