1.7 Direct Shear Test

- A test to determine the shearing characteristics of soils. (Based on stress states on failure plane)
- The shear strength parameters, *c*' and ϕ ' (based on Mohr-Coulomb failure criteria (*s* = *c*' + (σ - Δu)*tan* ϕ ')) can be easily determined.

1) Test conditions and procedures

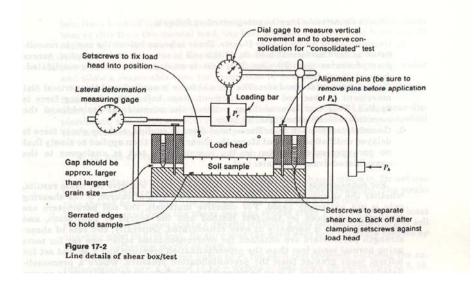


Fig. 17-2

- i) Apply the desired vertical load (normal force) P_v and measure the vertical displacements (with time).
- ii) Start horizontal loading at a constant displacement rate and measure horizontal load (shearing force) P_h , horizontal displacement (shear displacement), and vertical (volume change) displacement.
- iii) Repeat i) ii) for additional samples of identical condition at different values of P_{v} . (At least, 3 tests are required to compute *c*' and ϕ ')

2) Categorization of shear test based on drained condition.

- i) Unconsolidated Undrained test (UU test) ⇒ Undrained strength for saturated cohesive soils. ⇒ Shearing process is begun as soon as the sample is put in the machine.
- ii) Consolidated Undrained test (CU test) ⇒ Undrained strength for saturated cohesive soils ⇒ Soil sample is sheared at high strain rate after completion of consolidation under applied vertical load.
- iii) Consolidated Drained test (CD test) \Rightarrow Effective (Drained) Strength parameters, c' and $\phi' \Rightarrow$ The shear force is applied so slowly that the small pore pressure cannot be developed after completion of consolidation.
- For cohesionless soils, it is reasonable to assume "drained" condition, due to short drainage path of sample (thickness of sample = 20 to 25 mm) and its high permeability.
- For cohesive soils, drained condition can be simulated with low strain rate while undrained condition can be simulated with high strain rate.
- Undrained and Drained Strength

For cohesionless soils \Rightarrow drained strength

For cohesive soils \Rightarrow drained strength and undrained strength

3) Typical test results

$$\sigma_n = P_v / A$$
 and $s = P_h / A$

where A is the nominal area of the sample (or of the shear box).

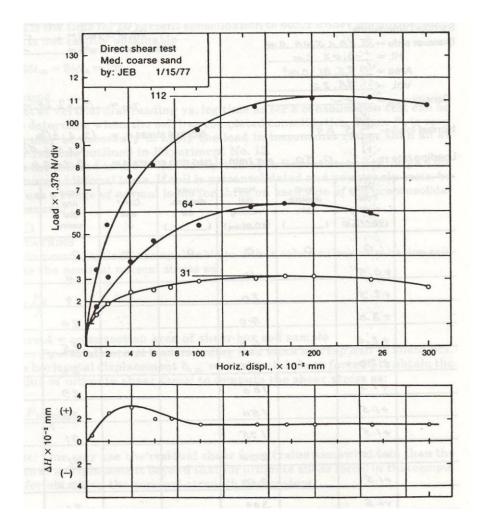
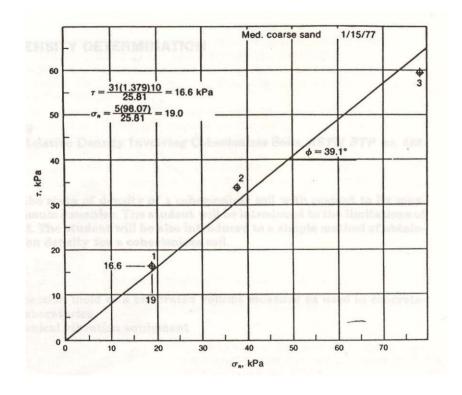
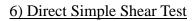



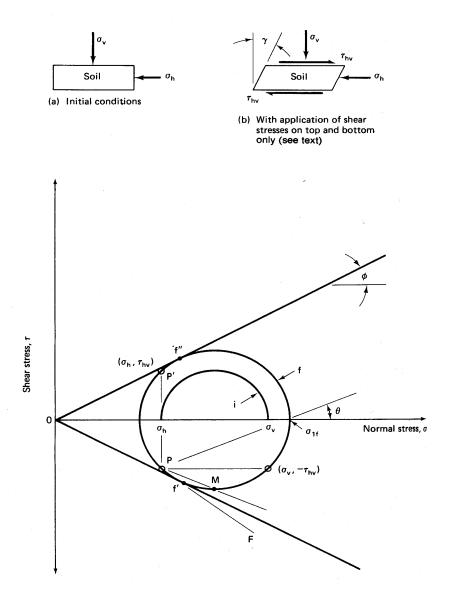
Figure 17-4

- Graphical determination of shear strength parameters

Figure 17-5

- A small "apparent cohesion" (less than 10 - 15 kPa) should be neglected.


4) Advantages


- i) It is easy and simple to perform the tests and interpret test results.
- ii) Drainage path is short. The time for consolidation is relatively short.
- iii) The direct-shear machine is quite adaptable to electronic readout equipment.

5) Disadvantages and limitations

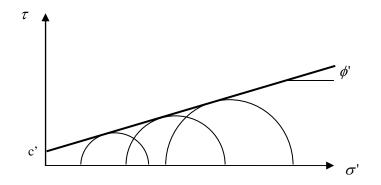
- i) Cannot control drainage and thus cannot measure volume change or pore pressure.
- ii) The area of sample changes as the test progresses.
- iii) The failure surface is predetermined as a plane.

- iv) The shearing stress is not uniformly distributed over the failure plane.
- v) The test uses a small sample with the result so that preparation errors can become relatively important.
- vi) Values of deformation modulus (E_s or G_s) cannot be determined.

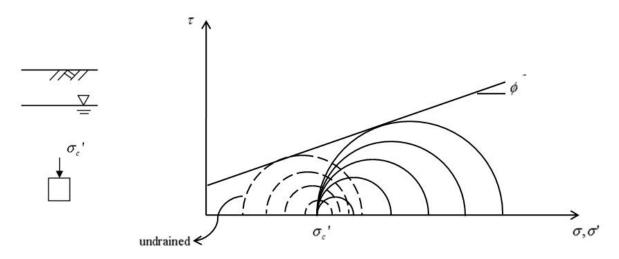
SNU Geotechnical and Geoenvironmental Engineering Lab.

- i) The Direct simple shear uses a closed shear box fixed at the base with the top free to translate under a horizontal force. The shear box may
 - a) Use hinged sides.
 - b) Use a wire-reinforced rubber membrane for the sides.
- ii) Direct simple shear test simulates the pure shear condition.
- iii) Drainage condition can be controlled (partly).
- iv) Cyclic stresses can be applied. \Rightarrow Particular application in liquefaction studies.

Advantages

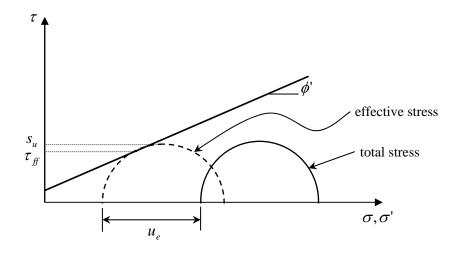

- 1. Use in special design practice. s_u of soft clays for use in slope stability calculations.
- 2. K₀ consolidation.
- 3. Can be used for cyclic behaviors of soils.

 $\phi'_{DSS} \approx \phi'_{TX}$ (sands)


 $s_{u(TXE)} \leq s_{u(DSS)} \leq s_{u(TXC)}$ for NC to lightly OC clays

***** Undrained Strength vs. Drained Strength

- drained strength : no u_e during loading. (volume change)
 - sands and clays for long-term stability
- undrained strength : no volume change during loading $(\rightarrow u_e)$
 - clays at the end of construction
- Whatever drainage condition is, failure is governed by effective stress.


For TX condition,

drained strength parameter : c', ϕ'

SNU Geotechnical and Geoenvironmental Engineering Lab.

undrained strength parameter : c_u or s_u

for $\tau_{ff} \Rightarrow$ we must know ϕ' (and c') and we need to find out u_e .

But u_e cannot be determined from simple test.

(unconfined test or unconsolidated-undrained test).

