
Register Allocation: Spilling

Chaitin’s Coloring and Spilling
Spilitting Live Ranges

Spilling to Memory

If a node is
Colored successfully

allocated a hardware register

Not colored
left in memory

If we cannot color all nodes, we need to
decide which node(s) to spill, but how?

Need to consider benefit-to-cost of spilling

Cost-to-Benefit of Spilling

Cost of spilling a node
Proportional to dynamic number of uses/definitions
Can be estimated by its loop nesting
Need to minimize sum of costs of uncolored nodes

Benefit of spilling a node
Increase colorability of nodes it interfere with
Can be estimated by its degree in the graph

Greedy heuristic
Spill the pseudo register with lowest cost-to-benefit ratio,
whenever spilling is necessary

Coloring Algorithm (Without Spilling)

Build interference graph

Iterate until there are no nodes left
If there exists a node v with less than n neighbors

place v on stack to register allocate
else

return (coloring heuristics fail)
remove v and its edges from graph

While stack is not empty
remove v from stack
reinsert v and its edges into the graph
assign v a color that differs from all its neighbors

Chaitin’s Coloring & Spilling Algorithm
Build interference graph
Iterate until there are no nodes left

If there exists a node v with less than n neighbors
place v on stack to register allocate

else
v = node with highest degree-to-cost ratio
spill v and mark v as spilled (or spill v after the iteration)

remove v and its edges from graph

Spilling may require use of registers and change interference graph
While there is spilling

rebuild interference graph and perform above step

Assign registers
While stack is not empty

remove v from stack
reinsert v and its edges into the graph
assign v a color that differs from all its neighbors

Quality of Chaitin’s Algorithm

All-or-nothing: giving up too early
For the example below when n=2

Chaitin’s will spill although we can color the graph

B

D

E CA

Optimistic Coloring [Briggs]

An optimization: “Be more optimistic”
Still remove a spill node and its edges from graph
But do not commit to “spilling” just yet
Try to color it again in assignment phase and see
if it must really be spilled; otherwise color it!
More details follow later B

D

E CA

Optimization: Splitting Live Ranges

Split a live range into sub live ranges (by paying
small costs) to create a graph that is easier to color

1. Eliminate interference in a variable’s “nearly dead” zones
Cost: memory loads and stores at boundaries of regions
with no activity
of live ranges at a program point can be> # registers

2. Allocate different registers to a single live range
Cost: register copies at boundaries between regions of
different assignments
of live ranges at a program point cannot be> # registers

Case 1
A and B cannot be assigned to the same register

FOR i = 0 TO 10
FOR j = 0 TO 10000

A = A + ... (does not use B)
FOR j = 0 TO 10000

B = B + ... (does not use A)

We can allocate A and B the same register by spilling at nearly dead zone

FOR i = 0 TO 10
restore A
FOR j = 0 TO 10000

A = A + ...
store A
restore B
FOR j = 0 TO 10000

B = B + ...
store B

Case 2
When n=2, we cannot color the interference graph
But we can avoid a spill by inserting a copy

a =

b =

= a + b

c =

c =

= a + c

b =

= b + c

R1 =

R2 =

= R1 + R2

R1 = R2,

R2 =

R2 =

= R1 + R2

R1 =

= R1 + R2

Live Range Splitting Implementation

When do we apply live range splitting?
Which live range to split?
Where should the live range be split?
How to apply live range splitting with coloring?

Coloring: defers arbitrary assignment decisions until later
When coloring fails to proceed, may not need to split live
range since degree of a node ≥ n does not necessarily
mean that the graph is definitely not colorable
Interference graph does not show positions of live ranges

It is not that simple at all so there have been lots of research

One Idea for Case 1

Observation: spilling is absolutely necessary if
number of live ranges active at a program point > n

Apply live range splitting before coloring
Identify a point where # of live ranges > n
For each live range active around that point,

Find the outermost “block construct” that does not
access the variable

Choose a live range with the largest inactive region
Split the inactive region from the live range

Summary

When there are not enough registers: how to
best use the given number of registers?

Solve problem in coloring framework
Objective: minimize sum of cost of uncolored nodes
heuristically spill nodes with lowest cost-to-benefit ratio
Change interference graph
Split live ranges: different parts reside in different locations

Other techniques: reorder execution order to
change live ranges

	Register Allocation: Spilling
	Spilling to Memory
	Cost-to-Benefit of Spilling
	Coloring Algorithm (Without Spilling)
	Chaitin’s Coloring & Spilling Algorithm
	Quality of Chaitin’s Algorithm
	Optimistic Coloring [Briggs]
	Optimization: Splitting Live Ranges
	Case 1
	Case 2
	Live Range Splitting Implementation
	One Idea for Case 1
	Summary

