3.3 Cone Penetration Test (CPT)

(1) General

The CPT is carried out by pushing a 60° cone with a face area of 10 cm² into the ground at a constant speed $(2\pm0.5$ cm/s), whilst measuring the force to do so. The shear force on a 150 cm² 'friction sleeve' and pore pressure are then also measured.

- Type of cone
 - Piezocone
 - Environmental cone
 - Seismic cone
 - Visual cone

• Dissipation test with piezocone

In clays, the horizontal coefficient of consolidation Cv can be determined by stopping the cone, and measuring pore pressure dissipation as a function of time.

(2) Interpretation and use

- i) soil classification
 - Robertson and Campanella (1986)

$$B_q = \frac{\Delta u}{q_t - \sigma_{vo}} \qquad \qquad q_t$$

$$F_r = \frac{f_s}{q_t - \sigma_{vo}} \quad \text{vs} \qquad q_t$$

- Robertson (1990)

$$B_q$$
 vs $Q_t = \frac{q_t - \sigma_{vo}}{\sigma'_{vo}}$, F_r vs Q_t

ii) Undrained strength

_

- Su is evaluated with cone factors (N_{kt} , N_{ke} , $N_{\Delta u}$)
- Schmertmann(1978), Lunne et al(1985)
- Senneset et al (1982), Campanella et al (1982) $s_u = \frac{q_T u}{N_{ke}}$

 $s_u = \frac{q_T - \sigma_{v0}}{N_{kt}}$

Lunne et al (1985)	$s_u = \frac{\Delta u}{N_{\Delta u}}$
--------------------	---------------------------------------

regions	The test to evaluate cone factor	Cone factor	
England	CIUC	N _{kt =12~20}	
Norway	FVT	N _{kt =12~19}	
	FVT	N _{kt} =8~16	
Italy	CK0UC	N _{kt} =8~10	
	FVT	$N_{kt-8-10}$	
Vancouver, Canada	SBPT	-0-10	
	UCT	N _{kt =8~16}	
Japan	FVT	N _{kt =9~14}	
	CIUC	N _{qu} =5.0~6.8	
Taiwan	CAUC	N _{qu} =6.0~7.2	
Canada	FVT	$N_{Du} = 6.2 \sim 7.0$	

- Cone factor are very site –specific.

iii) The horizontal coefficient of consolidation

- Based on dissipation test

$$c_h = \frac{R^2 \cdot T_{50}}{t_{50}}$$

Baligh & Levadoux(1980)

$$c_h = \frac{R^2 \cdot T}{t}$$

U	А									
•	Spherical shape			Cylindri	cal shap	e	в	С		
(%)	<i>I_R</i> =30	<i>I</i> _{<i>R</i>} =70	<i>I_R</i> =100	<i>I_R</i> =130	<i>I_R</i> =30	<i>I_R</i> =70	<i>I_R</i> =100	<i>I_R</i> =130		
40	0.18	0.26	0.34	0.40	0.74	1.14	1.48	1.78	3.0	0.142
50	0.29	0.44	0.58	0.69	1.47	2.19	2.90	3.55	5.6	0.245
60	0.46	0.73	0.98	1.17	2.49	3.83	5.36	6.63	10	0.439

A : Torstensson (1975), B : Baligh와 Levadoux (1986), C : Teh와 Houlsby (1991)

iv) Friction angle, ϕ in sandy soil

Robertson and Campanella (1983)

$$\phi = \tan^{-1} \left[0.1 + 0.38 \log \left(\frac{q_c}{\sigma'_{v0}} \right) \right]$$

$q_{ m c}/\sigma'_{ m v0}$	Soil state	Friction angle (ø')
< 20	Very loose	< 30
20 ~ 40	Loose	30 ~ 35
40 ~ 120	Medium	35 ~ 40
120 ~ 200	Dense	40 ~ 45
> 200	Very dense	> 45

v) Dr in sandy soil

Jamiolkovski et al (1985)

vi) Other usage

- OCR
- E_s
- Sensitivity
- Bearing capacity of foundation
- Liquefaction potential