
Basic Loop Parallelization

Data dependences
Loop parallelization
How to extract data dependence information



Parallelization Goal

DoAll loops: Loops whose iterations can 
execute in parallel
Example

for (i = 0; i < n; i++) 
A[i] = B[i] + C[i]

Statically assign each iteration to a processor



Data Dependence of Scalars

True dependence
Anti dependence
Output dependence

Data dependence exists from a dynamic 
instance i to i’ iff

either i or i’ is a write operation
i and i’ refer to the same variable
i executes before i’



Lack of Data Flow Information

Example
(1) x = f()
(2) x = g()
(3) = x

Standard data dependences are flow-insensitive
Don’t care if there is no intervening write between a 
write and a read; (3) is dependent on (1) in the above

Standard data dependence
Alias analysis
Memory disambiguation



Data Dependences for Arrays

for (i = 2; i < 5; i++)
A[i] = A[i-2] + 1

for (i = 0; i < 3; i++)
A[i] = A[i] + 1

Recognize DOALL loops (intuitively)
Find data dependences in loops
No dependences crossing iteration boundaries 
⇒ parallelizable



Iteration Space

n-dimensional discrete space for n-deep loops
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Iteration Space

Program

FOR i = 0 TO 5
FOR j = i TO 7

A[i,j] = A[i,j-1] + 1



Iteration Space

Iteration is represented as coordinates in 
iteration space
Sequential execution order of iteration: 
Lexicographic order

Iteration    is lexicographically less than   , iff
]6,1[...],1,1[],7,0[,..],1,0[],0,0[
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Distance Vectors

Distance vector=[1,1]
A loop has a distance vector 
if there exists data dependence from a node   to 
a later node    and 
Since

is lexicographically greater than or equal to 0
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FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j-1] + 1



Distance Vectors

Distance vector(infinitely large set)
([0,0][0,1],..[0,n])([1,-n],..,[1,0],..[1,n])..([n,-n],..[n,0],..[n,n])
Summarized as direction vector (0 or lexicographically positive)
([0,0][0,+][+,-][+,0][+,+])
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Iteration Space

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

a = a + a;



Direction Vectors

Common notations
(0 =),(+ <),(－ >),(+/－ *)

What can the direction vectors for 3-D loops 
be like?

[? ? ?]

[0 ? ?]

[0 0 ?]

[0 0 0][0 0 －] [0 0 +]

[0 + ?]

[+ ? ?]

[0 － ?]

[－ ? ?]



Test for Parallelization

Example
for (j = 0; j < n; j++)

A[j] = A[j] + 1;

Distance Vector: [0]
Test for parallelization:

A loop with data dependence         is parallelizable if 
for all     = (0)d
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Parallelization of Loops

is loop-carried at level i if di is the first 
non-zero element ⇒ does not affect the parallelizability of 
inner loop (= 0: no dependence; ≠ 0: second-order effect)
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FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i,j-1] + 1

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j] + 1

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j-1] + 1
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Test for Parallelization

The i th loop of an n-dimensional loop is 
parallelizable if there does not exist any level i
dependences
The i th loop of an n-dimensional loop is 
parallelizable for all dependences                , either)..,,( 1 nddd =
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Improving Parallelizability

Scalar Privatization

float t;
for (i = 0; i < n; i++) {

t     = A[i];
b[i] = t*t;

}

for (i = 0; i < n; i++) 
{

float t;
t     = A[i];
b[i] = t*t;

}



Summary

Data Dependence
read/write
same variable
in direction of sequential ordering

Representation
iteration space
dependence vectors: distance vectors, 
direction vectors

Parallelization Testing
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