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Foundations and retaining structures — Research and practice
Fondations et structures de souténement — la recherche et la pratique
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ABSTRACT: This paper presents a broad review of shallow and deep foundations and retaining structures and the most significant

methods developed to predict their behaviour. Static and some cyclic loading effects are considered, but dynamic behaviour has been
excluded. Emphasis has been placed on methods that have been validated or found to be reliable for use in engineering practice.

These include some well-tried and tested methods and others that have been suggested and validated in recent times by geotechnical
researchers. Recommendations are made about preferred methods of analysis as well as those whose use should be discontinued. In
addition, some observations are made about the future directions that the design of foundations and retaining walls may take, as there
are still many areas where uncertainty exists. Some of the latter have been identified.

RESUME: Ce papier a pour objet donner une vue générale des types de fondations profondes et peu profondes et des structures de
souténement ainsi que des méthodes les plus significatives développées pour prédire leur comportement. Les effets de charges
statiques et cycliques sont considérés mais le comportement dynamique a été exclu. L'accent a été mis sur les méthodes qui ont &té
validées ou reconnues fiables dans la pratique de l'ingénierie. Ce qui inclus tant quelques méthodes qui ont fait leurs preuves que des
méthodes qui ont été suggérées et testées récemment par des chercheurs en géotechnique. Des préconisations sont formulées sur les
méthodes d'analyse 2 privilégier et sur celles qui devraient &tre abandonnées. De plus, quelques pistes quant aux futures directions que
devrait prendre le design des fondations et des structures de souténement sont proposées, car dans de nombreux domaines des
incertitudes subsistent. Parmi ces derniéres, certaines sont identifiées.

1 INTRODUCTION

The design of foundations and retaining structures constitutes
cne of the most enduring and frequent series of problems en-
countered in geotechnical engineering. Rational design methods
based on soil mechanics principles were established over 50
years ago, and the classic book by Terzaghi and Peck (1948)
crystallized the broad design techniques of the time, providing
practitioners with an invaluable source of knowledge and experi-
ence to apply to their problems. Since the publication of that
book, an enormous amount of research has been carried out to
improve and refine methods of design, and to gain a better un-
derstanding of foundation behaviour and the factors which gov-
em this behaviour. Despite this vast volume of research, many
practitioners still rely on the traditional methods of design, and
are not aware of some of the research developments which have
occurred. In some cases, these developments have verified the
traditional design methods, but in other cases, some of those
methods have been found to be inaccurate or inappropriate. Ex-
amples of the latter category of cases are Terzaghi’s bearing ca-

pacity theory, which tends to over-estimate the capacity of shal-
low foundations, and the method of settlement analysis of piles
suggested by Terzaghi (1943) which focuses, inappropriately, on
consolidation rather than shear deformation.

The reluctance to adopt new research into practice is not sur-
prising, as the concerns of the practitioner tend to be rather dif-
ferent to those of the researcher. The concerns of the practitioner
include finding answers to the following questions:

How can I characterize the site most economically?

How can I carry out the most convenient design?

How can I estimate the required design parameters?

How can I optimize the cost versus performance of the foun-
dation or retaining structure?

How can I ensure that the design can be constructed effec-
tively?

In contrast, questions, which the researcher tries to address,
include:
What are the main features of behaviour of the particular
foundation or retaining structure?
What are the key parameters affecting this behaviour?
How can I refine the analysis and design method to incorpo-
rate these parameters?
How can I describe the behaviour most accurately?
While there is of course some overlap in some of these ques-
tions, there is often an over-riding emphasis on cost and speed of
design by the practitioner, which appears to be excessively
commercial to the researcher. Conversely, the researcher often
tends to focus on detail, which appears to be unimportant to the
practitioner. In addition, the practitioner all too rarely can afford
the luxury of delving into the voluminous literature that abounds
in today’'s geotechnical world. As a consequence, there appears
to be an ever-increasing ‘“gap” between the researcher and the
practitioner.

This paper attempts to decrease the gap between research and |
practice, an two main objectives: \

— To summarize some of the findings of research in foundation
and retaining structure engineering over the past 30 years or
50;

— To evaluate the applicability of some of the commonly used |

design approaches in the light of this research.

Because of the broad scope of the subject, some limitation of |

scope is essential. Thus, attention will be concentrated on design
of foundations and retaining structures under static loading con-
ditions. The important issue of design for dynamic loading will
not be considered herein, nor will issues related to construction
be addressed in detail. The following subjects will be dealt with: |
— ;Design philosophy and design criteria;
— | Bearing capacity of shallow foundations;
— | Settlement of shallow foundations;

— |Pile foundations; /
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—-{ Raft and piled raft foundations;

— Retaining structures, with an emphasis on the assessment of
earth pressures and the design of flexible structures;

—[ Assessment of geotechnical parameters.

' At the dawn of a new millennium, it seems appropriate to at-
tempt to make an assessment of those traditional design methods
that should be discarded, those that should be modified, and
those that should be retained. The conclusions will therefore

‘ summarize some methods in these three categories. In addition,
the conclusions will propose a number of topics that deserve
further research, and conversely, some which may be considered
to be too mature for further extensive investigation.iClea:lE.jsuch
suggestions represent the subjective opinions of the authors and
may be subject to challenge by others.

@ DESIGN APPROACHES AND DESIGN CRITERIA
. 2/ DESIGN APPROACHES AND DESIGN CRITERIA

2.1 Design philosophy for design against failure
When designing against failure, geotechnical engineers generally
adopt one of the following procedures:
( 1. The overall factor of safety approach
| 2. The load and resistance factor design approach (LRFD)
U‘ 3. The partial safety factor approach
\ 4. A probabilistic approach.

Each of these procedures is discussed briefly below.

\‘2;1_.1_ Overall factor of safety approach
It was customary for most of the 20 century for designers to
adopt an overall factor of safety approach when designing
against failure. The design criterion when using this approach
can be described as follows:

» RIF=ZP (e
where P; = applied loading; R, = ultimate load capacity or
strength; F = overall factor of safety.

Factors of safety were usually based on experience and
precedent, although some attempts were made in the latter part
of the century to relate safety factors to statistical parameters of
the ground and the foundation type. Typical values of F for
shallow foundations range between 2.5 and 4, while for pile
foundations, values between 2 and 3.5 have been used. Figure

2.1 shows typical values for a variety of geotechnical situations

(Meyerhof, 1995a).

.:\ 2.1.2 LRFD approach
In recent years, there has been 2 move towards a limit state de-
sign approach. Such an approach is not new, having been pro-
posed by Brinch Hansen (1961) and Simpson et al. (1981),
among others. Pressure from structural engineers has hastened
the application of limit state design to geotechnical problems.
One approach within the limit state design category is the
LRFD apEroach, which can be represented by the following de-
sign criterion:

* @R, >Za,P K(@

where @ = strength reduction factor; R, = ultimate load capacity
or strength; P; = applied loading component i (e.g., dead load,
live load, wind load, etc.); a; = load factor applied to the load
component P;.

Values of g; are usually specified in codes or standards, while
values of @ are also often specified in such documents. The
LRFD approach is sometimes referred to as the “American Ap-
proach” to limit state design, because of its increasing popularity
in North America.

I 2.1.3  Partial factor of safery approach
\ Tn this approach, the design criterion for stability is:

R 2ZaP @
where R’ = design resistance, calculated using the design

strength parameters obtained by reducing the characteristic
strength values of the soil with partial factors of safety; a;, P; are
as defined above.

The partial factor of safety approach is sometimes referred to
as the “European Approach” because of the considerable extent
of its application in parts of that continent.

2.1.4 Probabilistic approach
In this approach, the design criterion can be stated simply as:
Probability of failure < Acceptable probability Cea)

in|Figure 2.2 for various classes of engineering projects (Whit-
mai: 088
Much has been written about the application of probability
theory to geotechnical engineering, but despite enthusiastic sup-
port for this approach from some quarters, it does not appear to_
have been embraced quantitatively by most design engineers.
Exceptions are within geotechnical earthquake engineering, en-
vironmental geotechnics and in some facets of offshore geotech-
nics, but it is rarely applied in the design of foundations or re-
taining structures. An excellent discussion of the use of
probabilistic methodologies is given by Whitman (2000).

TY%i‘cal values of the acceptable probability of failure are shown
in{Fi

2.1.5 |Discussion bf approaches

While a considerable proportion of design practice is still carried
out using the overall factor of safety approach, there is an in-
creasing trend towards the application of limit state design meth-

ods. Becker (1996) has explored fully the issues involved in the

alternative approaches, and provides a useful comparison of the

Figure 2.3.

Considerable debate has taken place recently in relation to the
partial factor (European) approach, and a number of reservations
have been expressed about it (Gudehus, 1998). Particular prob-
lems can be encountered when it is applied to problems involv-
ing soil-structure interaction, and the results of analyses in which
reduced strengths do not always lead to the worst cases for de-
sign. For example, in the design of a piled raft, if the pile capac-
ity is reduced (as is customary), the negative bending moment
within the raft may be underestimated when the pile is not lo-
cated under a column. Thus, in many cases, it is preferable to
adopt the LRFD approach, and compute the design values using
the best-estimate geotechnical parameters, after which an appro-
priate factor can be applied to the computed results.

2.2 Design loadings and combinations

Conventional foundation design is usually focussed on static
vertical loading, and most of the existing design criteria address
foundation response to vertical loads. It is however important to
recognize that consideration may need to be given to lateral and
moment loadings, and that in some cases, cyclic (repeated)
loadings and dynamic loadings may be important. In this paper,
the primary focus will be placed on static vertical loads, but
some cases involving horizontal static loading and cyclic loading
will also be addressed.

Load combinations which need to be considered in design are
usually specified in structural loading codes. Typical load com-
binations are shown in Table 2.1 for both ultimate and service-
ability load conditions (Standards Australia, 1993). Other com-
binations are also specified, including liquid and earth pressure
loadings.
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Q‘I'ab!e 2.1.)Typical load factors for load combinations (Standards Austra-
lia. AS 1170-1993).

Case Combinations for ulti- Combinations for service-

mate limit state ability limit state
Short Term  Long Term

Dead + live 1.25G + 1.5Q G+0.7Q G+ 040Q
0.8G + 1.5Q

Dead + live + 1.25G + Wu +0.4Q G+ Ws

wind 0.8G + Wu G +0.7Q+Ws -

Dead + live + 1.25G + L.6E + 0.4Q

earthquake 0.8G + 1.6E < -

Note: G = dead load; Q = live load: Wu = ultimate wind load: Ws =
serviceability wind load: E = earthquake load.

*+ 2.3 Design criteria

Criteria for foundation design typically rely on past experience
and field data with respect to(both jultimate limit state (stability)
design and serviceability design. Some of these criteria are
summarized in this section.

¢ 2.3.1 Uldimate limit state design
Typical values of overall factor of safety for various types of
failure are summarized in Table 2.2 (Meyerhof, 1995a). Meyer-
hof has also gathered data on the factor of safety in the context
of the probability of stability failure and of the coefficients of
variation of the loads and soil resistance, and these data are
shown in Figure 2.1.

Values of partial factors of safety for soil strength parameters
for a range of circumstances are summarized in Table 2.3. As in-
dicated above, the use of factored soil strength data can some-
times lead to designs, which are different from those using con-
ventional design criteria, and must be used with caution.

‘Table 2.4 summarizes typical geotechnical reduction factors
(®,) for foundations. These values are applied in the LRFD de-
sign approach to the computed ultimate load capacity, to obtain

T
mmical{g\?emmfacmrs of safety (Meyerhof, 1995a)

Failure type [tem Factor of safety
Shearing Earthworks 13-1.5
Earth retaining structures, exca- 1.5-2
vations, offshore foundations
Foundations on land 2-3
Seepage Uplift, heave 1.5-2
Exit gradient, piping 2-3
Ultimate pile  Load tests 1.5-2
loads Dynamic formulae 3

\E[able_gj Typical values of "’a.rtiai}factors of safety for soil strength pa-
rameters (after Meyerhof, 1995a).

Item Brinch Brinch  Den- Eure- Can- Can- USA

Hansen Hansen mark code7 ada ada  ANSI
DS165 CFEM NBCC AS8

1953 1956 1965 1993 1992 1995 1980

Friction 1.25 12 1.25 1.25 1.25 See See

(tan ) Note 1 Note 2

Cohesionc 1.5 j B 15 14-16 15 % =

(slopes,

earth pres-

sures)

Cohesionc - g 1.75 14-16 2.0 i "

(Spread

founda-

tions)

Cohesionc - 2.0 20 1l4-16 20 L #

(Piles)

Note I: Resistance factor of 1,25-2.0 on ultimate resistance using unfac-

tored strengths.

Note 2: Resistance factor of 1.2-1.5 on ultimate resistance using unfac-
tored strengths.

Table 2.4/ Typical values of geotechnical reduction factor &,

Item Brinch Deomark Euro- Canada Canada Australian
Hansen DS415 code7 CFEM NBCC Piling
Code
(1965)  (1965)  (1993) (1992)  (1995)  (1995)
Ultimate 0.62 0.62 042 05- 0.62 0.5-
Pile Resis- -0.59 0.62 09=*
tance — load
tests
ltimate 0.5 0.5 - 0.5 0.5 0.45 -~
Pile Resis- 0.65*
tance — dy-
namic for-
mulae
Ulumate pile- - - 0.33- 04 0.40 -
resistance — 0.5 0.65*
penetration
tests

*Value depends on assessment of circumstances, including level of
knowledge of ground conditions, level of construction control, method of
calculation, and method of test interpretation (for dynamic load tests).

the design load capacity (strength) of the foundation, as per
Equation (2.2). The assessment of an appropriate value for de-
sign requires the application of engineering judgement, including
the level of confidence in the ground information, the soil data
and the method of calculation or load test interpretation em-
ployed.

2.3.2 Serviceability design
The general criteria for serviceability design are:

(@sw)
Differential deformation < Allowable differential deformation
(2.5b)

These criteria are usually applied to settlements and differen-
tial settlements, but are also applicable to lateral movements and
rotations. The following discussion will however relate primarily
to vertical settlements.

The following aspects of settlement and differential settle-
ment need to be considered, as illustrated in Figure 2.4:

— ¢ Overall settlement; R

—| Tilt, both local and overall;

—| Angular distortion (or relative rotation) between two points,
which is the ratio of the difference in settlement divided by
the distance between the two points;

— | Relative deflection (for walls and panels).

Data on allowable values of the above quantities have been
collected by a number of sources, including Meyerhof (1947),
Skempton and MacDonald (1955), Polshin and Tokar (1957),
Bjerrum (1963), Grant er al. (1974), Burland and Wroth (1974),
Burland er al. (1977), Wahls (1994), Boscardin and Cording
(1989), Barker ez al. (1991) and Boone (1996). Some of the rec-
ommendations distilled from this information are summarized in
Table 2.5. Information on criteria for bridges is also included in
this table as the assessment of such aspects as ride quality and
function requires estimates to be made of the deformations and
settlements.

Boone (1996) has pointed out that the use of a single crite-
rion, such as angular distortion, to assess building damage ex-
cludes many important factors. A more rational approach re-
quires consideration of the following factors:

—  Flexural and shear stiffness of building sections

—| Nature of the ground movement profile

—| Location of the structure within the settlement profile

—| Degree of slip between the foundation and the ground

— \ Building configuration.

Deformation < Allowable deformation
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Figure 2.1. Lifetime probability of failures for overall factor of

T [ i g :
safety approach (Meyerhof, 1995) Elf":_gﬂe:iﬁmsks for engineering projects (Whitman, 1984).

# European approach:
(factored strength approach)

Resistances | Load effects

Unfactored Factored Factored Factored
strength (i.e. Reduced) 2 resistance (i.e. increased) Characteristic
parameters strength for design, = Load effects, load effects, S
parameters Ry Sa
Py
Nodel] p-— -~ .
odae g = S
€. 0 | Dt .| =ce 0] — > Toad |~
« |factors,| x
Where (c¢,9¢) < (c, ¢) Y¢
% North American approach:
(factored resistance approach)
Resistances | Load effects
Unfactored Unfactored Factored Factored Ch ceiad
strength (nominal) (i.e. reduced) (i.e. increased) i €ir15tlc
parameters resistance, resistance load effects, & fnogn}lfa)
(c,d) R, for design for design, DackeLlegls;
Ry)
Model . ' B e PR &
C. ¢ == Resistance Load [~
’ X fac&t)or, « |factors,| x
o

f Flg_liré"z.ifj.LRFD (North American) approach vs partial factor (European) approach (Becker, 1996).
| SES—
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Tension cracks

Tension cracks
Relative deflection, A

Relative sag Deflection ratio= A/,  Relative hog

(b)

(©)

I Overall tilt

Figure 2 4 Definitions of differential settlement and distortion for framed and load-bearing wall structures {after Burland and Wroth, 1974).
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@
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AngUlADisiHio, BIE 10°9)
F"L_gilfe 2.5. Relationship of damage to angular distortion and horizontal extension strain (after Boscardin and Cording, 1989).
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¥* | Table 2.5.)Summary of criteria for settlement and differential settlement of structures.

‘Typé of structure Type of damage/concern Criterion Limiting value(s)
Framed buildings and rein- Structural damage Angular distortion 1/150 — 1/250
forced load bearing walls Cracking in walls and partitions Angular distortion 1/500
(1/1000-1/1400) for end bays
Visual appearance Tilt 17300

Connection to services Total settlement 50-75 mm (sands)
75 - 135 mm (clays)
1/1200 -1/2000
1/2500 (L/H =1)

1/1250 (L/H = 5)

Tall buildings
Structures with unreinforced
load bearing walls

Operation of lifts & elevators
Cracking by sagging

Tilt after lift installation
Deflection ratio

Cracking by hogging Deflection ratio 1/5000 (L/H=1)
1/2500 (L/H = 5)
Bridges — general Ride quality Toral settlement 100 mm
Structural distress Total settlement 63 mm
Function Horizontal movement 38 mm
Bridges — multiple span Structural damage Angular distortion 1/250
Bridges — single span Structural damage Angular distorticn 1/200

The importance of the horizontal strain in initiating damage
was pointed out by Boscardin and Cording (1989), and Figure
2.5 shows the relationship they derived relating the degree of
‘damage to both angular distortion and herizontal strain. Clearly,

the larger the horizontal strain, the less is the tolerable angular
El‘ikstti‘ft'fon_ before some form of damage occurs. Such considera-
tions may be of particular importance when assessing potential
damage arising from wunnelling operations. For bridges, Barker
et al. (1991) also note that settlements were more damaging
when accompanied by horizontal movements.

It must also be emphasized that, when applying the criteria in
Table 2.5, consideration be given to the settlements which may
have already taken place prior to the construction or installation
of the affected item. For example, if the concern is related to ar-
chitectural finishes, then assessment is required only of the set-
tlements and differential settlements which are likely to occur
after the finishes are in place.

More detailed information on the severity of cracking damage
for buildings is given by Day (2000), who has collected data
from a number of sources, including Burland et al. (1977), and
Boone (1996). Day has also collected data on the relationship
between the absolute value of differential settlement A, and the
angular distortion (As/L) to cause cracking, and has concluded
that the following relationship, first suggested by Skempton and
MacDonald (1956), is reasonable:

{2.50)

Aoy = 8900(As/ LY(mm)

{ 2.4 ;Caregories of analysis and design methods

In assessing the relative merits of analysis and design methods, it
is useful to categorize the methods in some way. It has been pro-
posed previously (Poulos, 1989) that methods of analysis and
design can be classified into three broad categories, as shown in
{Table 2.6.] i

~ Category 1 procedures probably account for a large propor-
tion of the foundation design performed throughout the world.
Category 2 procedures have a proper theoretical basis, but they
generally involve significant simplifications, especially with re-
spect to soil behaviour. The majority of available design charts
fall into one or other of the Category 2 methods. Category 3 pro-
cedures generally involve the use of a site-specific analysis
based on relatively advanced numerical or analytical techniques,
and require the use of a computer. Many of the Category 2 de-
sign charts have been developed from Category 3 analyses, and
are then condensed into a simplified form. The most advanced
Category 3 methods (3C) have been used relatively sparsely, but
increasing research effort is being made to develop such meth-
ods, in conjunction with the development of more sophisticated

models of soil behaviour.

From a practical viewpoint, Category 1 and 2 methods are the
most commonly used. In the following sections, attention will be
focussed on evaluating such methods with respect to more re-
fined and encompassing methods, many of which fall into Cate-
gory 3, or else have been derived from Category 3 analyses.

2.5 Analysisitools )

Hand calculations and design charts probably still form the
backbone of much standard design practice in geotechnical engi-
neering today. However, the designer has available a formidable
array of computational tools. Many of the calculations in Cate-
gories 1 and 2, which previously required laborious evaluation,
can now be carried out effectively, rapidly and accurately with
computer spreadsheets and also with mathematical programs
such as MATHCAD, MATLAB and MATHEMATICA. The
ability of these tools to provide instant graphical output of results
is an invaluable aid to the designer.

The development of powerful numerical analyses such as fi-
nite element and finite difference analyses now provide the
means for carrying out more detailed Category 3 analyses, and of
using more realistic models of soil behaviour. In principle, there
is(virtuallyl no problem that cannot be handled numerically,
given adequate time, budget and information on loadings, in situ
conditions and soil characteristics. Yet, the same limitations that
engineers of previous generations faced, still remain. Time is al-
ways an enemy in geotechnical engineering practice, and money
all too often is limited. Loadings are almost always uncertain,
and the difficulties of adequate site characterization are ever-
present. Despite substantial research into soil behaviour, mys-
teries persist in relation to the stress-strain characteristics of soil
response to general loading conditions, and the guantitative de-
scription of this behaviour. The two-phase behaviour of saturated
soils (not to mention the three-phase behaviour of unsaturated
soils), also pose a formidable challenge to those who seek to rely
solely on high-level numerical analyses for their designs. It must
also be recognized that the potential for obtaining irrelevant an-
swers when using complex numerical methods is very great, es-
pecially when the user of such methods is reflatively inexperi-
enced.

For these reasons, while recognizing the immense contribu-
tion of numerical geomechanics to our understanding of the be-
haviour of foundations and retaining structures, attention will be
focussed in this paper on more conventional methods of analysis
’?ierTlEéi’érf“Sﬁ%ﬁé’tﬁc?ds are an indispensable part of engi-
neering practice, and are essential in providing a check on the re-
sults of more complex numerical analyses whenever the latter
are employed. BB s SR
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" Table 2.6.)Categories of analysis and design.

Cate-  Sub-  Characteristics Method of parame-
gory divi- ter estimation
sion —
1 - \ Empirical - not based on  Simple in-situ or
's6il mechanics principles  [aboratory tests,
with comrelations
2 ZA Based on simplified the-  Routine relevant in-
ory or charts — uses soil situ or laboratory
mechanics principles — tests — may require
amenable to hand calcu-  'S0me correlations
lation; simple linear
elastic or rigid plastic
2B soil models
As for ZA, but theory is
non-linear (deformation)
‘or elasto-plastic (stabil-
ity)
3 3A Based on theory using Careful laboratory

bt
and/or in-situ tests

site-specific analysis,
which follow the

uses soil mechanics

principles. Theory is lin-  appropriate stress
ear elastic (deformation) paths

3B or rigid plastic (stability)
\\\IETGI 3A, but non-
linearity is allowed for in
] o arelatively simple man-
ner
As for 3A, but non-
linearity is allowed for

via proper constitutive
soil models

( St) BEARING CAPACITY OF SHALLOW FOUNDATIONS
3.1 Design issues

In relation to shallow foundations, the key design issues include:
# — Estimation of the ultimate bearing capacity of the foundation
with, where relevant, appropriate allowance for the combined

effects of vertical, horizontal and moment loading;

\ % — Estimation of the total and differential settlements under ver-

tical and combined loading, including any time-dependence
of these foundation movements;

— Estimation of foundation movements due to moisture changes
in the underlying soil, where these changes are induced by
factors other than the loading applied directly to the founda-
tion;

— Structural design of the foundation elements.

In this section, the first two of these design issues will be ad-
dressed, while section 4 deals with settlement issues.

Conventionally, the issues of ultimate capacity and settlement
are treated separately in design analyses. For most hand calcula-
tion methods this separation is necessary, because to do other-
wise would render the analysis intractable. However, in some
design applications it may be important to conduct more sophis-
ticated analysis in order to understand fully the characteristic
foundation behaviour. Very often these sophisticated analyses
will employ numerical techniques requiring computer solution.

In this section hand methods of analysis are discussed, and some

useful solutions derived from more sophisticated analysis are

also identified.

3.2 Ultimate load capacity

Prediction of the ultimate bearing capacity of a foundation is one
of the most significant problems in foundation engineering, and
consequently there is an extensive literature detailing both theo-
retical and experimental studies of this topic. A list of the princi-
pal contributions to the study of this subject may be found, for
example, in Vesic (1973), Chen and McCarron (1991) and Tani
and Crajp (1805 = ¢ @ . m L oL i ’

Bearing capacity failure occurs as the soil supporting the
foundation fails in shear. This may involve either a general fail-

ure mechanism or punching shear failure. General shear failure
usually develops in soils that exhibit brittle stress-strain behav-
iour and in this case the failure of the foundation may be sudden
and catastrophic. Punching shear failure normally develops Jin
soils that exhibit compressible, plastic stress-strain behaviour. In
this case, failuré is charactérised by progressive, downward
movement or “punching” of the foundation into the underlying
soil. This failure mode is also the mechanism normally associ-
ated with deep foundations such as piles and drilled shafts.
Different methods of analysis are used for the different failure
modes. For the general shear mode, a rational approach based on
the limifing states of equilibrum is employed. The approach is
based on the theory of plasticity and its use has been validated, at
least in principle, by laboratory and field testing. For the punching
shear mode, a variety of approaches have been suggested, none of
which is strictly correct from the point of view of rigorous applied |
mechanics, although most methods predict ultimate capacities
which are at least comparable to field test results.
In the discussion that follows, particular emphasis is given to:
— Estimating the ultimate capacity of foundations subjected to
combined loading, i.e., combinations of vertical and horizon-
tal forces and moments,
Estimating the ultimate capacity for cases of eccentrically ap-
plied forces, and T
—| Estimating the ultimate capacity of foundations on non-
homogeneous soils including layered deposits.

3.2.1 Conventional bearing capacity theory

A rational approach for predicting the bearing capacity of a foun-
dation suggested by Vesic (1975) has now _g;au)l;c_d_ quite widespread )
acceptance in foundation engineering practice. This method takes
some account of the stress-deformation characteristics of the soil
and is applicable over a wide range of soil behaviour. This ap-
proach is loosely based on the solutions obtained from the theory of

solution for the capacity intractable.

For a rectangular foundation the general bearing capacity
equation, which is an extension of the expression first proposed
by Terzaghi (1943) for the case of a central vertical load applied
to a long strip footing, is usually written in the form:

i
== ML Lelableit S BN bulrbig bt @D)
INGE 0L il b asbun

where g, is the ultimate bearing pressure that the soil can sustain,
O, is the corresponding ultimate load that the foundation can
support, B is the least plan dimension of the footing, L is the
length of the footing, c is the cohesion of the soil, g is the over-
burden pressure, and ¥ is the unit weight of the soil. It is assumed
that the strength of the soil can be characterised by a cohesion ¢
and an angle of friction ¢ The parameters N, N, and N, are
known as the general bearing capacity factofs Which determine
the capacity of a long strip footing acting on the surface of soil
represented as a homogeneous half-space. The factors ¢ allow
for the influence of other complicating features. Each of these
factors has double subscripts to indicate the term to which it ap-
plies (g, ¥ or g) and which phenomenon it describes {(r)for rigidity
of the soil{s)for the shape of the foundation{ )for inclination of the
load{ #for tilt of the foundation base,’%t{;r the ground _m_nfgb__@_jx_lplj-.il
nation mﬂ(@ the depth of the foundation). Most of these factors
depend on the friction angle of the soil; %)as indicated in{ Table
3.1] Details of the sources and derivations for them may be
found in Vesic (1975), Caquot and Kerisel (1948, 1953), Davis |
and Booker (1971) and Kulhawy ef al. (1984). The unusual case |

of foundations subjected to a combination of a concentric verti-
cal load and a torsional moment has also been studied by Perau
(1997). S
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e
ol Table_m Bearing capacity factors.

e

Paarater (Cohssion) Self-weight) " Surcharge)
i Ny =0.0663¢** Smooth St
ing Ne=Ng-1)gotd =0. 964
Beanr{b _( q )F N Ny 0-1054.3 Rough Nq:e”m“’tanz 459_._3
Capacity N.=2+m if ¢=0 ¢ >0 inmdians 2
Ny=0 if =0
Lty
=S| e B :
. tand ~4.4+0,6E tan ¢ +
Rt 5 Coo=C S =EX
igidity orfor $=0 > woTgq C, P 3.07 sin dlog,, 21,
g.,= o.32+a12{ E]+O.60 log, 1. {L+sing)
By N, B B
R B I
1-E&,
Cc:'= l:q-r'- N__'Z_.
13 tan$ '1" LEd ] T -
Inclination® for =0 =/ =] J - —
‘ et & [ N+BLc cotcb] o { N+B’L'ccot¢]

nT
Ca=qu'[-£L]

N_tand

Foundartion tile* orfor¢=0 gw T (I -otan ¢’)Z gq! = Qw

20
L"“'=1-{n+2)

s (:q,
Ce=Cu [m]

Sutface c‘r’x = an' C‘?& = (1 - tan Cl])2
inclination® or for9=0 orfor ¢ =0 orfor =0
C;g=1~(2—m) C"‘ =l Cqs=
T+2
1-C.
Depth® chEEeD =1 Lu=1+2tand (1-5in )’ tan (E]

Ccd= 1+0.33 tan"(%]

Lh &

. @ is the inclination from the horizontal of the underside of the footing.

. The rigidity index is defined as J, =G /(c + ¢ tan §) in which G is the elastic shear modulus of the soil and the vertical overburden pressure, 4,
is evaluated at a depth of 8/2 below the foundation level, The critical rigidity index is defined as:

Jn.:-g«ex (3.30-0.45B/ch0t[45° -%ﬂ

. When J, > I, the soil behaves, for all practical purposes, as a rigid plastic material and the modifying factors Z, all take the value 1. When 7, < [,
punching shear is likely to occur and the factors 7, may be computed from the expressions in the table.

. For inclined loading in the B direction (8=90%, nis given by: 5 = np= (2 + B/L)/(1+ B/ L). For inclined loading in the L direction (6 = 0°),
n is given by:

n=ne=02+LB)1+L/B)

For other loading directions, n is given by: n=nf=nL cos’0 + nB sin® . 8 is the plan angle between the longer axis of the footing and the ray
from its centre to the point of application of the loading. B® and L’ are the effective dimensions of the rectangular foundation, allowing for eccen-
tricity of the loading, and T and M are the horizontal and vertical components of the foundation load.

. For the sloping ground case where ¢ = 0, a non-zero value of the term N, must be used. For this case is N, negative and is given by:
Ny=-2sinw

w is the inclination below horizontal of the ground surface away from the edge of the footing.
. D is the depth from the soil surface to the underside of the footing.
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In Table 3.1 closed form expressions have been presented for
the bearing capacity factors. As noted above, some are only ap-
pmmmations In pa:rtlcular, there have been several different
solutions proposed in the literature for the bearing capacity fac-
tors N, and N, Solutions by Prandtl (1921) and Reissner (1924)
are generally adcrpted for N, and ¥, although Davis and Booker
(1971) produced rigorous plasticity solutions which indicate that
the commonly adopted expression for N, (Table 3.1) is slightly
non-conservative, although it is generally accurate enough for

. most practical apphca.nons However, significant discrepancies

NV It has not been

several authors have proposed approximations.
| Terzaghi (1943) proposed a set of approximate values and Vesic
| (1975) suggested the approximation, N, = 2 (N, + Itan ¢, which
| has been widely used in geotechnical pract e,‘bﬁflgnow known
to be non-conservative with respect to more rigorous selutions

obtained using the theory of pIasticity for a rigid plastic body

For exa.mple

m*Frgure:i’:_L where the rigorous solutions of Davis and Booker
‘are compared with the traditional values suggested by Terzaghi.
It can be seen that for values of friction angle in the typical range
from 30° to 40°, Terzaghi's solutions can oversitimate this com-

ponent of the bearing capacity by factors as large as 3.
Analytical approximations to the Davis and Booker solutions
for. N for both smooth and rough footings are presented in| Tabr

Kabout 10°, a range of considerable practical interest. It i Itis rccom-

- mended that the expressions derived by Davis and Booker or

their analytical approximations presented in Table 3.1, should be
used in practice and the continued use of other inaccurate and

‘non-conservative solutions should be discontinued.

Although for engineering purposes satisfactory estimates of
load capacity can usually be achieved using Equation (3.1) and
the factors provided in Table 3.1, this quasi-empirical expression
can be considered at best only an approximation. For example, it
assumes that the effects of soil cohesion, surcharge pressure and
self-weight are directly superposable, whereas soil behaviour is
highly non-linear and thus superposition does not necessarily
hold, certainly as the limiting condition of foundation failure is
approached.

Recent research into bearing capacity problems has advanced
our understanding of the limitations of Equation (3.1). In par-
ticular, problems involving non-homogeneous and layered soils,

and cases where the foundation is subjected to combined forms
of loading have been investigated in recent years, and more rig-
orous solutions for these cases are now available. Some of these

developments are discussed in the following sections.

3.2.2 Bearing capacity under combined loading

The bearing capacity Equation (3.1) was derived using approxi-
mate empirical methods, with the effect of load inclination in-
corporated by the addition of (approximate) inclination factors.
The problem of the bearing capacity of a foundation under com-
bined Toading is essentially three-dimensional in nature, and re-
_cent research (e.g., Murff, 1994; Martin, 1994; Bransby and
Randolph, 1998 Taiebat and Carter, 2000a, 2000b) has sug-
gested that for any foundation, there is a surface in load space,
independent of load path, containing all combinations of loads,
L.e., vertical force (V), horizontal force (H) and moment (M), that
cause failure of the foundation. This surface defines a failure en-

veﬁpe for the foundation. A's sum.mary y of recent d cleveloprnents in

Most research conducted to date into determining the shape

of the failure envelope has concentrated on undrained failure
within the soil fle, ¢=0 and c=s,=the undrained shear
strength) and the results are therefore relevant to cases of rela-
tively rapid loading of fine-grained soils, including clays. For
these cases several different failure cnveiopes have been sug-

gested and in all cases they can be written in the following form:

H
T As "

\4 M
. =0 3.2
f{ As ABs | ] 52
where A is the plan area of the foundation, B is its width or di-
ameter, and s, is the undrained shear strength of the soil below
the base of the foundation.

Bolton (1979) presented a theoretical expression for the verti-
cal capacity of a strip footing subjected to inclined load. Bolton's
expression, modified by the inclusion of a shape factor of &,
provides the following expression for the ultimate capacity:

1+ 7 — Arcsio [

H }
+
As
—]—f;;sk :
1_( H }
As

For square and circular foundations it is reasonable to adopt a
value of ;= 1.2

Based on the results of experimental studies of circular foun-
dations performed by Osborne et @l (1991), Murff (1994) sug-
gested a general form of three-dimensional failure locus as:

2
M—] + 0o H 2
2

V v
+ay —-V|1+ L |+V,|=0

VC VC
where @y and o are constants, M is the moment applied to the
foundation, V, and V, are respectively the compression and ten-
sion capacities under pure vertical load. A finite value of V,
could be mobilised in the short term due to the tendency to de-
velop suction pore pressures in the soil under the footing. A sim-

ple form of Equation (3.4}, suitable for undrained conditions, as-
suming V,= -V, = -V,, is as follows:

etz (&) (3]

It may be seen that oz V, D and « V, represents the capacity of
the foundation under pure moment, M,, and pure horizontal load,
H,, respectively. Therefore Equation (3.3) can also be expressed

=0 (3.3)

(3.4

M
ao,V, D

(3.5

(3.6)

A finite element study to determine the failure locus for long
strip foundations on non-homogeneous clays under combined
loading was presented by Bransby and Randolph (1998). The re-
sults of the finite element analyses were supported by upper
bound plasticity analyses, and the following failure locus was
suggested for rapid (undrained) loading conditions:

A e
e = =1l=0 aun
VH MM HK
in which
M M fzY = -
ABs,, ABs,, |\ B As, B

where M~ is the moment calculated about a reference point
above the base of the footing at a height Z, B is the breadth of the
strip footing, ¢, & and &3 are factors depending on the degree
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Figure 3.4. Failure loci for foundations under inclined loading (M = Q).
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Figure 3.1. Bearing capacity factor Ny (after Davis and Booker, 1971).
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Figure 3.5. Non-dimensional failure loci in the V-H plane (M=0).
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(a) The "scoop” mechanism (b) The *wedge’ mechanism

Figure 3.2. 'Scoop’ and "wedge' mechanisms proposed by Bransby and
Randolph (1997).

wy,

+V Figure 3.6. Non-dimensional failure loci in the V-M plane (H=0).

Figure 3.3. Conventions for loads and moment applied to foundations.
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of non-homogeneity, and s,, is the undrained shear strength of
the soil at the level of the foundation base. Bransby and
Randolph (1998) proposed that the collapse mechanism for a
footing under combined loading is based on two different com-
ponent mechanisms: the 'scoep’ mechanism and the 'wedge’
mechanism, as illustrated in Figure 3.2.

Three-dimensional analyses of circular foundations subjected
to combined loading under undrained conditions has been de-
scribed by Taiebat and Carter (2000a). They compared predic-
tions of a number of the failure criteria described previously with
their three-dimensional finite element predictions of the failure
surface. The sign conventions for loads and moment used in this
study are based on the right-handed axes and clockwise positive
conventions, (V, M, H), as described by Butterfield et al. (1997)
and shown in Figure 3.3.

Vertical-Horizontal (V-H) Loading
Taiebat and Carter’s finite element prediction of the failure en-
velope in the V- plane is presented in Figure 3.4, together with
the conventional solution of Vesic (1975), Equation (3.1), and
the modified expression of Bolton (1979), Equation (3.4) with a
shape factor ¢, = 1.2. Comparison of the curves in Figure 3.4
shows that the numerical analyses generally give a more conser-
vative bearing capacity for foundations subjected to inclined
load. The results of the numerical analyses are very close to the
results of the modified theoretical expression of Bolton (1979).
All three methods indicate that there is a critical angle of in-
clination, measured from the vertical direction, beyond which
the ultimate horizontal resistance of the foundation dictates the
failure of the foundation. Where the inclination angle is more
than the critical value, the vertical force does not have any influ-
ence on the horizontal capacity of the foundation. For circular
foundations the critical angle is predicted to be approximately
19° by the numerical studies and from the modified expression
of Bolton (1979), compared to 13° predicted by the conventional
method of Vesic (1975). In Figure 3.5, the non-dimensional form
of the failure envelope predicted by the finite element analyses is
compared with those of Vesic (1975), Equation (3.1), Bolton
(1979), Equation (3.4), Murff (1994), Equation (3.6), and
Bransby and Randolph (1998), Equation (3.7). The shape of the
failure locus predicted by the numerical analyses is closest to the
modified expression of Bolton (1979). It can be seen that the
conventional method gives a good approximation of the failure
locus except for high values of horizontal loads. The failure lo-
cus presented by Murff (1994) gives a very conservative ap-
proximation of the other failure loci.

Vertical-Moment (V-M) Loading

For a circular foundation on an undrained clay subjected to pure
moment, an ultimate capacity of M, = 0.84.D.5, was predicted
by the finite element analysis of Taiebat and Carter (2000). In
Figure 3.6 the predicted failure envelope is compared with those
of Murff, Equation (3.6), and Bransby and Randolph, Equa-
tion (3.7). The failure envelopes approximated by Murff (1994)
and Bransby and Randelph (1998) are both conservative with re-
spect to the failure envelope predicted by the numerical analyses.
It is noted that the equations presented by Bransby and Randolph
were suggested for strip footings, rather than the circular footing
considered here.

Horizontal-Moment (H-M) Loading
The failure locus predicted for horizontal load and moment is
plotted in Figure 3.7. A maximum moment capacity of
M =0.89A.D.5, is coincident with a horizontal load of
H =0.71A.5,. This is 11% greater than the capacity predicted for
the foundation under pure moment.

A non-dimensional form of the predicted failure locus and the
suggestions of Murff (1994) and Bransby and Randolph (1998)
are plotted in Figure 3.8. It can be seen that the locus suggested
by Murff (1994) is symmetric and the maximum moment coin-
cides with zero horizontal loading, whereas the nurnerical analy-

ses show that the maximum moment is sustained with a positive
horizontal load, as already described. The failure locus obtained
from Murff's equation becomes non-conservative when
M x H <0. Bransby and Randolph (1998) identified two differ-
ent upper bound plasticity mechanisms for strip footings under
moment and horizontal load, a scoop mechanism and a
scoop-wedge mechanism (Figure 3.2). The latter mechanism re-
sults in greater ultimate moment capacity for strip footings, sup-
porting the finite element predictions.

General Failure Equation

An accurate three-dimensional equation for the failure envelope
in its complete form, which accounts for both the load inclina-
tion and eccentricity, is likely to be a complex expression. Some
degree of simplification is essential in order to obtain a conven-
ient form of this failure envelope. Depending on the level of the
simplification, different classes of failure equations may be ob-
tained.

In the previous section, the failure envelopes suggested by
different methods were compared in two-dimensional loading
planes. It was demonstrated that the failure equation presented
by Murff (1994) has simplicity in its mathematical form, but
does not fit the failure envelopes produced by the conventional
and numerical analyses. The failure equation presented by
Bransby and Randolph (1998) for strip footings matches the data
for circular footings in two planes, but does not give a suitable
answer in three-dimensional load space.

A new equation describing the failure locus in terms of all
three components of the load has been proposed recently by
Taiebat and Carter (2000a). In formulating this equation, advan-
tage was taken of the fact that the moment capacity of the foun-
dation is related to the horizontal load acting simultaneocusly on
the foundation. The proposed approximate failure equation is
expressed as:

vY (M
f"'[‘_/:] = 'M—H{l—

where o is a factor that depends on the soil profile. For a homo-
geneous soil a value of ¢ = 0.3 provides a good fit to the bear-
ing capacity predictions from the numerical analysis. Perhaps in-
evitably, the three-dimensional failure locus described by
Equation (3.9) will not tightly match the numerical predictions
over the entire range of loads, especially around the abrupt
changes in the failure locus that occur when the horizontal load
is high. However, overall the approximation is satisfactory, con-
servative and sufficient for many practical applications. Equa-
tion (3.9) is shown as a contour plot in Figure 3.9.

o N
" H, M| H,

3
1 -1=0 3.9

3.2.3  Bearing capacity under eccentrically applied loading
There is no exact expression to evaluate the effects of eccentric-
ity of the load applied to a foundation. However, the effective
width method is commeonly used in the analysis of foundations
subjected fo eccentric loading (e.g., Vesic, 1973; Meyerhof,
1951, 1953). In this method, the bearing capacity of a foundation
subjected to an eccentrically applied vertical loading is assumed
to be equivalent to the bearing capacity of another foundation
with a fictitious effective area on which the vertical load is cen-
trally applied.

Studies aimed at determining the shape of the failure locus in
(V-M) space (e.g., Taiebat and Carter, 2000a, 2000b; Houlsby
and Puzrin, 1999) are relevant, because this loading case is also
directly applicable to the analysis of a footing to which vertical
load is eccentrically applied.

Finite element modelling of the problem of the bearing ca-
pacity of strip and circular footings on the surface of a uniform
homogeneous undrained clay layer, subjected to vertical load
and moment was described by Taiebat and Carter (2000b). It was
also assumed in this particular study that the contact between the
footing and the soil was unable to sustain tension. The failure
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Figure 3.7. Failure loci in the M-H plane (V=0).
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Figure 3.8. Non-dimensional failure loci in the M- plane (V=0).
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Figure 3.9. Representation of the proposed failure equation in non-
dimensional V-M-H space.
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Figure 3.10. Failure loci for a strip footing under eccentric loading.
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Figure 3.11. Deformed shape of the soil and the strip footing under an
eccentric load.
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Figure 3.12. Failure loci for a circular footing under eccentric loading.
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Figure 3.13, Effective area of a circular footing subjeéted to eccentric load.
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envelopes predicted by Taiebat and Carter (2000b) have also
been compared with the solutions obtained using the lower
bound theorem of plasticity. The “lower bound” solutions satisfy
equilibrium and do not violate the yield criterion. However,
some of the solutions may not adhere strictly to all requirements
of the lower bound theorem. For example, loss of contact at the
footing-soil interface implies that the normality principle is not
always obeyed. Therefore, the term “apparent lower bound” is
used to describe these solutions, as suggested by Houlsby and
Purzin (1999).

Strip footings

The failure envelope predicted by two-dimensional finite ele-
ment analysis of a strip footing under both vertical load and
moment is presented in Figure 3.10. Also shown in this figure is
the failure envelope resulting from the apparent lower bound
solutions of Houlsby and Purzin (1999), which is described by
the following equation:

E—:(ﬂ:+2) 1——2M s,
A VB

where V' is the vertical load, A is the area of the foundation, and
M is the moment applied to the foundation. The failure envelope
predicted by the finite element method is in good agreement with
the envelope obtained from the apparent lower bound solutions.
Figure 3.11 shows the deformed shape of the soil and the strip
foundation under a vertical load applied with relatively large ec-
centricity.

Circular footings

The failure envelope predicted by three-dimensional finite ele-
ment analyses and lower bound analyses of circular footings
subjected to both vertical load and moment are presented in Fig-
ure 3.12. Good agreement between the two solutions is evident
in this figure. It is noted that the apparent lower bound solution
presented by Houlsby and Purzin (1999) is for conditions of
plane strain only. For the three-dimensional case, the apparent
lower bound solutions shown in Figure 3.12 have been obtained
based on the following considerations.

A circular foundation, subjected to a wvertical load applied

(3.10)

as suggested by Meyerhof (1953) and Vesic (1973). For a circu-
lar footing the area of the fictitious foundation, A’, can be calcu-

lated as:
D’ 2¢ 2 2¢ Y €
A'=— Arccos——— 1 —-| — €(3.@
2 B B D S—
The aspect ratio of the equivalent rectangular area can also be
approximated as the ratio of the lengths & and [, as shown in Fig-
ure 3.13, i.e.,

- ’ D=-2¢e

D+2e

Therefore, in this case the shape factor for the fictitious rec-
tangular foundation is given by (Vesic, 1973):

L. =1+02 /M
DV +2M

Hence, the bearing capacity of circular foundations subjected
to eccentric loading can be obtained from the effective width
method as:

V= fSA'(Z-i-?Z)SH

B

Iz

L]
I

/

(3.14)

Note that based on Vesic’'s recommendation the shape factor
for circular footings under the pure vertical load is usually

_13_

adopted as & = /.2, However,) exact solutions for the vertical
bearing capacity of circular footings on uniform Tresca soil
(Shield, 1955; Cox, 1961) suggest the ultimate bearing capacity
of 5.69 A.s, and 6.05 A.5, for smooth and rough footings, re-
spectively. Therefore, the appropriate shape factors are actually
1.11 and 1.18 for smooth and rough footings.

In summary/ it is clear from the comparisons presented in this
section that the‘effective width method, commonly used in the
analysis of foundations subjected to eccentric loading, provides
good approximations to the collapse loads. Its continued use in
practice therefore appears justified. pESET L i

3.2.4 Bearing capacity of non-homogeneous soils

Progress has also been made in recent decades in predicting re-
liably the ultimate bearing capacity of foundations on non-
homogeneous soils. A particular example is the important case
that arises often in practice where the undrained shear strength of
the soil varies approximately linearly with depth below the soil
‘surface, i.c.,

§, =Co + 0z (a1s)
@below&x_@m crust, i.e.,
s, =¢cg forz< 0
(3.16)

c
s, =pz forz>-2

in which ¢ is the undrained shear strength of the soil at the sur-
face, p is the strength gradient and z is the depth below the soil
surface. Several theoretical approaches attempted to take account
of this effect, most notably the work by Davis and Booker
(1973) and Houlsby and Wroth (1983). Both used the method of
stress characteristics from the theory of plasticity. Assuming the
soil to obey the Tresca yield criterion, Davis and Booker’s plane
strain solution has been expressed as:

(3. 17@

&: F[(Z-FTI)CD +'O—BJ
B 4

where F is a function of the soil strength non-homogeneity
(pB/co) and the Toughness of the foundation-soil interface. Val-
ues of the bearing capacity factor'F jare reproduced in Figure
3.14 for two different undrained strength profiles. It is worth
“noting that the solutions of Davis and Booker (1973) can also be

9y

= F[éco +~;E}
= 4

Tani and Craig (1995) also investigated the case where the
undrained shear strength is proportional to depth using plasticity
theory. They made predictions of the bearing capacity of skirted
offshore gravity structures with skirt length to diameter ratios of
0 to 0.3. They found that their results for surface and circular
footings (for both smooth and rough interfaces) obtained using
the method of stress characteristics agree very well with the so-
lutions obtained by Davis and Booker (1973) and Houlsby and
Wroth (1983). Tani and Craig’s results for the computed bearing
capacity of anembeddedirough footing are reproduced here in

(Figure 3.15) In this figure cpy is the undrained strength of the
clay at the level of the footing base, k is the rate of increase of
strength with depth, Df is the depth to the base of the footing,
and B and D are the width and diameter of the strip and circle,
respectively. Tani and Craig found that the ultimate bearing ca-
pacity of the foundation was governed largely by the sirength of
the soil at the skirt tip rather than at surface level. Soil above
this level has little influence on the bearing capacity of the foot-
ing{m_may be concluded from these results| that)the increase in

Qu

go= ? (3.17b)
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Figure 3.14) Bearing capacityof a strip footing on non-homogeneous clay (after Davis and Booker, 1973).
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Figure 3.15. Bearing capacity of rough strip footing and circular footing on non-homogeneous clay (after Tani and Craig, 1995.)
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bearing capacity with increasing embedment can be attributed to
the higher shear strength at the tip level for the most part, and
very little to the shearing resistance of the soil above tip level.

325 f.‘ﬁrﬁ!ayered soils

“Natural soil deposits are often formed in discrete layers. For the
purpose of estimating the ultimate bearing capacity of a founda-
tion on a layered soil it is often appropriate to assume that the
soil within each layer is homogeneous. If a footing is placed on
the surface of a layered soil and the thickness of the top layer is
large compared with the width of the footing, the ultimate bear-
ing capacity of the soil and the displacement behaviour of the
footing can be estimated to sufficient accuracy using the proper-
ties of the upper layer only{ “However) if the thickness of the top
layer is comparable to the footing width, this approach intro-
duces significant inaccuracies and is no longer appropriate. This
is because the zone of influence of the footing, including the
potential failure zone, may extend to a significant depth, and
thus two or more layers within that depth range will affect the
bearing behaviour of the footing. Examples include offshore
foundations of large physical dimensions, and vehicle loads ap-
plied to unpaved roads over soft clay deposits.

The case of a footing on a stronger soil layer overlying a
weaker layer is of particular interest because of the risk of
punch-through failure occurnng. Such failures are normally sud-
den and brittle, with little warning, and methods of analysis that
can predict the likelihood of this type of behaviour are of great

value in practice.
:@l’?}fﬁc@ for calculating the bearing capacity of multi-layer
soils range from averaging the strength parameters (B?)WleLs?
1988), using limit equilibrium considerations (Button, 1953;
Reddy and Srinivasan, ; Meyerhof, 1974), to a more rigor-
ous limit analysis approach based on the theory of plasticity
{Chen and Davidson, 1973; Florkiewicz, 1989; Michalowski and
Shi, 1995; Merifield, er al., 1999). Semi-empirical approaches
have also been proposed based on experimental studies (e.g.,
Brown and Meyerhof, 1969; Meyerhof and Hanna, 1978). The
finite element method, which can handle very complex layered
patterns, has also been applied to this problem. (e.g., Griffiths,
1982; Love et al., 1987; Burd and Frydman, 1997; Merifield, e:
al., 1999).

\i@@ almost all these studies are limited to footings
resting on the surface of the soil and are based on the assumption
that the displacement of the footing prior to attaining the ulti-
mate load is relatively small. In some cases, such as those where
the underlying soil is very soft, the footings will experience sig-
nificant settlement, and sometimes even penetrate through the
top layer into the deeper layer. Penetration into the seabed of
spud-can footings supporting a jack-up platform provides a par-
ticular example of this behaviour. For these cases, the small dis-

placement assumption is no longer appropriate, and a large dis-
placement theory should E&gpﬁaﬂ.—ﬁ all cases, the
consequences for the load-deformation response of a non-
homogeneous soil profile should be understood, because such
profiles can be associated with a brittle foundation response. The
prediction of brittleness in these cases can only be made using a
large deformation analysis.

A brief review of recent small and large deformation analyses
applied to foundations on layered soils is therefore presented in
this section. In particular, the behaviour of rigid strip and circu-
lar footings penetrating two-layered clays is discussed_first, fol-
lowed by the problem of a sand layer overlying clay. In most
cases, the upper layer is at least as strong as the lower layer, so
that the issue of punch-through failure can be explored.

'..quL %ggnnaffc_}g analysis
n the absence of surcharge pressure, the ultimate bearing capac-

ity, qu, of a strip or circular footing on a two-layered purely co-
hesive soil can be expressed as:

_16_

Gu=C ¥, (3.18)

where N, is the modified bearing capacity factor that will de-
pend on the strength ratio of the two layers c»/c; and the relative
thickness of the top layer, H/B. ¢, and ¢; denote the undrained
shear strengths of the top and bottom layers, respectively, H is
the thickness of the top layer and B is the foundation width (or
diameter). Equation (3.18) is both a simplification and an exten-
sion to account for layering of the general bearing capacity
Equation, (3.1). Several researchers have published approximate
solutions for the bearing capacity factor, N, jappearing in Equa-
tion (3.18).| For strip footings, Button 3) and Reddy and
Srinivasan (1967) have suggested very similar values for N,
These include both upper bound plasticity solutions to this
problem, and at one extreme they return a bearing capacity factor
for a homogeneous soil (considered as a special case of a two-
layered soil) of 5.51, i.e., approximately 7% above Prantl’s exact
solution of (2+m). Brown and Meyerhof (1969) published bear-
ing capacity factors based on experimental studies, and their rec-
ommendations are in better agreement with the value of (2+m)
for the case of a homogeneous soil. The Brown and Meyerhof
factors can be expressed by the following equation:

N, =1.5[£}+5-14["—’] . < (G19)

B € e RO, ko) Slen Al
v

with an upper limit for /V,, of 5.14 in this case.

Recently, Merifield et al. (1999) calculated rigorous upper
and lower bound bearing capacity factors for layered clays under
strip footings by employing the finite element method in con-
junction with the limit theorems of classical plasticity. The re-
sults of their extensive parametric study have been presented in
both graphical and tabular form. Some typical results are repro-
duced in Figure 3.16.

The number of published studies oficircular footings jon lay-
ered cohesive soil is significantly less than for strip footings.
Bearing capacity factors for circular footings were given by
Vesic (1970) for the case of a relatively weak clay layer overly-
ing a stronger one. These factors were obtained by interpolation
between known rigorous solutions for related problems, and they
have been published in Chapter 3 lof the text by Winterkorn and
Fang (1975). Based on the results of model tests, Brown and
Meyerhof (1969) suggested that for cases where a stronger clay
Tayer overlies a weaker one, an analysis assuming simple shear
punching around the footing perimeter is appropriate. The bear-
ing capacity factors for this case are given by the following
equation:

W& 1.5{5] 6.05 (53-) @
B (=] “—

with an upper limit for N, of 6.05 for a circular footing of di-
ameter 5.

{m@@ﬂarm analysis
The bearing response of strip footings on a relatively strong
undrained clay layer overlying a weaker clay layer has been ex-
amined by Wang (2000) and Wang and Carter (2000), who com-
pared the results given by both small and large deformation
analyses. Cases comresponding to H/B=0.5 and 1, and
/ey =0.1, 0.2, 1/3, 0.5, 2/3 and 1 (homogeneous soil) were in-

_soil are shown in Figure 3.17, for cases where the width of the
footing is the same as the thickness of the stronger upper clay
layer, i.e., H/B=1. It is noted that predictions of the large de-
formation behaviour are also dependent on the rigidity index of
the clay, Gfc, where G is the elastic shear modulus of the clay.
The curves shown in Figure 3.17 correspond to a value of
Giec = 67.
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-‘?I‘ypipalﬁ} the curve predicted by the small deformation

analysis reaches an ultimate value after a relatively small footing
penetration (settlement): Generally,jthe load-displacement curves

predicted by the Targe deformation analyses are quite different

from those given by the small displacement analysis.(For “cases )
where a stronger top layer overlies a much weaker botiom layer
(e.g., cafcy = 0.1, 0.2, and 0.5), the overall response is character-
ised by some brittleness, even though the behaviour of both
component materials is perfectly plastic and thus characterised”
by an absence of brittleness. For these cases, the load-penetration
curves given by the large deformation analysis rise to a peak, at
which point the average bearing pressure is generally lower than
the ultimate bearing capacity predicted by the small deformation
analysis. With further penetration of the footing into the clay, it
appears that the load-displacement curve approaches an asymp-
totic_value. Thespeak valuesyof average bearing pressure ob-
tained from these large deformation curves define the maximum
" bearing capacity factor, and thefvaluesireached after large pene-
tration are referred to as the ultimate bearing capacity factor. It is
noted that in the small deformation analysis, the maximum and

ultimate values of the bearing capacity factor are identical.

/ft"’is reasonable to expect that footings exhibiting a brittle re-
sponse shoulddltimatel3ybehave much like a strip footing deeply
buried in the lower clay layer, so that the ultimate value of the
average bearing pressuré should then be approximately (2+2m)c,,
where_¢; is the undrained shear strength of the lower layer.
These theoretical limits are also indicated on(Figure 3.17 /and it
seems clear that the curves obtained from the large deformation

deep penetrations. In Figurg 3.18,/values of the bearing capacity
factors for cases where H/B = 0.5 and H/B = 1 have been plotted’
‘against the strength ratio, c,/cy. Also plotted in this figure are the
bearing capacity factors predicted by the small deformation
analysis. Wang (2000) has also demonstrated that large defor-
mation effects appear to be even more significant for the case of
a circular footing. In all the cases examined, the maximum
bearing capacity factors obtained from the large deformation

analysis were greater than those obtained from the small defor-
mation analysis. Both sets of values are plotted in Figure 3.15.

Effect of soil self-weight during foating penetration

It is well known that for a surface footing on a purely cohesive
soil, the ultimate bearing capacity given by a small strain
undrained analysis is independent of the soil density]
in large deformation analysis, the footing can no longer be re-
garded as a surface fooling once it begins to penetrate into the
underlying material, and in this case the self-weight of the soil
will also affect the penetration resistance.

The results of the large deformation footing analyses pre-
sented in the previous section were obtained by Wang without
considering soil self-weight. This was done deliberately in order
to investigate the effects of the large deformation analysis exclu-
sively on the bearing capacity factor ¥,. However, if soil self-
weight is included, the surcharge pressure becomes significant as
the footing becomes buried. It was demonstrated by Wang
(2000) that it is reasonable to approximate the mobilised pene-
tration tesistance for a ponderable soil as that for the corre-
sponding weightless soil supplemented by the overburden pres-

sure corresponding to the depth of footing penetration.

Sand overlying clay

Various theoretical and experimental studies have been con-
ducted into the ultimate bearing capacity of a footing on a layer
of sand overlying clay, e.g., Yamaguchi (1963), Brown and
Paterson (1964), Meyerhof (1974), Vesic (1975), Hanna and
Meyerhof (1980), Craig and Chua (1990), Michalowski and Shi
(1993), Vinod (1995), Kenny and Andrawes (1997), Burd and
Frydman (1997), Okamura er al. (1998). This is an [important)
problem in foundation engineering, as this case often arisés in

_19_

genuine concern, particularly for relatively thin sand layers
overlying soft clays.

Exact plasticity solutions for this problem have not yet been
published, but a number of the existing analyses of the bearing
capacity of sand over clay use limit equilibrium techniques.
They can be broadly classified according to the shape of the sand
block punching into the clay layer and the shearing resistance as-

sumed along the side of the block. Two proposed failure mecha-

nisms are illustrated in Figure(3.20, In each case the strength of

the sand is analysed in terms of effective stress, using the effec-

tive unit weight (¥ and the friction angle (¢, while the analysis
of the clay is in terms of total stress, characterised by its

undrained shear strength (s,). In the case of the “projected area”
method an additional assumption about the angle o (Figure
3.20a) is required. i i o o T e
Okamura er al. (1998) assessed the validity of these two ap-
proaches by comparing their predictions with the results of some
60 centrifuge model tests. This comprehensive series of tests in-
cluded strip and circular footings on the surface of the sand and
embedded in it. Significant differences between observed and

calculated bearing capacities were noted and these were/ attrib-

uted] to discrepancies in the shapes of the sand block (or)the

forces acting on the sides of the block. To overcome these prob-

lems Okamura ef al. proposed an alternative failure mechanism,

which can be considered as a combination of the two mecha-

stress of K, times the vertical overburden pressure acts on the in-
clined sides of the sand block. Consideration of equilibrium of
the forces acting on the sand block, including its self-weight,
provides the following bearing capacity formulae:

,’\'(@ for a strip footing;

g, =(1e25m e Jeuno s plern)

{K,,sm@'—ac)]

cos ¢ cos «, (3.21)

x[i;—_](p; s yH)

*}'H(l-&-%tan och

2
q, =[l+ Z%tan(xc] (s, N. &, +pl+vH)

(41{,, sin(qb'—-(x:)]
] ——

cos¢’cosa,

HY,, ,7H
(5]
=

-i-p’ tanc,| — 2+—}’HE31‘1C€ '—-—'2
% B 3 3 B
___'J

2
= tanzac+6£tanccc+3
3 B B

where ¢ is the shape factor for a circular footing, which is usu-
ally assigned a value of 1.2. In these equations the angle o)
(Figure 3.21) is given as a function of the friction angle of the
sand, ¢ the geometry of the layer and footing and the undrained

strength of the clay, 5, i.e.,

(3.22)
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cost’singfa,, /s, )+1

D= tan™" (0..7s.)-(c.1s. Xl +sin® q;’)
G

where

Gﬂl:

and

Aty c,..,!s."*/(U..JS.)':C?S'¢((°nr”=)+1] @
cos” ¢ T

The parameters A, and A, are respectively the normalised
overburden pressure and the normalised bearing capacity of the
underlying clay, given by:

=L (3.26))
¥B S
and
N,
2, = )
° YB \(i_ )

(N2)is the conventional bearing capacity factor for a strip
footing on undrained clay (N, = 2+m). Okamura er al. contended
that Equations (3.21) and (3.22) are generally reliable for pre-
dicting the bearing capacity of a sand layer overlying clay@g}
cases where A, <26 and A, < 4.8. However, it is most important
to note that the method may not be applicable over the full range
of these values, and indeed it may overestimate the capacity if
used indiscriminately, without regard to its limitations. Indeed,
omery important limitation was highlighted by Okamura et al.
They recognized that the bearing capacity for a sand layer over-
lying a weaker clay cannot exceed that of a deep sand layer
(H/B = =s). Hence, the bearing capacity values obtained from this
method (Equations (3.21) and (3.22)) and from the formula for a
deep layer of uniform sand (e.g., Equation (3.1)) must be com-
pared, and the smaller value should be chosen as the bearing ca-
pacity of the layered subsoil.

Unlike the case of two clay layers, it seems that no finite ele-
ment studies of the post-failure behaviour of footings on sand
over clay have been published. However, it is expected that a
brittle response may also be a possibility for this type of prob-
lem, particularly in cases where the self-weight and overburden
effects do not dominate the influence of the clay strength.

3.3 Mulriple layers

“’ In nature, soils are often heterogeneous and in many cases they
/. may be deposited in several layers. For such cases reliable esti-

mation of the bearing capacity is more complicated. Of course,
with modern computational techniques such as the finite element
method, reliable estimates can ultimately be achieved. However,
these methods usually require considerable effort, and the ques-
tion arises whether simple hand techniques can be devised to
provide realistic first estimates of the ultimate bearing capacity
of layered soils. In particular, it would be useful to find answers
to the following questions, in order to develop reasonably gen-
eral guidelines for estimating the ultimate bearing capacity of
layered soils.

- Can the bearing capacity be estimated by computing the av-
erage bearing capacity over a particular depth, e.g., 1 to 2B
where B is the footing width?

- If the answer to the previous question is negative, is it pos-
sible to assess an average strength of the layers and then use
that strength in the bearing capacity calculations for a ho-
mogeneous deposit to obtain a reliable estimate of the
bearing capacity of the layered soil?

_20_

If neither of the two previous approaches proves reliable,

how can the practitioner solve the problem to obtain a reli-

able estimate of the ultimate bearing capacity?
In order to address some of these issues, consider now the
idealised problem of a long strip footing on the surface of a soil
deposit consisting of three different horizontal layers. The ge-
ometry of the problem is defined in Figure 3.22. The strength of
each layer is characterised by the Mohr-Coulomb failure crite-
rion and the conventional strength parameters ¢ and @ Self-
weight of the soil is defined by the unit weight, y. Various cases
of practical interest have been identified, as indicated in Table
3.2. In cases where self-weight of the soil has been considered, it
has been assumed for simplicity that the initial stress state is iso-
tropic. This assumption should not affect the calculation of the
ultimate capacity of a strip footing on the surface of the soil, but
of course it will have a significant influence on the computed
load-displacement curve. Finite element solutions for the various
cases are described in the following subsections.

3.3.1 Clay “sandwich” - soft centre

Consider the case where the middle layer is weaker than the
overlying and underlying clay layers. Undrained analyses have
been conducted using the displacement finite element method
and the results of a series of these analyses are presented in Fig-
ure 3.23. It is clear from this figure that the use of the simple av-
erage of the undrained shear strengths of the top and middle
layer, ¢ = (¢, +¢2)/2, in the bearing capacity equation for a uni-
form undrained clay (Equation (3.1)) provides a reasonable esti-
mate of the ultimate load, at least for most practical purposes and
provided the strength ratio ¢,/c, is greater than about 0.5. If this
average strength is used for cases where ¢,/c, is less than 0.5 the
bearing capacity will be overestimated. The error for a very
weak middle layer (co/c, = 0.1) is approximately 33%. It is also
worth noting that the two-layer approach suggested by Brown
and Meyerhof (1969) and summarized in Equation (3.19) is gen-
erally reasonable for this case only when the strength ratio e/c;
is greater than about 0.7. For strength ratios less than 0.7, Equa-
tion (3.19) significantly underestimates the ultimate capacity,
presumably because it ignores the higher strength of the bottom
layer. It is worth noting that the upper bound solutions for a two-
layer system published by Merifield et al. (1998) and illustrated
in Figure 3.17, provide quite reasonable estimares (typically
within 10 to 20%) of the ultimate capacity for this three-layer
problem. It should be noted however, that these findings are
relevant only for the particular geometry (layer thicknesses) in-
dicated in Figure 3.22. Whether they could be extended to other
situations requires further investigation.

3.3.2 Clay “sandwich” - stiff centre

For this case the predicted ultimate bearing capacity is only
slightly larger (1 to 2%) than the capacity predicted for a uni-
form clay layer with undrained strength equal to that of the top
layer. Clearly, in this case the capacity is derived predominantly
from the strength of the material of the top layer and is almost
unaffected by the presence of a stronger underlying middle layer.
It is expected that this result would not hold for cases where the
layer thicknesses and strength ratios are different from those
adopted in this example. A more complete description of the ef-
fects of layer thickness and strength ratio requires further re-
search. The results presented by Merifield er al. (1998) also
have significant application to this particular probleém.

3.3.3 Clay — strengthening with depth

The only significant difference between this case and the one
discussed immediately above is that the strengths of the three
layers increase monotonically with depth so that the bottom layer
is even stronger than the middle layer. Within the accuracy of
the finite element predictions the ultimate capacities are essen-
tially the same, and in both cases the capacity is only 1 or 2%
more than that of a uniform clay deposit having the same
strength as the top layer.
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Table 3.2. Bearing capacity cases for soils with three layers.
Layer 1 Layer 2 Layer 3
Case (Top) (Middle) (Bottom)
€1 & e €2 i) ) 3 # b
&kPa) () (N/m’) (kPa) ) (KN/m*) (kPa) ) (N/m?)
Clay “Sandwich"” - Soft oy ] 0 <y (1] (1] =c 0 0
Centre
Clay “Sandwich” - Stff c 0 0 >0 0 0 =€ 0 0
Centre
Clay — Strengthening With ci 0 0 =20 0 0 =dcy 0 0
Depth
Clay — Weakening With [ 0 0 =0.5¢ 0 0 =0.25¢, 0 0
Depth
Clay “Sandwich” — Sand 100 0 20 0 30 20 100 0 20
Centre
Sand “Sandwich" - Clay 0 30 20 100 0 20 0 30 20
Centre

It is instructive to investigate whether the solutions presented
by Davis and Booker (1973) for strengthening soil profiles can
provide reasonably accurate predictions in this case. Two of the
most obvious idealizations of the strength profile are:

s, =0.5¢, J{th )z (3.28)
B
and
5, =¢ for z< BI2
(3.29)

s, =(%]z forz> BI2

Equation (3.28) is an approximation assuming strength increas-
ing linearly with depth from a finite value at the surface, while
Equation (3.29) is the most obvious approximation for the case
of a crust of constant strength overlying material whose strength
increases linearly with depth. These profiles are illustrated in
Figure 3.24.

For the strength profile indicated in Equation (3.28), Figure
3.14a together with Equation (3.17a} indicates an average value
of the average bearing pressure at failure for a smooth strip
footing, 1m wide, of approximately 4.1¢;. This estimate is well
below (approximately 80% of) the value predicted by the finite
element analysis. A much closer match to the finite element pre-
diction is given by the case depicted in Figure 3.14b, viz. ap-
proximately 5.15¢,, indicating the dominant influence of the |
strength of the uppermost crustal layer and the relative insignifi-
cance in this case of the increase in strength beneath the crust.

3.3.4 Clay— weakening with depth

In this slightly unusual case, which could correspond in practice
to a clay deposit with a thick desiccated or weathered crust
overlying weaker but probably overconsolidated clay, the ulti-
mate capacity predicted by the finite element analysis is ap-
proximately 3.1c;. This is more than 20% less than the finite
element prediction for the case of a soft centre layer discussed in
section 3.3.1. It is also approximately 10 to 15% less than the
predictions by Brown and Meyerhof and Merifield er al. for a
two-layered clay deposit. Clearly, in this case the weaker bottom
layer has a significant influence on the overall capacity, but it is
difficult to devise a simple approach for estimating the capacity
of the footing for this type of strength variation.

3.3.5 Clay “sandwich” — sand centre

In this case the ultimate capacity computed by the finite element
model is not much less than for a uniform clay layer with
undrained shear strength of 100 kPa. The sand layer has only 2
small influence of the overall capacity of the footing.

3.3.6 Sand “sandwich” — clay centre

For this case the finite element prediction of the ultimate capac-
ity, g., was approximately 98 kPa. This can be compared with
the prediction of the bearing capacity for a uniform sand of
86 kPa, obtained using Equation (3.1) and the bearing capacity
factors given in Table 3.1. It can be deduced from these results
that the presence of the stiff clay beneath the sand has made a
small contribution to the bearing capacity, taking it slightly
above the value for sand alone.

For this case, it is also instructive to calculate what the ca-
pacity would be if the two-layer method proposed by Okamura
et al., Equation (3.21), were to be used. Application of Equation
(3.21), which in this case is inappropriate, produces an ultimate
capacity of 812 kPa., clearly far in excess of the values quoted
previously for this problem. The reason for this discrepancy was
explained by Okamura et al. themselves, when they pointed out
that values estimated by their method must always be compared
with predictions for a sand layer alone, and the smaller value
should be chosen as the bearing capacity of the layered subsoil.
This case therefore highlights the necessity of being aware of the
limitations of all design methods, if very substantial errors in es-
timating the bearing capacity are to be avoided.

1 3.4) Summary

From the preceding discussion of the bearing capacity of shallow
foundations, the following conclusions can be drawn.
j The use of conventional theory, al_theory, based on the original ap-

oach suggested by Terzaghi and extended by others such as
Vesic,) to calculatc the bearing capa.c:ty of a foundation on

Although this approa—‘rT is approximate and makes a number
of simplifying assumptions, as identified above, it is consid-
ered acceptable for most practical problems of shallow foot-
ings on relatively homogeneous soils| However,/the use of the
outdated and inaccurate information regarding some of the
bearing capacity factors, particularly the factor N,y should be
dlscontmued The factors set out in Table 3.1 a.rc “the most re-

and their use is therefore recommended.

\Q}S@uﬁcant developments have been made in recent times
concerning methods for estimating the ultimate load capacity
of footings subjected to¢combinationsyof vertical, horizontal
and moment loading./Failure locijsuch as those expressed by
Equation (3.9) have hccn proposed, and should see increasing
use in geotechnical practice. However, although some ex-
perimental justification has been provided for them, there is a_
need for more work of this type.

{ 3.)The effective width mcthod commonly used in the analysis
of foundations subjecced to eccentric loading, provides good
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_z_a_EEroxxmanons to the collapse loads. Its continued use in
practice therefore appears justified.

’T} Improvements have also been made in the area of non-
homogeneous and layered soils. Theoretically sound and
relatively simple to use design methods are now available for
cases involving the following:

i) Clays where the undrained shear strength increases
i linearly with depth,

((b) Two layers of clay, and

f_}) A Tayer of sand overlying relatively soft clay.
The work of Booker and Davis (Figure 3.14), Merifield et ai.
(Figure 3.16) and Okamura er al. (Equations (3.21) and
(3.22) and Figure 3.21) have been influential with regard to
cases (a), (b) and (c) listed above, and the judicious use of
their results in practical design is recommended.

‘ﬂ Sophisticated experimental and theoretical studies have
highlighted the brittle nature of footing system behaviour that
can occur when relatively thin stronger soils, loaded by sur-
face footings, overlie much weaker materials.

’_\\ It would appear that to date the problem of predicting the
bearing capacity of multiple layers of soil lying beneath a
Tooting and within its zone of interest remains ins beyond the
means of relanvely simple hand calculation methods. The
[ major reason that relatively little progress has been made to
date seems to be the large number of different cases that may
be encountered in practice and still require analysis. Some
problems of this type were addressed in section 3.3, and only
in the simplest case of three layers of clay could simple de-
sign rules be deduced. This problem area requires further in-
vestigation.

4 SETTLEMENT OF SHALLOW FOOTINGS
4.1 Introduction

The main objective of this section is to examine and evaluate
some procedures for predicting the settlement of shallow foun-
dations in the light of relatively recent research. Ideally, such an
evaluation should consider both the theoretical “correctness” of
the methods and also their applicability to practical cases. How-
ever, primary attention will be paid here to identifying the short-
comings and limitations of the methods when compared to mod-
ern theoretical approaches. Two common problems will be
considered:
— Settlement of shallow foundations on clay
— Settlement of shallow foundations on sand.

In each case, an attempt will be made to suggest whether the
prediction methods considered can be adopted, or alternatively,
adapted to provide an improved prediction capability.

4.2 Shallow foundations on clay

Estimation of settlement and differential settlement is a funda-
mental aspect of the design of shallow foundations. For founda-
tions on clay, Table 4.1 summarizes some of the available tech-
niques and their capabilities. The traditional approach, first
developed by Terzaghi, employs the one-dimensional method in
which the settlement is assumed to arise from consolidation due
to increases in effective stress caused by the dissipation of ex-
cess pore pressures. Because of its still widespread use, it is of
interest to examine the capabilities and shortcomings of the
method, when compared with more complete two- and three-
dimensional methods. s
The one-dimensional method has the following limitations:
L. It assumes that the foundation loading causes only vertical
strains in the subsoil
2. It assumes that all the settlement arises from consolidation,
and that settlements arising from immediate shear strains are
negligible

_22_

3. It assumes that the dissipation of excess pore pressures occurs
only in the vertical direction; any lateral dissipation of excess
pore pressures is ignored.

Three-dimensional analyses involve, in one form or another,
the integration of vertical strains to obtain the settlement of the
foundation. In a three-dimensional situation employing the the-
ory of elasticity, the vertical strain &, may be obtained in terms
of the increments of applied stress. Alternative forms of the
strain versus stress increment relationship are as follows:

& = (Ao, ~v(AG, +AG )/ E (4.12)
g, =1/3[(Aq/G)+Ap'/ K] (4.1b)
where Ag, = increment in vertical stress; Ag,, Ag, = increments

in horizontal stresses in x and y direction; Ag = increment in de-
viator stress; Ap' = increment in mean principal effective stress:
E = Young’'s modulus; G = shear modulus; X = bulk modulus.

In applying the above equations, the stress increments are
usually computed from elasticity theory. Appropriate values of E
and v must also be used in Equation (4.1): undrained values for
immediate (undrained) strains and drained values for total
(undrained plus consolidation) strains. In Equation (4.1b), for the
undrained case in a saturated soil, X = ==, while in a saturated
soil, K can be related to the constrained modulus D by the fol-
lowing elasticity relationship:

K =(1+Vv)D/[B3(1-v)] (4.2)
where V' = drained Poisson’s ratio of the soil.

The values of E, G and K in the above equations can be re-
lated to stress or strain levels, as discussed in Section 8, so that
non-linear soil behaviour can be accounted for in a simple man-
ner. A fuller discussion of these procedures is given by Lehane
and Fahey (2000).

4.2.1 One-dimensional versus three-dimensional settlement
analysis

To examine the possible significance of the limitations of one-
dimensional analysis, two very simple hypothetical examples are
considered. The first involves a uniformly loaded circular foot-
ing resting on the surface of a homogeneous layer of overcon-
solidated clay, in which the soil stiffness is uniform with depth.
The second involves the same footing on a layer of soft normally
consolidated clay in which the soil stiffness increases linearly
with depth, from a small initial value at the soil surface. The re-
lationship between the one-dimensional compressibility, m,, and
drained Young’s modulus, E% {for three-dimensional analysis)
is assumed to be that given by elasticity theory for an ideal two-
phase elastic soil skeleton, as is the relationship between the
undrained Young’s modulus E, and E, i.e.

(1 V1 -2v")

4.
(1-V)E’ Eh)
3E’
E =— 4.4
L EO(IEVY) o

where v’ = drained Poisson’s ratio of soil skeleton.

Figure 4.1 shows the ratio of the one — dimensional settle-
ment (excluding creep) to the correct three-dimensional total fi-
nal settlement (Davis and Poulos, 1968). For the overconsoli-
dated clay layer, the one-dimensional analysis gives a good
approximation to the correct total settlement when the drained
Poisson’s ratio of the soil layer is less than about 0.35, even for
relatively deep soil layers. The one-dimensional analysis tends to
under-predict the settlement as the drained Poisson’s ratio of the
soil increases or the relative layer depth increases. For the soft
clay layer, the one-dimensional analysis again gives a remarka-
bly good approximation to the total final settlement if the
drained Poisson’s ratio of the soil layer is 0.35 or less.
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