
1

Class Handout: Chapter 5 Input-Output Stability

2006 Fall

I. L Stability

y = Hu

where y : [0,∞) → Rq and u : [0,∞) → Rm are functions, and H is a mapping (or operator)

between two signals.

To measure the size of signals, let us introduce the norm function ‖ · ‖, with which it holds

that

• ‖u‖ = 0 if and only if u(t) ≡ 0,

• ‖au‖ = |a|‖u‖,
• ‖u1 + u2‖ ≤ ‖u1‖+ ‖u2‖.

For example,

‖u‖L∞ := sup
t≥0

‖u(t)‖

‖u‖Lp :=
(∫ ∞

0

‖u(t)‖pdt

)1/p

(Here, the norm inside the integral is not necessarily equal to the p-norm, but usually it is.)

The set of all piecewise continuous functions whose Lp (p ∈ [1,∞]) norm is finite, is In fact, ‘piecewise

continuous’ can be

replaced by ‘measurable’.
denoted by Lm

p . Sub-, or super-script may be omitted if clear from the context.

“Extended space”:

Lm
e = {u : uτ ∈ Lm,∀τ ∈ [0,∞)}

where uτ is a truncation of u defined by

uτ (t) =





u(t), 0 ≤ t ≤ τ,

0, t > τ

The extended space is a linear space that contains the unextended space as a subset. It

allows us to deal with unbounded growing signals (e.g., u(t) = t belongs to L∞,e).

“Causal” mapping H:

(Hu)τ = (Huτ )τ , ∀τ ≥ 0.

Causality is an intrinsic property of dynamical systems represented by state models.

Definition 5.1
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A mapping H : Lm
e → Lq

e is L stable if ∃ a class-K function α, and β > 0 s.t.

‖(Hu)τ‖L ≤ α(‖uτ‖L) + β

for all u ∈ Lm
e and τ ∈ [0,∞).

It is finite-gain L stable if ∃ nonnegative constants γ and β s.t.

‖(Hu)τ‖L ≤ γ‖uτ‖L + β (1)

for all u ∈ Lm
e and τ ∈ [0,∞).

• β is a bias term, which possibly considers the initial condition.

• If (1) holds, then the system has an L gain less than or equal to γ. The smallest γ s.t. (1)

holds is called the gain of the system.

• For causal, L stable systems, we have

u ∈ Lm ⇒ Hu ∈ Lq

and

‖Hu‖L ≤ α(‖u‖L) + β, ∀u ∈ Lm.

• L∞ stability is the familiar notion of BIBO stability.

Example 5.1 Let

h(u) = a + b tanh cu = a + b
ecu − e−cu

ecu + e−cu

Then

|h(u)| ≤ a + bc|u|.

Hence, h is finite-gain L∞ stable with γ = bc and β = a.

If a = 0, h is Lp stable with zero bias, gain γ = bc, for each p ∈ [1,∞] since
∫ ∞

0

|h(u(t))|pdt ≤ (bc)p

∫ ∞

0

|u(t)|pdt.

If h(u) = u2, it is L∞ stable with zero bias and α(r) = r2, but is not finite-gain L∞ stable.

Example 5.2 Consider a causal convolution

y(t) =
∫ t

0

h(t− σ)u(σ)dσ

where h(t) = 0 for t < 0. Suppose that h ∈ L1,e; that is, for every τ ∈ [0,∞),

‖hτ‖L1 =
∫ ∞

0

|hτ (σ)|dσ =
∫ τ

0

|h(σ)|dσ < ∞.
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If u ∈ L∞,e and τ ≥ t, then

|y(t)| ≤
∫ t

0

|h(t− σ)| |u(σ)|dσ

≤
∫ t

0

|h(t− σ)|dσ sup
0≤σ≤τ

|u(σ)| =
∫ t

0

|h(s)|ds sup
0≤σ≤τ

|u(σ)|

Consequently,

‖yτ‖L∞ ≤ ‖hτ‖L1‖uτ‖L∞ , ∀τ ∈ [0,∞).

This does not mean L stability of the system, because ‖hτ‖L1 is not uniformly bounded with

respect to τ . (For example, h(t) may diverge.)

Assume that h ∈ L1; that is,

‖h‖L1 =
∫ ∞

0

|h(σ)|dσ < ∞.

Then, it holds that

‖yτ‖L∞ ≤ ‖h‖L1‖uτ‖L∞ , ∀τ ∈ [0,∞),

which means that the system is finite-gain L∞ stable.

In fact, this assumption implies finite-gain Lp stability for any p ∈ [1,∞]. See the textbook

pp. 199 and 200.

Definition 5.2 (Small-signal L stability)

A mapping H : Lm
e → Lq

e is small-signal (finite-gain) L stable if ∃r > 0 s.t. it is (finite-gain)

L stable for all u ∈ Lm
e with sup0≤t≤τ ‖u(t)‖ ≤ r.

Example 5.3 See the textbook.

II. L Stability of State Models

Consider

ẋ = f(t, x, u), x(0) = x0,

y = h(t, x, u)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, f : [0,∞) × D × Du → Rn is piecewise continuous in t

and locally Lipschitz in (x, u), h : [0,∞) × D × Du → Rq is piecewise continuous in t and

continuous in (x, u), D is a domain containing x = 0, Du is a domain containing u = 0.

* For each fixed x0 ∈ D, the above system defines an operator H that assigns to each

input signal u(t) the corresponding output signal y(t).
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Assume that x = 0 of

ẋ = f(t, x, 0)

is an equilibrium.

Theorem 5.1

Let r > 0 and ru > 0 s.t. {‖x‖ ≤ r} ⊂ D and {‖u‖ ≤ ru} ⊂ Du.

• IF x = 0 of ẋ = f(t, x, 0) is LES, and ∃V (t, x) s.t.

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2 (2)

∂V

∂t
+

∂V

∂x
f(t, x, 0) ≤ −c3‖x‖2 (3)

∥∥∥∥
∂V

∂x
(t, x)

∥∥∥∥ ≤ c4‖x‖ (4)

for all (t, x) ∈ [0,∞)×D, and,

IF

‖f(t, x, u)− f(t, x, 0)‖ ≤ L‖u‖
‖h(t, x, u)‖ ≤ η1‖x‖+ η2‖u‖

for all (t, x, u) ∈ [0,∞)×D ×Du,

THEN, for each ‖x0‖ ≤ r
√

c1/c2, the system is small-signal finite-gain Lp stable (p ∈ [1,∞]).

In particular, for each u ∈ Lp,e with sup0≤t≤τ ‖u(t)‖ ≤ min{ru, c1c3r/(c2c4L)}, the output

y(t) satisfies

‖yτ‖Lp ≤ γ‖uτ‖Lp + β (5)

for all τ ∈ [0,∞), with

γ = η2 +
η1c2c4L

c1c3
, β = η1‖x0‖

√
c2

c1
ρ

where

ρ =





1, if p = ∞,
(

2c2
c3p

)1/p

, if p ∈ [1,∞)
.

• IF the origin is GES and D = Rn, Du = Rm, THEN the above holds for any x0 and u(t).

Proof. Derivative of V along ẋ = f(t, x, u) is

V̇ =
∂V

∂t
+

∂V

∂x
f(t, x, 0) +

∂V

∂x
[f(t, x, u)− f(t, x, 0)]

≤ −c3‖x‖2 + c4L‖x‖‖u‖

(At time point, the proof for global case is actually done already. Can you see?)

(For numerical analysis, we continue...) Take W (t) =
√

V (t, x(t)).
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If V (t, x(t)) 6= 0,

Ẇ =
V̇

2
√

V
≤ 1

2
√

V

(−c3‖x‖2 + c4L‖x‖‖u‖
)

≤ 1
2
√

V

(
−c3

c2
V (t, x) + c4L

√
V√
c1
‖u‖

)

= − c3

2c2
W +

c4L

2
√

c1
‖u‖

If V (t, x(t)) = 0 (i.e., x(t) = 0), it can be shown that Exercise 5.6 and Exercise

3.24 are employed here.

D+W (t) ≤ c4L

2
√

c1
‖u(t)‖.

Hence, for all V (t, x(t)), we have

D+W (t) ≤ −1
2

c3

c2
W +

c4L

2
√

c1
‖u(t)‖.

By the comparison lemma,

W (t) ≤ e−t
c3
2c2 W (0) +

c4L

2
√

c1

∫ t

0

e−(t−τ)
c3
2c2 ‖u(τ)‖dτ.

We then obtain (since
√

c1‖x(t)‖ ≤ W (t) ≤ √
c2‖x(t)‖)

‖x(t)‖ ≤
√

c2

c1
‖x0‖e−t

c3
2c2 +

c4L

2c1

∫ t

0

e−(t−τ)
c3
2c2 ‖u(τ)‖dτ

=
√

c2

c1
‖x0‖e−t

c3
2c2 +

c4L

2c1

2c2

c3

(
1− e−t

c3
2c2

) (
sup

0≤σ≤t
‖u(σ)‖

)

(We now check if x(t) ∈ Br for all t ≥ 0 so that the whole analysis is valid.) Then, since

‖x0‖ ≤ r

√
c1

c2
, sup

0≤σ≤t
‖u(σ)‖ ≤ c1c3r

c2c4L
,

we have

‖x(t)‖ ≤ re−t
c3
2c2 +

(
1− e−t

c3
2c2

)
r = r.

(We now obtain (5).) From the assumption, we have

‖y(t)‖ ≤ k1e
−at + k2

∫ t

0

e−a(t−τ)‖u(τ)‖dτ + k3‖u(t)‖

where

k1 =
√

c2

c1
‖x0‖η1, k2 =

c4Lη1

2c1
, k3 = η2, a =

c3

2c2
.

Set

y1(t) = k1e
−at, y2(t) = k2

∫ t

0

e−a(t−τ)‖u(τ)‖dτ, y3(t) = k3‖u(t)‖.

Then, for any p ∈ [1,∞], we have

‖y2,τ‖Lp ≤
k2

a
‖uτ‖Lp
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since ‖h‖L1 = 1/a and from Example 5.2, and

‖y3,τ‖Lp ≤ k3‖uτ‖Lp .

For the term y1,

‖y1,τ‖Lp
≤ k1ρ

where

ρ =





1, if p = ∞,
(

1
ap

)1/p

, if p ∈ [1,∞)
.

Thus, by the triangular inequality,

γ = k3 +
k2

a
, β = k1ρ.

On the other hand, the global case follows easily.

Corollary 5.1

IF the origin of ẋ = f(t, x, 0) is GES(LES) and

‖f(t, x, u)− f(t, x, 0)‖ ≤ L‖u‖
‖h(t, x, u)‖ ≤ η1‖x‖+ η2‖u‖

THEN the original system is (small-signal) finite-gain Lp stable for each p ∈ [1,∞].

Corollary 5.2

A LTI system is finite-gain Lp stable if A is Hurwitz.

(In particular,

γ = ‖D‖2 +
2λ2

max(P )‖B‖2‖C‖2
λmin(P )

β = ‖C‖2‖x0‖
√

λmax(P )
λmin(P )

ρ

ρ =





1, p = ∞,
(

2λmax(P )
p

) 1
p

, p ∈ [1,∞).

where AT P + PA = −I.)

Example 5.4

ẋ = −x− x3 + u, x(0) = x0,

y = tanh x + u
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With V (x) = x2/2, we can show that the system is finite-gain Lp stable.

Let us consider LUAS case restricting to L∞ stability.

Theorem 5.2 (local version)

Let r > 0 and ru > 0 s.t. {‖x‖ ≤ r} ⊂ D and {‖u‖ ≤ ru} ⊂ Du.

IF x = 0 of ẋ = f(t, x, 0) is LUAS, and ∃V (t, x) s.t.

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+

∂V

∂x
f(t, x, 0) ≤ −α3(‖x‖)

∥∥∥∥
∂V

∂x
(t, x)

∥∥∥∥ ≤ α4(‖x‖)

for all (t, x) ∈ [0,∞)×D, and,

IF

‖f(t, x, u)− f(t, x, 0)‖ ≤ α5(‖u‖)
‖h(t, x, u)‖ ≤ α6(‖x‖) + α7(‖u‖) + η

for all (t, x, u) ∈ [0,∞)×D ×Du,

THEN, for each ‖x0‖ ≤ α−1
2 (α1(r)), the system is small-signal L∞ stable.

Proof.

Derivative of V along ẋ = f(t, x, u) is

V̇ =
∂V

∂t
+

∂V

∂x
f(t, x, 0) +

∂V

∂x
[f(t, x, u)− f(t, x, 0)]

≤ −α3(‖x‖) + α4(‖x‖)α5(‖u‖)

≤ −(1− θ)α3(‖x‖)− θα3(‖x‖) + α4(r)α5

(
sup

0≤t≤τ
‖u(t)‖

)

where 0 < θ < 1. Set

µ = α−1
3

(
α4(r)α5

(
sup0≤t≤τ ‖u(t)‖)

θ

)
.

We consider only such u(t) that sup0≤t≤τ ‖u(t)‖ is small enough for µ < α−1
2 (α1(r)). Then,

V̇ ≤ −(1− θ)α3(‖x‖), ∀‖x‖ ≥ µ.

From Theorem 4.18,

‖x(t)‖ ≤ β(‖x0‖, t) + γ

(
sup

0≤t≤τ
‖u(t)‖

)

for all 0 ≤ t ≤ τ . Hence,

‖y(t)‖ ≤ α6

(
β(‖x0‖, t) + γ

(
sup

0≤t≤τ
‖u(t)‖

))
+ α7(‖u(t)‖) + η

≤ α6(2β(‖x0‖, t)) + α6

(
2γ

(
sup

0≤t≤τ
‖u(t)‖

))
+ α7(‖u(t)‖) + η
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Therefore, we have

‖yτ‖L∞ ≤ γ0(‖uτ‖L∞) + β0

γ0 = α6 ◦ 2γ + α7, β0 = α6(2β(‖x0‖, 0)) + η

Theorem 5.3 (global version)

IF D = Rn, Du = Rm, the system ẋ = f(t, x, u) is ISS, and

‖h(t, x, u)‖ ≤ α1(‖x‖) + α2(‖u‖) + η,

THEN, the system is L∞ stable.

Proof. Trivial. Isn’t it?

* Think about why the global asymptotic stable case needs so strong property (ISS)?

Consider

ẋ = − x

1 + x2
+ u,

which is GAS (but not GES), and is not L∞ stable (also not ISS).
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III. L2 Gain

“L2 stability plays a special role in systems analysis. It is natural to work with square-

integrable signals, which can be viewed as finite-energy signals. In many control problems,

the system is represented as an input-output map, from a disturbance input u to a controlled

output y, which is required to be small.”

Here we study how to calculate the L2 gain for TI systems.

Theorem 5.4 Consider

ẋ = Ax + Bu

y = Cx + Du

where A is Hurwitz. Let G(s) = C(sI −A)−1B + D. Then, the L2 gain is

sup
ω∈R

‖G(jω)‖2 = sup
ω∈R

√
λmax[GT (−jω)G(jω)].

Proof. Due to linearity, we set x(0) = 0. From Fourier transform theory, for a causal signal

y ∈ L2,

Y (jω) =
∫ ∞

0

y(t)e−jωtdt, Y (jω) = G(jω)U(jω).

By Parseval’s theorem,

‖y‖2L2
=

∫ ∞

0

yT (t)y(t)dt =
1
2π

∫ ∞

−∞
Y ∗(jω)Y (jω)dω

=
1
2π

∫ ∞

−∞
U∗(jω)GT (−jω)G(jω)U(jω)dω

≤
(

sup
ω∈R

‖G(jω)‖2
)2 1

2π

∫ ∞

−∞
U∗(jω)U(jω)dω

=
(

sup
ω∈R

‖G(jω)‖2
)2

‖u‖2L2

which shows that the L2 gain is less than or equal to supω∈R ‖G(jω)‖2. See Appendix C.10

to show that the L2 gain is, in fact, equal to supω∈R ‖G(jω)‖2.

Consider

ẋ = f(x) + G(x)u, x(0) = x0,

y = h(x)

where f is locally Lipschitz, G and h are continuous, and f(0) = 0 and h(0) = 0.

Theorem 5.5
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IF ∃ C1 positive semidefinite function V (x) and γ > 0 s.t.

H(V, f, G, h, γ) :=
∂V

∂x
f(x) +

1
2γ2

∂V

∂x
G(x)GT (x)

(
∂V

∂x

)T

+
1
2
hT (x)h(x) ≤ 0,

THEN, for each x0 ∈ Rn, the system is finite-gain L2 stable and the gain ≤ γ.

* Hamilton-Jacobi inequality

* Compare with Theorem 5.1—no exponential stability, but needs a solution to HJ eq.

Proof.

V̇ = LfV (x) + LGV (x)u = −1
2
γ2‖u− 1

γ2
(LGV )T (x)‖22 + LfV (x)

+
1

2γ2
LGV (x)(LGV )T (x) +

1
2
γ2‖u‖22

≤ 1
2
γ2‖u‖22 −

1
2
‖y‖22 −

1
2
γ2‖u− 1

γ2
(LGV )T (x)‖22

≤ 1
2
γ2‖u‖22 −

1
2
‖y‖22

Thus,

V (x(τ))− V (x(0)) ≤ 1
2
γ2

∫ τ

0

‖u(t)‖22dt− 1
2

∫ τ

0

‖y(t)‖22dt.

Since V (x) ≥ 0, we have
∫ τ

0

‖y(t)‖22 ≤ γ2

∫ τ

0

‖u(t)‖22dt + 2V (x0).

Then,

‖yτ‖L2 ≤ γ‖uτ‖L2 +
√

2V (x0).

Example 5.8

ẋ1 = x2

ẋ2 = −ax3
1 − kx2 + u, a > 0, k > 0,

y = x2

Let V (x) = α(ax4
1/4 + x2

2/2). Then, LfV = −αkx2
2, LGV = αx2, h(x) = x2, so that

H =
(
−αk +

α2

2γ2
+

1
2

)
x2

2.

That is, if

γ2 ≥ α2

2αk − 1

then the system is L2 stable. The right-hand side has a minimum 1/k2 for α = 1/k, so with

γ = 1/k, we conclude that the system is finite-gain L2 stable with the gain less than or equal

to 1/k.
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Example 5.9 Consider the system with the property

LfW (x) ≤ −khT (x)h(x), k > 0

LGW (x) = hT (x)

where W (x) is a C1 positive semidefinite function.

Let V (x) = αW (x). Then,

H =
(
−αk +

α2

2γ2
+

1
2

)
hT (x)h(x).

By Example 5.8, we conclude that the system is finite-gain L2 stable with the gain ≤ 1/k.

Example 5.10 Consider the system with the property

LfW (x) ≤ 0

LGW (x) = hT (x)

where W (x) is a C1 positive semidefinite function.

Let an output feedback control

u = −ky + v, k > 0.

Then, the closed-loop system becomes

ẋ = f(x)− kG(x)GT (x)
(

∂W

∂x

)T

+ G(x)v

y = h(x)

This system is, in fact, the case of Example 5.9. (Verify!)

So, this system is finite-gain L2 stable with the gain ≤ 1/k from v to y. Note that the

gain can be arbitrarily assigned with the feedback.

Example 5.11 Consider

ẋ = Ax + Bu

y = Cx

Suppose ∃P ≥ 0 s.t.

PA + AT P +
1
γ2

PBBT P + CT C = 0

(the Riccati equation), with some γ > 0.

Then, V (x) = 1
2xT Px satisfies the HJ equation for this system, i.e., H = 0. Thus, the

system is finite-gain L2 stable with the gain ≤ γ. (In fact, the Riccati equation has a solution

P ≥ 0 if and only if the system’s L2 gain is less than or equal to γ.)
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• From the proof of Theorem 5.5, we note that, if the assumptions hold only on a finite

domain D, then we obtain the same conclusion as long as the solution x(t) stays in D.

(Corollary 5.4.) This possibly restricts the class of input signal, which also depends on the

initial condition x0.

• If ẋ = f(x) is AS and if ‖x0‖ and sup0≤t≤τ ‖u(t)‖ are sufficiently small (relative to D),

then the solution x(t) remains in the neighborhood of the origin. This leads to the following

Lemma.

Consider

ẋ = f(x) + G(x)u, x(0) = x0,

y = h(x)

where f is C1, G and h are continuous on a set D ⊂ Rn, and f(0) = 0 and h(0) = 0.

Lemma 5.1

IF the origin of ẋ = f(x) is AS, and ∃ C1 positive semidefinite function V (x) and γ > 0

s.t.

H(V, f, G, h, γ) :=
∂V

∂x
f(x) +

1
2γ2

∂V

∂x
G(x)GT (x)

(
∂V

∂x

)T

+
1
2
hT (x)h(x) ≤ 0

on a domain D,

THEN ∃k1 > 0 s.t. for each ‖x0‖ ≤ k1, the system is small-signal finite-gain L2 stable

with the gain ≤ γ.

Proof. We can apply Corollary 5.4, if we show that x(t) stays in a neighborhood of the

origin.

By the converse theorem, ∃ a C1 function W (x) and r0 > 0 s.t.

α1(‖x‖) ≤ W (x) ≤ α2(‖x‖)
∂W

∂x
f(x) ≤ −α3(‖x‖)

for all x ∈ Br0 , and without loss of generality, we assume that Br0 ⊂ D.

Let k and L be an upper bound of ‖∂W/∂x‖ and ‖G(x)‖, respectively. Then,

Ẇ (x, u) ≤ ∂W

∂x
f(x) +

∂W

∂x
G(x)u ≤ −α3(‖x‖) + kL‖u‖

≤ −(1− θ)α3(‖x‖)− θα3(‖x‖) + kL sup
0≤t≤τ

‖u(t)‖

≤ −(1− θ)α3(‖x‖), ∀‖x‖ ≥ α−1
3

(
kL sup

0≤t≤τ
‖u(t)‖/θ

)

where 0 < θ < 1.
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This implies that (you may recall Theorem 4.18), ∃k1, k2 > 0 s.t., for every ‖x0‖ < k1 and

for inputs such that sup0≤t≤τ ‖u(t)‖ ≤ k2, the solution x(t) ∈ Br0 . Hence, the conclusion

follows from Corollary 5.4.

Lemma 5.2

IF ∃ C1 positive semidefinite function V (x) and γ > 0 s.t.

H(V, f, G, h, γ) :=
∂V

∂x
f(x) +

1
2γ2

∂V

∂x
G(x)GT (x)

(
∂V

∂x

)T

+
1
2
hT (x)h(x) ≤ 0

on D, and ‘no solution of ẋ = f(x) can stay identically in S = {x ∈ D : h(x) = 0} other

than the trivial solution x(t) ≡ 0’,

THEN the origin of ẋ = f(x) is AS, and ∃k1 > 0 s.t. for each ‖x0‖ ≤ k1, the system is

small-signal finite-gain L2 stable with the gain ≤ γ.

• In this lemma the Lyapunov function V (x) came from the HJ inequality.

• How to interpret the phrase: ‘no solution of ẋ = f(x) can stay identically in S = {x ∈ D :

h(x) = 0} other than the trivial solution x(t) ≡ 0’? (Not clear in the textbook. Discuss it in

the proof.) I would say ‘there is no locally invariant set in S except the origin’. By a locally Locally invariant set ⊂
Invariant setinvariant set L in S, I mean that, if x(0) = x0 ∈ L, there exist nonnegative constants δ1 and

δ2, not both zero, s.t. x(t) ∈ L for t ∈ [−δ1, δ2].

Proof. The proof is done by Lemma 5.1 if we show that the origin of ẋ = f(x) is AS.

From the HJ inequality,

∂V

∂x
f(x) ≤ − 1

2γ2

∂V

∂x
G(x)GT (x)

(
∂V

∂x

)T

− 1
2
hT (x)h(x) ≤ −1

2
hT (x)h(x),

which seemingly means that the origin is stable, and by employing the LaSalle’s theorem,

we have the conclusion. (In particular, the set {x ∈ D : ∂V
∂x f(x) = 0} ⊂ S. In addition,

since there is no locally invariant set in S except the origin, the only invariant set in S is the

origin. So, the LaSalle’s theorem can be applied.) This is true if V (x) is positive definite.

However, since V (x) is assumed just positive semidefinite, we now prove that, from the

assumption, the function V (x) is in fact positive definite.

Let r > 0 be s.t. Br ⊂ D (strict inclusion). Then, for each x ∈ Br, ∃δ > 0 s.t. the solution

from x, φ(t; x), stays in D for t ∈ [0, δ]. Integrating the above inequality over [0, δ], we obtain

V (φ(δ;x))− V (x) ≤ −1
2

∫ δ

0

‖h(φ(t; x))‖22dt.

Using V (φ(δ; x)) ≥ 0, we have

V (x) ≥ 1
2

∫ δ

0

‖h(φ(t; x))‖22dt.

CDSL, Seoul Nat’l Univ. November 20, 2006



14

Now suppose that ∃x 6= 0 s.t. V (x) = 0 (not positive definite). Then, the above implies

that h(φ(t; x)) = 0 for t ∈ [0, δ]. This means that x 6= 0 is an element of locally invariant set.

However, since the only element of the locally invariant set is the origin, x = 0 (contradiction).

Example 5.12 DIY.

IV. Feedback Systems: The Small-Gain Theorem

u1 H1

H2

e1 y1

y2 e2 u2
+

-

+

+

From the textbook,

• The formalism of input-output stability is particularly useful in studying stability of inter-

connected systems, since the gain of a system allows us to track how the norm of a signal

increases or decreases as it passes through the system.

• See Figure 5.1. H1 : Lm
e → Lq

e and H2 : Lq
e → Lm

e . Suppose both system are finite-gain L
stable; that is,

‖y1,τ‖L ≤ γ1‖e1,τ‖L + β1, ∀e1 ∈ Lm
e , ∀τ ∈ [0,∞)

‖y2,τ‖L ≤ γ2‖e2,τ‖L + β2, ∀e2 ∈ Lq
e, ∀τ ∈ [0,∞)

(finite-gain for simplicity).

• Suppose that the feedback system is well defined in the sense that for every pair of inputs

u1 ∈ Lm
e and u2 ∈ Lq

e, ∃ unique outputs e1, y2 ∈ Lm
e and e2, y1 ∈ Lq

e.

• Define u = [u1; u2], y = [y1; y2], e = [e1; e2]. We ask if the feedback system, viewed as a

mapping from u to y (or to e since they are equivalent in the sense of Exercise 5.21, your

homework), is finite-gain L stable.

• If the external input and output of interest is just u1 and y1, why should we consider L
stability from both (u1, u2) to both (y1, y2)? The reason is that, by considering all the pairs

of inputs and outputs, any possibly hidden internal mode comes out. (See Exercise 5.20.)
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Theorem 5.6 (Small-gain Theorem)

IF γ1γ2 < 1,

THEN the feedback system is finite-gain L stable.

Proof.

e1τ = u1τ − (H2e2)τ , e2τ = u2τ + (H1e1)τ

Then,

‖e1τ‖L ≤ ‖u1τ‖L + ‖(H2e2)τ‖L ≤ ‖u1τ‖L + γ2‖e2τ‖L + β2

≤ ‖u1τ‖L + γ2(‖u2τ‖L + γ1‖e1τ‖L + β1) + β2

= γ1γ2‖e1τ‖L + (‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1)

Since γ1γ2 < 1,

‖e1τ‖L ≤ 1
1− γ1γ2

(‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1)

for all τ ∈ [0,∞). Similarly,

‖e2τ‖L ≤ 1
1− γ1γ2

(‖u2τ‖L + γ1‖u1τ‖L + β1 + γ1β2)

for all τ ∈ [0,∞). The proof completes since ‖e‖L ≤ ‖e1‖L + ‖e2‖L.
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