
Data Flow Analysis

Structure of Data Flow Analysis
Reaching Definitions Analysis
Liveness Analysis
Homework: summarize Chap. 8.1

Data Flow Analysis

Provide global information on how a given
procedure (large code) manipulates its data

Different optimizations may require different info.
e.g., building live ranges, constant folding

Must not give incorrect information that causes
incorrect optimizations

Should be conservative approximation if not precise

We’ll compute reaching definitions and live
variables, which are most heavily-used info.

Local Data Flow Analysis
Performed within a basic block

Analyze effect of each instruction
Compose effects of instructions so that we can
derive information from the beginning (or from the
end) of a basic block to each instruction

Instruction1

Instruction2

Instruction3

…….

Instruction n

Global Data Flow Analysis

Performed beyond basic blocks
Analyze effect of each basic block
Compose effects of basic blocks to derive
information at basic block boundaries from the
beginning (or from the end) of a procedure

From basic block boundaries, apply local analysis
technique to get info. at each instructions

You can also do global analysis in the level of
instructions, yet it would be more expensive

Effects of an Instruction

For an instruction a = b + c
Uses variables b and c
Kills an old definition of a
Generate a new definition a

Effects of a Basic Block (BB)

Compose effects of instructions
A locally exposed use in BB is a use of a data item which is not
preceded in the BB by a definition of the data item
Any definition of a data item in the BB kills all the definitions of
the same data item reaching the BB
A locally generated definition: last definition of data item in BB

t1 = r1 + r1
r2 = t1
t2 = r2 + r1
r1 = t2
t3 = r1 * r1
r2 = t3
if r2 > 100 goto L1

Composing Effects Across Basic Blocks
Distinguish between Static Program vs. Dynamic Execution

Statically: finite program
Dynamically: potentially infinite possible execution paths

We can, in theory, reason about each possible path as if all
instructions executed are in one BB

Data Flow Analysis
Associate with each static point in the program information
true of the set of dynamic instances of that program point

Reaching Definitions

A definition of a variable x is an instruction
that assigns, or may assign (e.g., conditional
execution), a value to x

A definition d reaches a point p if there exists a
path from the point immediately following d to p
such that d is not killed along that path

Analysis of Reaching Definitions

Problem Statement
For each basic block b, determine if each definition in the
procedure reaches b

We want such info. both at the beginning of b (called IN[b])
and at the end of b (called OUT[b])

A Representation
IN[b], OUT[b]: a bit vector, one bit for each definition in
the procedure

A basic block b can affect the computation:
Can we compute OUT[b] from IN[b]? Or can we compute
IN[b] from OUT[b]? Which one is correct?

Effect of a Basic Block

If IN[b] is given, we can compute OUT[b] (forward problem)

A transfer function ƒb for a basic block b:
OUT[b] = ƒb(IN[b])

(incoming reaching definitions outgoing reaching definitions)

Describing the Effect of a Basic Block

A basic block b
generates definitions: GEN[b], set of locally
generated definitions in b
propagate definitions: IN[b] – KILL[b],
where KILL[b] is set of definitions in rest of
program killed by definitions in b

OUT[b] = GEN[b]∪(IN[b] – KILL[b])

Effect of Edges (in Acyclic Graphs)

We know OUT[b] can be computed from IN[b]. Now can we compute
IN from predecessor(s)’ OUT? Just propagate if it is a single predecessor
Join node (a node with multiple predecessors) complicates computation
We need a meet operator at join nodes. What should it be?
For reaching definitions, it is a union operator

IN[b] = OUT[p1]∪OUT[p2]∪…OUT[pn], where p1, p2, …pn are all
predecessors of b

Effect of Edges (in Cyclic Graphs)

Previous equations still hold
OUT[b] = ƒb(IN[b])
IN[b] = OUT[p1]∪OUT[p2]…∪OUT[pn]

Any solution that meets the equation: fixed point solution
For a more precise solution, we need repeated computation
using the equations, e.g., using a worklist algorithm

Reaching Definitions: Worklist Algorithm

Input: Control Flow Graph CFG = (N, E, Entry, Exit)
/* Initialize */

OUT[Entry] = { }
for all nodes I

OUT[i] = { }
ChangeNodes = N

/* Iterate */
while ChangeNodes != { } {

remove i from ChangeNodes
IN[i] = U(OUT[p]), for all predecessors p of i
oldout = OUT[i]
OUT[i] = f_i(IN[i]) /* OUT[i] = GEN[i] U (IN[i] – KILL[i]) */
if (oldout != OUT[i]) {

for all successors s of i
add s to ChangeNodes

}
}

Example

Analysis of Live Variables

Definition
A variable v is live at point p if the value of v is
used along some path in the flow graph starting
at p
Otherwise, the variable is dead

Problem
For each BB, determine if each variable is live in
each BB boundary (also called IN[b], OUT[b])
Size of bit vector: one bit for each variable

Effects of a Basic Block

If OUT[b] is given, we can compute IN[b] (backward problem)

A basic block b can
Generate live variables:
USE[b], set of locally exposed uses (variables) in b
Propagate incoming live variables:
OUT[b] – DEF[b], where DEF[b] is set of variables defined in b

Transfer functions for a block b
IN[b] = USE[b]∪(OUT[b] – DEF[b])

Effect of Edges (in Acyclic Graphs)

IN[b] = ƒb(OUT[b])
Join Node: a node with multiple successors
Meet operator:
OUT[b] = IN[s1]∪IN[s2]∪…∪IN[sn]
s1, s2, …sn are all successors of b

Effects of edges in cyclic graphs are similar as in reaching definitions

Live Variable: Worklist Algorithm
Input: Control Flow Graph CFG = (N, E, Entry, Exit)
/* Initialize */

IN[Exit] = { }
for all nodes I

IN[i] = { }
ChangeNodes = N

/* Iterate */
while ChangeNodes != { } {

remove i from ChangeNodes
OUT[i] = U(IN[s]), for all successors s of i
oldin = IN[i]
IN[i] = f_i(OUT[i]) /* IN[i] = USE[i] U (OUT[i] – DEF[i]) */
if (oldin != IN[i]) {

for all predecessors p of i
add p to ChangeNodes

}
}

Example

Framework: Summary

Reaching Definitions Live Variables

Domain Sets of Definitions Sets of Variables

Transfer Function ƒb(x)
Generate ∪Propagate

GEN[b]∪(x – KILL[b]) USE[b]∪(x – DEF[b])

Direction of Function Forward: out[b] = fb(in[b]) Backward: in[b] = fb(out[b])

Generate GEN[b] (definitions in b) USE[b] (vars used in b)

Propagate IN[b] – KILL[b] OUT[b] – DEF[b]

Merge Operation IN[b] = U(OUT[pred]) OUT[b] = U(IN[succ])

Initialization OUT[b] = {} in[b] = {}

Boundary Condition OUT[entry] = {} IN[exit] = {}

	Data Flow Analysis
	Data Flow Analysis
	Local Data Flow Analysis
	Global Data Flow Analysis
	Effects of an Instruction
	Effects of a Basic Block (BB)
	Composing Effects Across Basic Blocks
	Reaching Definitions
	Analysis of Reaching Definitions
	Effect of a Basic Block
	Describing the Effect of a Basic Block
	Effect of Edges (in Acyclic Graphs)
	Effect of Edges (in Cyclic Graphs)
	Reaching Definitions: Worklist Algorithm
	Example
	Analysis of Live Variables
	Effects of a Basic Block
	Effect of Edges (in Acyclic Graphs)
	Live Variable: Worklist Algorithm
	Example
	Framework: Summary

