
Modulo Scheduling

Modulo Scheduling

Modulo Scheduling

Most popular software pipelining technique
Originally developed by B. Rau, later simplified by M. Lam
All commercial compilers include this technique

Another commercial technique is EPS

Trial-and-error method to get a pipelined schedule
Compute the minimum initiation interval (MII) based on
both precedence constraints (precedence MII) and
resource constraints (resource MII)
Try to obtain a schedule with such an MII

Based on instruction placement, not code motion
If cannot find a schedule, try with MII + 1, and continue

Determining MII : Resource Constraints

Representation of resource constraints:
reservation table

Resource Constraints and the II

If an instruction is scheduled at cycle x, it will also
execute at cycle x + II, x + 2 x II, and so on
The resource requirements of a single iteration
should not exceed the available resources
The available resources of the kernel increase as
the II increases

Resource MII (RMII)

For all resources i,
Number of units required by one iteration: ri

Number of units in system: Ri

RMII =

If the ratio is not integral, unrolling can improve the
lower bound (e.g., 3 mem refs / 2mem ports = 1.5)

⎥⎥
⎤

⎢⎢
⎡

i

i
i

R
rmax

Determining MII : Precedence Constraints

Representation of precedence constraints:
data dependence graph

Node: instruction, Edge: dependence relationship

Observation of dependence relationship
Must show iteration difference as well as delay

Determining MII : Precedence Constraints

An edge in data dependence graph has <p,d>
d : a delay value

V can start no earlier than d cycles after node u starts

p : a value representing minimum iteration distances
p = 0: intra-iteration dependence, p > 0: loop-carried dependence

Some observation of precedence MII
8 cycles in the left example but 4 cycles in the right example

Given an initiation interval II and S(x) is the cycle
where x is scheduled,

II and the Schedule

For all cycles c in the data dependence graph

PMII =

Why? For each dependence edge in the cycle,
Represent S(v) – S(u) >= d(u, v) – p(u, v) * II
Then, sum them up, which will make

0>= sum(d) – sum(p) * II, meaning II>=sum(d)/sum(p)

If the PMII ratio is not integral, unrolling can improve
the lower bound

sdifferenceiteration
lengthcycle

c _
_max

Precedence MII (PMII)

Modulo Scheduling

Determining Minimum Initiation Interval (MII)
MII = min(RMII, PMII)

Interdependence between II and constraints
Constraints determine the minimum II
II affects modulo reservation tables, scheduling
functions, S(x), etc
Minimizing II is NP-complete

Goal of scheduling
Determine II
Solve the scheduling function S(x) for each instruction
in the loop

Generating Pipelined Schedules

Scheduling Acyclic Data Dependence
Graph: List Scheduling

Scheduling Cyclic Graph

Cyclic Precedence Constraints

Observation: scheduling a node make the schedules
of all other nodes from above and below

Depends on the II

Implementation: pre-compute longest path lengths
between all points based on II value

Once for all II by using a symbolic value for II
Why longest paths? Meeting worst-case constraints

Why Longest Path? An Example

Longest Paths

The closure of the cost of a path e
d(e) – ii x p(e)
To capture all possible maximum costs
between two nodes, the longest path is
represented as a set

Scheduling Order

Topological ordering on intra-iteration constraints
Upper bounds increases with II

Scheduling Algorithm Summary

Given II, Schedule SCCs first
Scheduling a node bounds rest nodes from below and above
Satisfy precedence constraints

Pre-compute all-points longest paths
Allow fast update on the range of each node

Satisfy resource constraints
Topological ordering on intra-iteration edges
Upper bounds increases with initiation interval

Schedule reduced acyclic graphs
Schedule node in topological ordering
Find conflict slots within initiation window

Hierachical Reduction

For hammock-type conditional statements
Union both resource and precedence
constraints

Modulo Variable Expansion

Modulo Variable Expansion Algorithm

Schedule without considering cross-iteration
anti-dependences
lifetime > II : multiple registers are needed
Assign registers

L(v) = lifetime of variable v
ii = initiation interval
Suppose L(u) = 3 x ii and L(v) = 2 x ii
Unroll three times, use three registers for each u
and v
If only two registers for v, unroll 6 times

Rotating Register (RR)

Can use rotating registers instead of unrolling
Architectural mechanism for renaming
Employed in Intel’s P6 Itanium processors
Composed of n registers (RR(0) ~ RR(n))
Includes a brtop (or brexit) instruction

If a brtop is taken, RR(i) is accessible via RR((i+1)%n)
That is, a block shift of registers, RR(i+1) = RR(i),
occur

We allocate RR to those whose lifetime > II, we
can avoid cross-iteration register overwrites

	Modulo Scheduling
	Modulo Scheduling
	Determining MII : Resource Constraints
	Resource Constraints and the II
	Resource MII (RMII)
	Determining MII : Precedence Constraints
	Determining MII : Precedence Constraints
	슬라이드 번호 8
	슬라이드 번호 9
	Modulo Scheduling
	Generating Pipelined Schedules
	Scheduling Cyclic Graph
	Cyclic Precedence Constraints
	Why Longest Path? An Example
	Longest Paths
	Scheduling Order
	Scheduling Algorithm Summary
	Hierachical Reduction
	Modulo Variable Expansion
	Modulo Variable Expansion Algorithm
	Rotating Register (RR)

