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Class Handout: Chapter 7 Frequency Domain Analysis of Feedback Systems

2006 Fall

• Frequency domain analysis of a dynamic system is very useful because it provides much

physical insight, has graphical interpretation, and its complexity does not grow much as the

system order grows.

• Frequency response functions cannot be defined for nonlinear systems.

r u y+
−

G(s)

( )ψ ⋅

Let r = 0. We say the system is absolutely stable if the closed-loop system is UGAS (ψ

may be time-varying) for all ψ satisfying the given sector condition.

I. Absolute Stability

ẋ = Ax + Bu

y = Cx + Du

u = −ψ(t, y)

(1)

where (A,B) controllable, (A,C) observable, u, y ∈ Rp, and ψ(·) is locally Lipschitz in y.

Suppose that the map u = −ψ(t, Cx + Du) has the unique solution u for all (t, x). (If

D = 0, then this holds always.) Suppose also that the map ψ satisfies a sector condition on

Rp or a connected subset Y ⊂ Rp (0 ∈ Y ). (If the underlying set is not Rp but Y , then it is

absolute stability on a finite domain.)

Problem: Stability under ψ of a given sector (not a particular ψ but all ψ with the

sector); Lure’s problem

Aizerman’s conjecture

Let a SISO nonlinearity ψ ∈ [k1, k2] and G(s) = C(sI − A)−1B + D. Aizerman made a

conjecture: if the matrix (A − kBC) is Hurwitz for all k1 ≤ k ≤ k2, then the closed-loop is

absolutely stable. However, it turned out that this conjecture is false, which would be very

simple test for the feedback of static nonlinearity.
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Circle Criterion

Theorem 7.1 (Multivariable Circle Criterion) The system (1) is absolutely stable if

• ψ ∈ [K1,∞] and G(s)[I + K1G(s)]−1 is SPR, or

• ψ ∈ [K1,K2] with K := K2 −K1 = KT > 0, and [I + K2G(s)][I + K1G(s)]−1 is SPR.

Proof. Suppose that G(s) is SPR and ψ ∈ [0,∞]. Then, ∃ P > 0 s.t. PA + AT P =

−LT L− εP , PB = CT − LT W , WT W = D + DT . Then,

V =
1
2
xT Px

V̇ =
1
2
xT (PA + AT P )x + xT PBu

= −1
2
xT LT Lx− 1

2
εxT Px + xT (CT − LT W )u + uT Du− uT Du

= −1
2
xT LT Lx− 1

2
εxT Px + (Cx + Du)T u− 1

2
uT (D + DT )u− xT LT Wu

= −1
2
εxT Px− 1

2
(Lx + Wu)T (Lx + Wu) + (Cx + Du)T u

= −1
2
εxT Px− 1

2
(Lx + Wu)T (Lx + Wu)− yT ψ(t, y)

≤ −1
2
εxT Px

which shows GES.

If ψ ∈ [K1,∞], we perform the following loop transformation:

( )G s

( )ψ ⋅

+
−

( )G s

( )ψ ⋅

+
−

+

−
+

−

1K

1K

( )ψ ⋅ɶ

Then, ψ̃ ∈ [0,∞] and G̃(s) = G(s)[I + K1G(s)]−1. With the above argument, the system is

absolutely stable.

If ψ ∈ [K1,K2], we perform the loop transformation of the next page:

Then, ψ̃ ∈ [0,∞] and G̃(s) = [I + K2G(s)][I + K1G(s)]−1. With the above argument, the

system is absolutely stable.
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−
+

( )ψ ⋅

( )G s

+

−
+

+
++

+
+

−

−
1K −( )ψ ⋅

( )ψ ⋅ɶ1K

K( )G s

1K

Example 7.1 Let G(s) be Hurwitz and strictly proper (i.e., D = 0). Let

γ1 := sup
ω

σmax[G(jω)] = sup
ω
‖G(jω)‖2.

Suppose that

‖ψ(t, y)‖2 ≤ γ2‖y‖2,

that is, ψ ∈ [K1,K2] where K1 = −γ2I, K2 = γ2I (because (ψ −K2y)T (ψ −K1y) ≤ 0, so

‖ψ‖2 − γ2‖y‖2 ≤ 0.)

Now if we show that

Z(s) := [I + γ2G(s)][I − γ2G(s)]−1

is SPR, then the CL is absolutely stable.

Recall Lemma 6.1. First, we know that

det[Z(s) + ZT (−s)] 6≡ 0

since Z(∞) = I. We now show that

(a) Z(s) is Hurwitz:

If [I−γ2G(s)]−1 is Hurwitz, then Z(s) is Hurwitz (because it is just a cascade of two Hurwitz

transfer function). To see this, note that, recalling the Nyquist plot,

σmin[I − γ2G(jω)] ≥ 1− γ1γ2.

Thus, if γ1γ2 < 1, then Z(s) is Hurwitz.

(b) Z(jω) + ZT (−jω) > 0 for all ω:

Note that

detG 6= 0 ⇔ σmin[G] > 0

σmax[G−1] = 1/σmin[G]

if σmin[G] > 0

σmin[I + G] ≥ 1− σmax[G]

σmax[G1G2] ≤
σmax[G1]σmax[G2]

Z(jω) + ZT (−jω) = [I + γ2G][I − γ2G]−1 + [I − γ2G
∗]−1[I + γ2G

∗]

= (I − γ2G
∗)−1(I − γ2G

∗)[I + γ2G][I − γ2G]−1

+ [I − γ2G
∗]−1[I + γ2G

∗](I − γ2G)(I − γ2G)−1

= 2(I − γ2G
∗)−1[I − γ2

2G∗G](I − γ2G)−1
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So, Z(jω) + ZT (−jω) is PD for all ω if and only if

σmin[I − γ2
2GT (−jω)G(jω)] > 0, ∀ω.

Thus, if γ1γ2 < 1, then this condition holds.

(c) Z(∞) + ZT (∞) > 0: Already done.

Hence, the condition γ1γ2 < 1 implies that the system is absolutely stable. Compare

this with the small gain result of Example 5.13. (This also implies that a Hurwitz transfer

function is robust to small feedback perturbation.)

Circle Criterion (SISO case)

We investigate the absolute stability of the system: where r = 0.

( )G s

( , )tψ ⋅

−
[ , ]ψ α β∈

The approach to this question is the following.

The system

ẋ = Ax + Bu

y = Cx + Du

u = −ψ(t, y), ψ ∈ [α, β], α < β and 0 < β

where (A,B) controllable, (A,C) observable, is absolutely stable.

m (by loop transformation)

1 ( )
( )

1 ( )

G s
Z s

G s

β
α

+=
+

( , )tψ ⋅ɶ

[0, ]ψ ∈ ∞ɶ

−

is absolutely stable.

⇑ (by Theorem 7.1)
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Z(s) is SPR.

m (by Lemma 6.1)

(A) Z(s) is Hurwitz.

(B) Re
[

1+βG(jω)
1+αG(jω)

]
> 0.

⇑ (by Theorem 7.2 (Circle Criterion))

Disk D(α, β):

• Case 0 < α < β: the Nyquist plot of G(jω) does not enter the disk D(α, β) and encircles

it m times in the counterclockwise direction, where m is the number of poles of G(s) with

positive real parts.

• Case 0 = α < β: G(s) is Hurwitz and the Nyquist plot of G(jω) lies to the right of the

vertical line Re[s] = −1/β.

• Case α < 0 < β: G(s) is Hurwitz and the Nyquist plot of G(jω) likes in the interior of the

disk D(α, β).

Proof of Theorem 7.2:
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Example 7.2 Let

G(s) =
4

(s + 1)( 1
2s + 1)( 1

3s + 1)
.

For this system, find a sector condition as large as possible under which the closed-loop is

GAS.

Example 7.3 Let

G(s) =
4

(s− 1)( 1
2s + 1)( 1

3s + 1)
.

For this system, find a sector condition as large as possible under which the closed-loop is

GAS.
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Example 7.4 (When the sector condition does not hold globally.) Let

G(s) =
s + 2

(s + 1)(s− 1)
, ψ(y) = sat(y).

Note that GAS is impossible for this system. (Why?)

For this system, investigate the stability.
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Popov Criterion

Consider the same feedback structure as before, but now we consider Comparison to Circle

Criterion:

- Popov is for TI.

- In Popov, ψ is decoupled.

- Both are sufficient

conditions.

ẋ = Ax + Bu, u, y ∈ Rp,

y = Cx,

ui = −ψi(yi), 1 ≤ i ≤ p,

where (A, B) is controllable, (A,C) is observable, and the static nonlinearity ψ is decentral-

ized (decoupled) and TI. Assume that each ψi ∈ [0, ki] where 0 < ki ≤ ∞.

Theorem 7.3 (Popov Criterion) The CL is absolutely stable if ∃ γi ≥ 0 (i = 1, · · · , p) s.t.

M + (I + sΓ)G(s) =




1
k1

. . .
1
kp


 +


I + s




γ1

. . .

γp





 G(s) is SPR

and (1 + λkγi) 6= 0 for every e.v. λk (k = 1, · · · , n) of A.

If the sector condition on ψ holds only locally, then the results is also local.

Remarks.

• Here, G(s) should be Hurwitz, which is a necessary condition for absolute stability. (Why?)

• If G(s) is SPR itself, then you can take γi = 0 with which the assumptions hold.

• For SISO case, the Slotine & Li book says: ∃ α > 0 s.t.

∀ω ≥ 0, Re[(1 + jαω)G(jω)] +
1
k
≥ ε

with an ε > 0. This is a somewhat restricted condition. Compare and discuss.

• For SISO case, the condition (1 + λkγi) 6= 0 prevents the pole-zero cancellation between

(1 + sγi) and G(s).

Proof. Proof is done in the state-space. To do so, we need a minimal realization of H̃1 in

the Figure 7.12 (loop transformation).

That is,

H̃1 : M + (I + sΓ)G(s) = M + (I + sΓ)C(sI −A)−1B

= M + C(sI −A)−1B + ΓCs(sI −A)−1B

= M + C(sI −A)−1B + ΓC(sI −A + A)(sI −A)−1B

= M + [C + ΓCA](sI −A)−1B + ΓCB
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( )G s

( )ψ ⋅

+
−

(a)

( )G s ( )I s+ Γ

1( )I s −+ Γ

M

M

( )ψ ⋅

+
− +

+

+
+

1Hɶ

2Hɶ

(b)

Figure 7.12

with which, a realization of H̃1 will be

(A,B, C + ΓCA, M + ΓCB).

This realization is minimal because of the following: (A,B) is already assumed to be con-

trollable, and to see the observability, let λk (1 ≤ k ≤ n) be the e.v. of A and vk be the

eigenvector of A. Note that

(C + ΓCA)vk = Cvk + λkΓCvk = (I + λkΓ)Cvk 6= 0. (Why?)

Therefore, the pair (A,C + ΓCA) is observable.

Assumption. ⇒ H̃1 is SPR. ⇒ ∃P = PT > 0, L, W, ε > 0 s.t.

PA + AT P = −LT L− εP

PB = (C + ΓCA)T − LT W

WT W = 2M + ΓCB + BT CT Γ.

We now can show that H̃1 is strict passive with the storage function Ṽ1 = 1
2xT Px.

Now, we show that H̃2 is passive. H̃2 is written as a parallel connection of

γiżi = −zi +
1
ki

ψi(zi) + ui, yi = ψi(zi).

Take Ṽ2 =
∑p

i=1 vi =
∑p

i=1 γi

∫ zi

0
ψi(σ)dσ. Then, the function vi = γi

∫ zi

0
ψi(σ)dσ has the

derivative

v̇i = ψi(zi)(−zi +
1
ki

ψi + ui) =
1
ki

(ψi − kizi)ψi + yiui ≤ yiui,
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which shows the passivity of H̃2.

Up to now, we have a SPR H̃1 and a passive H̃2. However, the above argument is done

with the virtual additional dynamics. In order to show the absolute stability for the original

system, we just try the storage function with a slight modification:

V =
1
2
xT Px +

p∑

i=1

γi

∫ yi

0

ψi(σ)dσ.

Then,

V̇ =
1
2
xT (PA + AT P )x + xT PBu + ψT (y)Γẏ (with ẏ = C(Ax + Bu))

= −1
2
xT LT Lx− 1

2
εxT Px + xT (CT + AT CT Γ− LT W )u + ψT (y)ΓCAx + ψT (y)ΓCBu

With the fact that u = −ψ, we continue the equality to the following (which is a little tedious,

so we omit it):

V̇ = −1
2
εxT Px− 1

2
(Lx + Wu)T (Lx + Wu)− ψT (y)[y −Mψ(y)] ≤ −1

2
εxT Px.

Therefore, the CL is GAS for all ψ in the sector (absolute stability).

SISO case: Popov plot

For SISO case, we test if

H̃1 : Z(s) =
1
k

+ (1 + sγ)G(s)

is SPR with some γ s.t. (1 + λkγ) 6= 0 for all k.

For this, we apply Lemma 6.1 (since Z(s) + ZT (−s) 6≡ 0), and the following should hold:

(a) G(s) is Hurwitz so that Z(s) is Hurwitz,

(b) For all ω,
2
k

+ G(jω) + G(−jω) + jωγG(jω)− jωγG(−jω) > 0

which is equivalent to
1
k

+ Re[G(jω)]− γωIm[G(jω)] > 0. (2)

(c) The above inequality (2) holds with ω = ∞, or

lim
ω→∞

ω2

(
1
k

+ Re[G(jω)]− γωIm[G(jω)]
)

> 0.

Draw the Popov plot in the complex plane; that is, draw the graph of

(x, y) = (Re[G(jω)], ωIm[G(jω)])

for all ω ≥ 0. Note that we just draw the plot for ω ≥ 0 because the graph is even with

respect to ω. (Why?)
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Im[ ( )]G jω ω

Re[ ( )]G jω

1

k
−

1
slope

γ
=

Figure 7.13.

From the figure, we get to know that (γ > 0)

y <
1
γ

(
x +

1
k

)
⇔ 1

k
+ x− γy > 0

which is known as Popov criterion.

• See what happens by increasing k.

• Popov criterion gives weaker restriction than the circle criterion for the case of sector [0, k].

(Why?)

Example 7.5 Let h ∈ [α, β] where 0 < α < β and G(s) be

ẋ1 = x2

ẋ2 = −x2 + u

y = x1,

with a feedback connection u = −h(y). For applying the Popov criterion, the system G(s)

is not Hurwitz because

A =


0 1

0 −1


 .

The idea is to consider ψ(y) = h(y) − αy (to borrow the passivity from h(y) and add more

stability into G(s)). So, we consider

ẋ1 = x2

ẋ2 = −αx1 − x2 + u

y = x1, u = −ψ(y) = −h(y) + αy

where ψ ∈ [0, k] (k = β − α) and

A =


 0 1

−α −1


 , B =


0

1


 , C =

[
1 0

]
.
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The inequality (2) becomes

1
k

+
α− ω2 + γω2

(α− ω)2 + ω2
> 0, ∀ω ∈ [0,∞]

if γ > 1.

Even in the case k = ∞, the above inequality holds for ω ∈ [0,∞), and for ω = ∞, we

have

lim
ω→∞

ω2 α− ω2 + γω2

(α− ω)2 + ω2
= γ − 1 > 0.

Therefore, the CL is absolutely stable even when β = ∞.
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II. The Describing Function Method

Main Goal: Prediction of limit cycles This section is adopted

mainly from Slotine & Li.Why are we interested in the existence of limit cycle?

• Existence of unstable limit cycle around the origin prohibits the origin being GAS, or AS

with a large domain of attraction.

• Small stable limit cycle leads to poor control accuracy, and also implies wear and tear of

control system.

Sometimes, the limit cycle is very useful for our purpose, e.g., designing an oscillator. How-

ever, as above, it is an obstacle for the set-point regulation problem. Usually a precise

knowledge of the waveform of a limit cycle is not mandatory while the knowledge of their

existence with approximate amplitude and frequency is crucial.

For example, consider the Van der Pol equation:

ẍ + α(x2 − 1)ẋ + x = 0, α > 0

which is equivalently described in the following figure.

Figure A.

Noting that the linear block acts like a low-pass filter, we assume that

x(t) = A sin(ωt)

that is, in the signal x(t) of Figure A, only the fundamental frequency component exists

while the higher order harmonics are attenuated. Under this assumption, if suitable A and

ω exist in the feedback-loop, this may emphasize the possible existence of a limit cycle. This

is the idea of the describing function approach.

With the above x(t),

ẋ = Aω cos(ωt)

w = −x2ẋ = −A3ω

4
(cos(ωt)− cos(3ωt))
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The signal of the frequency 3ω will be attenuated through the LTI block, so we ignore it.

Then,

w ≈ −A3

4
ω cos(ωt) =

A2

4
d

dt
[−A sin(ωt)] =

A2

4
d

dt
(−x(t)) .

This equality leads to the Figure B.

Figure B.

Here, the block from the nonlinearity of the system is called a quasi-linear approximation,

which is more realistic if G(s) = α
s2−αs+1 attenuates the higher order sinusoidal signals. We

will call

N(A,ω) :=
A2

4
(jω)

as a describing function. It means that the nonlinear block is approximated by the frequency

response function N(A,ω).

Now, since x = G(jω)w = G(jω)N(A,ω)(−x), we have

1 + G(jω)N(A,ω) = 0. (3)

From this, we solve

1 +
A2(jω)

4
α

(jω)2 − α(jω) + 1
= 0

and get A = 2, ω = 1. This implies that a limit cycle with the amplitude about 2 and the

frequency about 1 may exist.

In fact, there exists a limit cycle as in Figure C. The limit cycle depends on the value

α, and if α is small, it becomes similar to the one expected from the describing function

approach.

Definition of Describing Function

Although the nonlinear element is represented by w = f(x) in Figure: Typical Config-

uration, the block may be a backlash or a hysteresis (which is not a static map, i.e., a

single-valued map, but a map with memory). Therefore, we will denote w(t) as the output

signal of the nonlinear block.

CDSL, Seoul Nat’l Univ. November 11, 2006



15

Figure C.

Figure: Typical Configuration

Basic approximation assumption: The oscillation in the loop is a sinusoidal function with

only one frequency ω, that is, the G(s) attenuates the higher order harmonics completely.

Assuming x(t) = A sin(ωt), the signal w(t) is periodic with the frequency ω. (If the Although w(t) is periodic

with the frequency ω, its

shape determines its

higher order harmonics.

nonlinear block is a single-valued map w = f(x), then w(t) = f(A sin(ωt)) that is periodic

with the frequency ω only.) Then, the Fourier series gives w(t) = a0+a1 cos(ωt)+b1 sin(ωt)+

a2 cos(2ωt) + · · · where

a0 =
1
2π

∫ π

−π

w(t)d(ωt)

an =
1
π

∫ π

−π

w(t) cos(nωt)d(ωt)

bn =
1
π

∫ π

−π

w(t) sin(nωt)d(ωt).

Under the basic assumption, we regard that a2 = b2 = a3 = · · · = 0 because they will be

rejected after G(s) and thus, they are not necessary in the analysis. (I mean, we just consider

w(t) as

w(t) = a0 + a1 cos(ωt) + b1 sin(ωt)

although it is not.)

Assumption: Assume that the nonlinear block is odd. Even for backlash or

hysteresis.With this assumption, a0 = 0. Then, with the input x(t) = A sin(ωt), the output of the

nonlinear block is

w(t) = a1 cos(ωt) + b1 sin(ωt) = M sin(ωt + φ)
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where M(A,ω) =
√

a2
1 + b2

1 and φ(A,ω) = arctan(a1/b1). Note that M and φ depends on A

as well as ω. Then, the nonlinear block is represented by a transfer function Transfer function for LTI

system is independent of

A.N(A,ω) =
1
A

(b1(A, ω) + ja1(A,ω))

which is defined as the describing function of the nonlinear block.

Note: If the nonlinear block is odd and single-valued (w = f(x) = −f(−x)), then a0 =

a1 = 0 and N(A,ω) is real and independent of ω. (Why?)

How to get DF N(A,ω)?

This can be obtained by analytic integration or numerical integration of the Fourier series

formula, or by an experimental evaluation. For the practice, refer to Sections 5.2 and 5.3 of

the Slotine & Li’s book. Also see Examples 7.6, 7.7 and 7.8 in Khalil’s book.

From Example 7.8 in Khalil’s book, it turns out that if

αx2 ≤ xf(x) ≤ βx2,

then

α ≤ N(A,ω) ≤ β.

(Check it.)

Existence of Limit Cycle and Graphical Method

The existence of limit cycle is determined by solving A and ω for 1 + G(jω)N(A,ω) = 0,

i.e.,

G(jω) = − 1
N(A, ω)

.

If N is independent of ω, then this can be easily solved by a graphical method.

Figure D.

CDSL, Seoul Nat’l Univ. November 11, 2006



17

Usually, N(A) is real. Then, the graph of −1/N(A) will be on the real line.

If N depends on ω, then we may plot N(A,ω)G(jω) and find the values of A and ω that

leads to the intersection of the plot with the point (−1, 0) as in Figure E.

Figure E.

About the stability of a limit cycle, refer to Figure F. Assuming that G(s) does not have

an open loop unstable pole, the point L1 represents the unstable limit cycle because, if the

magnitude A is increased, the plot of G(jω) encircles the point −1/N(A), which leads to

unstability by the Nyquist theory so that the magnitude is ever increasing. Likewise, the

point L2 represents the stable limit cycle.

Figure F.

How much can we trust the describing function approach? Rule of thumb says that, if the

frequency response of G(s) does not have the resonant peaks, |G(njω)| << 1, n = 2, · · · , for

the expected frequency ω, and the plot of G(jω) and −1/N(A) meets almost perpendicular

(see Figure G), then the prediction is quite good.
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Figure G.

Up to now, we have studied an approximate method of describing function. The approx-

imation mainly came from the fact that we only considered the fundamental frequency of

the signal in the loop assuming that G(s) acts like a low-pass filter. If we analyze the error

caused by this approximation, we can get a sufficient condition and a necessary condition for

the existence of the limit cycle although there exists some gap between the two. Also, there

are many extensions in the literature that can handle the TV case, multiple nonlinearity and

so on.
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