

- * Data dependences
- * Loop parallelization
- * How to extract data dependence information

Parallelization Goal

* DoAll loops: Loops whose iterations can execute in parallel

* Example

for (i = 0; i < n; i++) A[i] = B[i] + C[i]

* Statically assign each iteration to a processor

Data Dependence of Scalars

- * True dependence
- * Anti dependence
- * Output dependence
- * Data dependence exists from a dynamic instance i to i' iff
 - either i or i' is a write operation
 - * i and i' refer to the same variable
 - i executes before i'

Lack of Data Flow Information

- Example
 - (1) x = f()(2) x = g()
 - (3) = x

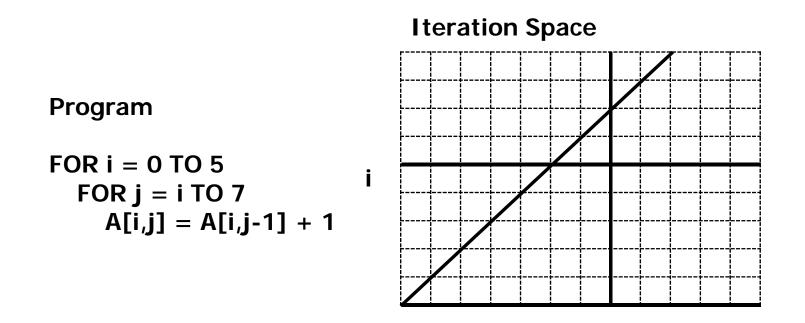
- * Standard data dependences are flow-insensitive
 - Don't care if there is no intervening write between a write and a read; (3) is dependent on (1) in the above
- * Standard data dependence
 - Alias analysis
 - Memory disambiguation

Data Dependences for Arrays

- Recognize DOALL loops (intuitively)
 - Find data dependences in loops
 - ★ No dependences crossing iteration boundaries
 ⇒ parallelizable

Iteration Space

* *n*-dimensional discrete space for *n*-deep loops



Iteration Space

- Iteration is represented as coordinates in iteration space
- Sequential execution order of iteration: Lexicographic order
 [0,0], [0,1], ..., [0,7], [1,1], ... [1,6]
- * Iteration \vec{i} is lexicographically less than $\vec{i'}$, iff

$$\exists c \ s.t.(i_1,...i_{c-1}) = (i'_1,...i'_{c-1}) \ and \ i_c < i'_c$$

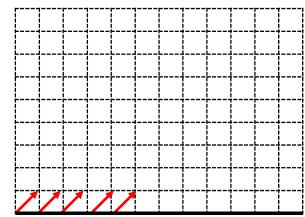
Distance Vectors

FOR (i = 0; i < n; i++)

FOR (j = 0; j < n; j + +)

A[i,j] = A[i-1,j-1] + 1

Iteration Space



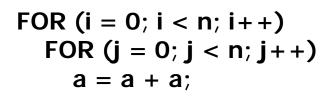
- * Distance vector=[1,1]
- * A loop has a distance vector \vec{d} : j if there exists data dependence from a node \vec{i} to a later node \vec{i}' and $\vec{d} = \vec{i}' - \vec{i}$

i

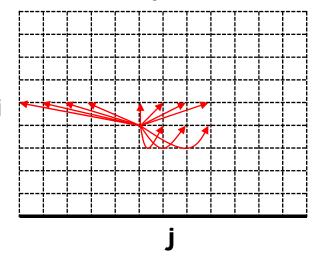
* Since $\vec{i} \leq \vec{i'}, \vec{d} \geq 0$

 \vec{d} is lexicographically greater than or equal to 0

Distance Vectors



Iteration Space

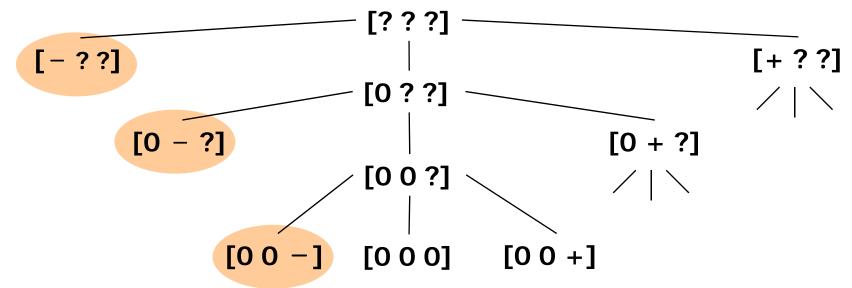


- Distance vector(infinitely large set) ([0,0][0,1],..[0,n])([1,-n],..,[1,0],..[1,n])..([n,-n],..[n,0],..[n,n])
- Summarized as direction vector (0 or lexicographically positive) ([0,0][0,+][+,-][+,0][+,+])

Direction Vectors

* Common notations
 (0 =),(+ <),(- >),(+/- *)

* What can the direction vectors for 3-D loops be like?

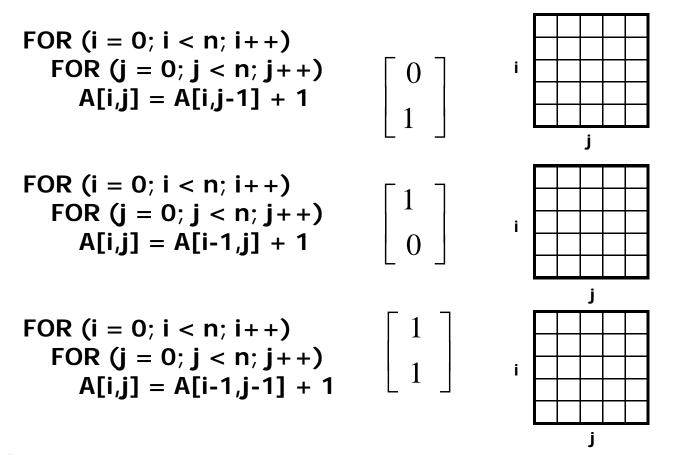


Test for Parallelization

- * Test for parallelization:
 - * A loop with data dependence $\vec{d} \in D$ is parallelizable if for all $\vec{d} = (0)$

** ***

Parallelization of Loops



* $\vec{d} = (d_1, d_2, ..., d_n)$ is loop-carried at level *i* if d_i is the first non-zero element \Rightarrow does not affect the parallelizability of inner loop (= 0: no dependence; \neq 0: second-order effect)

Test for Parallelization

- * The *i* th loop of an *n*-dimensional loop is parallelizable if there does not exist any level *i* dependences
- * The *i* th loop of an *n*-dimensional loop is parallelizable for all dependences d

 * (d₁,..,d_{i-1})> 0
 * (d₁,..,d_i)=0

Improving Parallelizability

Scalar Privatization

```
float t;
for (i = 0; i < n; i++) {
    t = A[i];
    b[i] = t*t;
}</pre>
```

```
for (i = 0; i < n; i++)
{
    float t;
    t = A[i];
    b[i] = t*t;
}</pre>
```


Summary

* Data Dependence

- * read/write
- * same variable
- in direction of sequential ordering

* Representation

- iteration space
- dependence vectors: distance vectors, direction vectors
- * Parallelization Testing