
Register Allocation: Coloring

Register Allocation and Coloring
Building the Interference Graph
Register Coloring



Register Allocation

Problem
Allocation of variables (pseudo registers) to 
hardware registers in a procedure

Important Optimization
Directly reduces execution time since register 
accesses are faster than memory accesses 

Gets more important as the processor speed grows 
much faster than memory accesses



Terminology

Allocation
Decision to keep a pseudo register in a 
hardware register

Spilling
A pseudo register is spilled to memory, if not 
kept in a hardware register

Assignment
Decision to keep a pseudo register in a 
specific hardware register



What are the Problems?

What is the minimum number of registers needed to avoid spill?
Given n registers in a machine, is spilling really necessary?
Find an assignment for pseudo registers if we can allocate all
If there are not enough registers in the machine, however, 
how do we spill to the memory, with minimal costs?

Advanced issues
How can we remove copies as well via register allocation ?



Interference 

When cannot we allocate the same register to two 
different pseudo registers? when they interfere
Two pseudo registers interfere if at some point in the 
program they are live simultaneously. For example,



Abstraction for Interference & Allocation

Interference graph: an undirected graph where
Nodes: pseudo registers
There is an edge between two nodes if their 
corresponding pseudo register interfere

Register allocation on interference graph is 
modeled by coloring nodes in the graph

Colors are hardware registers
We cannot color two nodes with the same color if 
they are adjacent (connected by an edge)



Coloring Interference Graph

A graph is n-colorable if
each node in the graph can be colored with one of n colors 
such that no two adjacent nodes are assigned same color

Assigning n registers without spilling 
= coloring with n colors

Is spilling necessary? = Is the graph n- colorable?

Determining if a graph is n-colorable is NP-complete



Building Interference Graph

Two issues
How to define nodes?

Pseudo registers can be nodes, but we need to 
refine them further using the idea of live ranges

How to find edges?
Two nodes that are simultaneously live at some 
point of program are not necessarily interfering



Nodes in an Interference Graph
A = ...

if (A) goto L1

B = ...

= A + ..

D = ...

= B

C = ...

= A +

D = ...

= B ...

A = 2

= A + D

A

D

B C

A1

D

B C

A2



Live Ranges and Merged Live Ranges

Motivation: Create an interference graph that is easier to color
Eliminate interference in a variable’s dead zones
Increase flexibility in allocation:
can allocate same variable to different registers

A Live range consists of a definition and all the points in a 
program (e.g., end of an instruction) where that definition is live

How to compute a live range?
a point p ∈ live range of a definition d (a=b+c) 

iff (1) d must reach p and (2) a must be live

Two overlapping live ranges for the same variable must be 
merged

a = a =

= a



Merging Live Range

Merging definitions into equivalent classes
Start by putting each definition in a different 
equivalent class
For each point in a program,

If variable is live and there are multiple reaching 
definitions for the variable
Merge the equivalence classes of all such definitions 
into a one equivalence class

From now on, refer to merged live range 
simply as live ranges



Edges of Interference Graph

Intuitive Algorithm
Two live ranges may interfere if they overlap at some point 
in the program
Algorithm: At each point in the program, enter an edge for 
every pair of live ranges at that point

Optimized Algorithm
For each instruction I

Let x be the live range of definition at instruction I
For each live range y present at end of instruction I

insert an edge between x and y

Faster and Better Quality



Example



Coloring the Graph

Use heuristics to try to find an n-coloring
Successful: Colorable and we have an assignment
Failure : Graph not colorable, or graph is colorable 
but it is too expensive to color

Observation
A node with degree < n can always be colored 
successfully, given its neighbors’ colors
What about a node with degree = n ?
What about a node with degree > n ?
When are we sure that the graph is not colorable?



Coloring Algorithm

Algorithm
Iterate until stuck or done

Pick any node with degree < n
Remove the node and its edges from the graph

If done (no nodes left)
Reverse process and add colors

Example (n=3) B

D

E CA



Observation:
Degree of a node may drop in iteration
We should avoid making arbitrary decisions 
that make coloring fail

What does coloring accomplish?
Done: colorable, also obtained an assignment
Stuck: colorable or not?


	Register Allocation: Coloring
	Register Allocation
	Terminology
	What are the Problems?
	Interference 
	Abstraction for Interference & Allocation
	Coloring Interference Graph
	Building Interference Graph
	Nodes in an Interference Graph
	Live Ranges and Merged Live Ranges
	Merging Live Range
	Edges of Interference Graph
	Example
	Coloring the Graph
	Coloring Algorithm
	슬라이드 번호 16

