
Enhanced Pipeline Scheduling

Overview of
Enhanced Pipeline Scheduling

Compiler Scheduling for ILP

Basic Idea of EPS and a Generic Example

Aggressive DAG scheduling techniques

Microprocessor Architecture & System Software Lab

Review of Compiler Instruction Scheduling

Extract independent instructions from sequential code

and group them for parallel execution

• We expect them to be executed in parallel by H/W

Scheduling within BB is not enough to make H/W busy

• Need advanced techniques that schedule beyond BBs

Classified into two categories based on code type

• Acyclic code: Global DAG Scheduling

• Cyclic code: Software Pipelining

Microprocessor Architecture & System Software Lab

DAG Scheduling

Schedule beyond BB boundaries in a DAG of BBs

Problem: create a parallel group at the root of a DAG

Achieved via code motion across BBs

• Speculative code motion

• Join code motion

• Branch code motion

• Renaming & substitution

• Unification

IF cc0

u:=y+1

z:=x+1

y:=w*w y:=z

Microprocessor Architecture & System Software Lab

Speculation, join code motion

IF cc0

u:=y+1

z:=x+1

y:=w*w

Speculation

y:=z

IF cc0

u:=y+1

z:=x+1

y:=w*w

y:=z

Join code motion

Microprocessor Architecture & System Software Lab

Renaming

add r1,2,r2 add r2,2,r3

add r1,2,r2’

mov r2’,r2 add r2,2,r3

...
add r1,1,r2

...
sub r3,2,r1

...

...
sub r3,2,r1’

...
add r1,1,r2

...
mov r1’,r1

...

Microprocessor Architecture & System Software Lab

Forward-substitution

...
mov r1, r2

...
add r2,1,r3

...

...
add r1,1,r3

...
mov r1, r2

...

Microprocessor Architecture & System Software Lab

Unification

A

x=load()

y = x + 1
B

z = x + 1

y = x + 1
A

x=load()
y = x + 1

B

z = y

• Simplest form: moving an instr. below a hammock to the above of the hammock

• Selective scheduling can do more sophisticated form of unification

Microprocessor Architecture & System Software Lab

Software Pipelining

Schedule instructions beyond loop iteration boundaries

• Iterations are overlapped in a pipelined fashion

– prolog, kernel, and epilog

• More efficient than unrolling-followed-by-DAG scheduling

Modulo scheduling is the most popular technique, but

there is yet another practical technique called

• Enhanced pipeline scheduling (EPS)

Microprocessor Architecture & System Software Lab

Enhanced Pipeline Scheduling (EPS)

A software pipelining technique based on global
DAG scheduling, which is very different from MS
• MS destroys the original loop and creates a new loop

For a given loop, we just repeat DAG scheduling.

When instructions are moved across the loop back-
edge, the “pipelining effect” takes place. We call
it cross-iteration code motion (CICM).

So, EPS simply defines DAGs in the loop body by
cutting edges, which are then scheduled globally.

Microprocessor Architecture & System Software Lab

A generic EPS example

x = x+4
y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x = x+4 iter. n

y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x = x+4

y = load(x)
cc = (y==0)

if(!cc) goto loop

store x @A

x’ = x+4 iter. 1
bookkeeping

y = load(x) iter. n

cc = (y==0)
if(!cc) goto loop

store x @A

x = x’

x’ = x + 4 iter. n+1

if(!cc) goto loop

x’ = x+4

y = load(x)

cc = (y==0)

store x @A

x = x’

x’ = x + 4

x’ = x+4 iter. 1
y = load(x’) iter. 1
x’’ = x’+4 iter. 2

x’ = x’’

x’’ = x’ + 4 iter. n+2

if(!cc) goto loop

store x @A

x = x’

cc = (y==0) iter. n

y = load(x’) iter. n+1

Stage 1

Stage 2

Stage 3

Microprocessor Architecture & System Software Lab

Advantages of EPS

We can schedule “ANY” loops
• Loops with arbitrary control flows

• Loops whose trip counts are not constants

– e.g., pointer-chasing loops

• Outer loops

• Unstructured loops

due to its code-motion-based pipelining

Can achieve tight, variable II for multi-path loops

Particularly useful for optimizing integer code

Microprocessor Architecture & System Software Lab

Global DAG Scheduling

We can use any global scheduling techniques for

scheduling of DAGs in each stage of EPS, but

we use selective scheduling (most aggressive)

• All-path speculative code motion

• Join code motion

• Unification

• Renaming

• Forward substitution

Microprocessor Architecture & System Software Lab

Selective Scheduling

All these techniques are well merged into a single,

powerful global scheduling algorithm

• Can extract more useful parallel instructions (even w/o

profiling)

When combined with EPS, it can maximize the

scheduling power of EPS

References

• “Parallelizing non-numerical code with selective scheduling and

software pipelining” ACM TOPLAS Nov. 1997

• “Unroll-based copy elimination for EPS” IEEE TC Sep. 2002

• “Split-Path EPS” IEEE TPDS May 2003

	Enhanced Pipeline Scheduling
	Overview of �Enhanced Pipeline Scheduling
	Review of Compiler Instruction Scheduling
	DAG Scheduling
	Speculation, join code motion
	Renaming
	Forward-substitution
	Unification
	Software Pipelining
	Enhanced Pipeline Scheduling (EPS)
	A generic EPS example
	Advantages of EPS
	Global DAG Scheduling
	Selective Scheduling

