1. Dynamic pile formula (\leftrightarrow Static Formula : $Q_0 = Q_p + Q_s$)

Basic idea : It seems obvious that the greater the resistance of a pile to driving, the greater should be the pile capacity to support load.

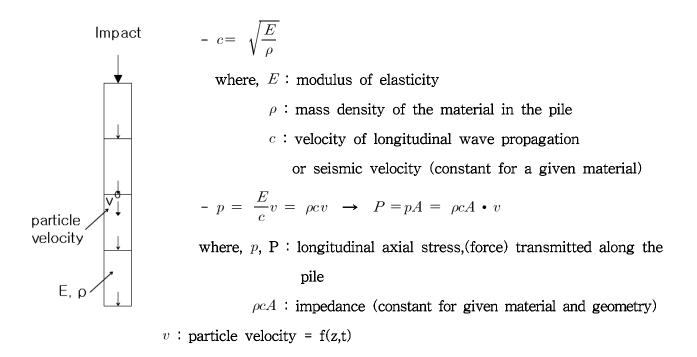
 \rightarrow All the common dynamic pile formular equate

the energy delivered by the hammer		the work done by the pile
	=	as its tip penetrates a
		distance S against the resistance R.

(with various allowance for the losses of energy)

→ The time-dependent aspects of stress transmission phenomena ignored. (especially in saturated clayey layer)

ex) Engineering News Formula


$$W_H \cdot H = R(S+0.1) => R = \frac{2W_H H}{S+0.1}$$

where, W_H : wt. of the hammer in R unit

- H: distance of free fall of hammer in inches
- R: resistance
- S: useful penetration (set, inches)
- 0.1: lost penetration due to energy loss (inches)

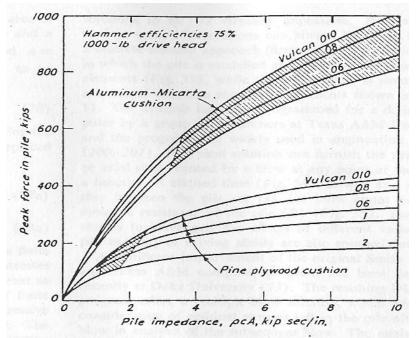
2/6

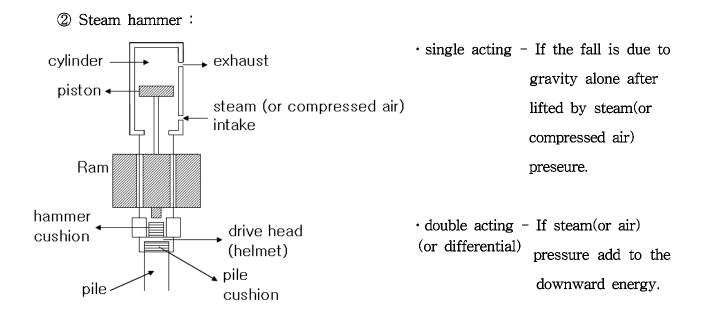
2. Transmission of stresses during driving (in the wave form)

- since the impedance ρcA determines the maximum force that can be transmitted along the pile.
 - \rightarrow it is a measure of the drivability of the pile.
 - ex) for 10 inch diameter(or width) pile

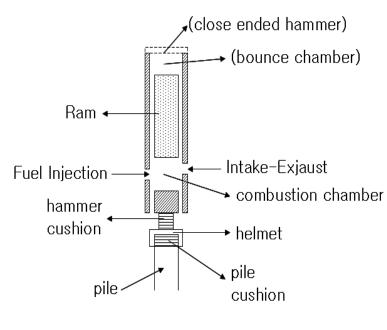
material	impedance
wood	1.0
steel pipe	
(0.279 ["] wall)	1.9
(0.365 ["] wall)	2.3
concrete	3.1
H-pile (HP10×57)	3.3
concrete filled steel pipe (0.279 ["] wall)	4.6

- Cushions : The original purpose was to prolong the life of the hammer by reducing impact stress (or to protect the top of pile from local overstresses)
 - → But known to have a significant influence on the stress waves developed in the pile during driving.
 - soft : wood, asbestos
 - (stress wave has lower peak, but stays longer)
 - hard : alternating disks of aluminum and micarta
- Cushion and impedance effect



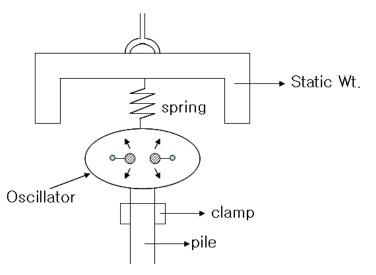

Figure 52. Relationship between peak driving force and pile impedance for Vulcan SA hammers. Shaded area indicates conditions of maximum transmission of driving energy (173).

- Other factors


wt. and stiffness of hammer, helmet; and the velocity of the hammer at impact; and damping factors; and resistance of soil etc. 3/6

Installation of piles.

- 1. Driving : the most commonly used \rightarrow impact hammer or vibratory
- 2. Jacking : press down
- 3. Drilling : bored pile, cast in-situ
- 4. Jetting : water injected near the tip \rightarrow loosens the sand and creates the quick condition
- Driving equipment
 - Impact hammer : drop hammer, steam hammer, diesel hammer
 - Vibratory drivers
 - ① Drop hammer : the hammers that fall from the top of leads(guides) to the top of the pile



③ Diesel hammer

The ram lifted by explosion of fuel and compressed gas \rightarrow As it falls fuel is injected into the combustion chamber \rightarrow At the instant of impact the fuel ignites and lifts the ram \rightarrow For a significant time, the pressure of burning gases also acts on the anvil and increases the magnitude and duration of the driving force \rightarrow In this respect. the driving characteristics of diesel hammers differ from others

- Open-ended : Ram falls by gravity
- Close-ended : The compressed air in the bounce (acts like a spring) chamber limits rise of the ram but return its stored energy to the ram on the downstroke.
- ④ Vibratory driver

- low frequency drivers
 - : (operates at) 10 to 30 Hz
- If the frequency can be made equal to the natural frequency of the system (pile, the driver, soil)
 → A resonant driver (often 50 to 150 Hz)

Load Testing of Piles

- Static test : Davisson / De Beer / 10% \cdots
- O-cell test
- Statnamic test