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Review of Compiler Instruction Scheduling

Extract independent instructions from sequential code 

and group them for parallel execution

• We expect them to be executed in parallel by H/W

Scheduling within BB is not enough to make H/W busy

• Need advanced techniques that schedule beyond BBs

Classified into two categories based on code type

• Acyclic code: Global DAG Scheduling

• Cyclic code: Software Pipelining
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DAG Scheduling

Schedule beyond BB boundaries in a DAG of BBs

Problem: create a parallel group at the root of a DAG

Achieved via code motion across BBs

• Speculative code motion

• Join code motion

• Branch code motion

• Renaming & substitution

• Unification

IF cc0

u:=y+1

z:=x+1

y:=w*w y:=z
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Speculation, join code motion

IF cc0

u:=y+1

z:=x+1

y:=w*w

Speculation

y:=z

IF cc0

u:=y+1

z:=x+1

y:=w*w

y:=z

Join code motion
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Renaming

add r1,2,r2 add r2,2,r3

add r1,2,r2’

mov r2’,r2 add r2,2,r3

...
add r1,1,r2

...
sub r3,2,r1

...

...
sub r3,2,r1’

...
add r1,1,r2

...
mov r1’,r1

...
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Forward-substitution

...
mov r1, r2

...
add r2,1,r3

...

...
add r1,1,r3

...
mov r1, r2

...
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Unification

A

x=load()

y = x + 1
B

z = x + 1

y = x + 1
A

x=load()
y = x + 1

B

z = y

• Simplest form: moving an instr. below a hammock to the above of the hammock

• Selective scheduling can do more sophisticated form of unification
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Software Pipelining

Schedule instructions beyond loop iteration boundaries

• Iterations are overlapped in a pipelined fashion

– prolog, kernel, and epilog

• More efficient than unrolling-followed-by-DAG scheduling

Modulo scheduling is the most popular technique, but 

there is yet another practical technique called

• Enhanced pipeline scheduling (EPS)
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Enhanced Pipeline Scheduling (EPS)

A software pipelining technique based on global 
DAG scheduling, which is very different from MS
• MS destroys the original loop and creates a new loop  

For a given loop, we just repeat DAG scheduling.

When instructions are moved across the loop back-
edge, the “pipelining effect” takes place.    We call 
it cross-iteration code motion (CICM).

So, EPS simply defines DAGs in the loop body by 
cutting edges, which are then scheduled globally.
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A generic EPS example

x = x+4
y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x = x+4   iter. n

y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x = x+4

y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x’ = x+4  iter. 1
bookkeeping

y = load(x)   iter.  n

cc = (y==0)
if(!cc) goto loop

store x @A

x = x’

x’ = x + 4     iter.  n+1

if(!cc) goto loop

x’ = x+4 

y = load(x)

cc = (y==0)

store x @A

x = x’

x’ = x + 4 

x’ = x+4      iter. 1
y = load(x’) iter. 1
x’’ = x’+4    iter. 2

x’ = x’’

x’’  = x’ + 4  iter. n+2

if(!cc) goto loop

store x @A

x = x’

cc = (y==0) iter. n

y = load(x’)  iter. n+1

Stage 1

Stage 2

Stage 3
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Advantages of EPS

We can schedule “ANY” loops
• Loops with arbitrary control flows

• Loops whose trip counts are not constants

– e.g., pointer-chasing loops

• Outer loops

• Unstructured loops

due to its code-motion-based pipelining

Can achieve tight, variable II for multi-path loops

Particularly useful for optimizing integer code



Microprocessor Architecture & System Software Lab

Global DAG Scheduling

We can use any global scheduling techniques for 

scheduling of DAGs in each stage of EPS, but 

we use selective scheduling (most aggressive)

• All-path speculative code motion

• Join code motion

• Unification

• Renaming

• Forward substitution
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Selective Scheduling

All these techniques are well merged into a single, 

powerful global scheduling algorithm

• Can extract more useful parallel instructions (even w/o 

profiling)

When combined with EPS, it can maximize the 

scheduling power of EPS
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