
Basic Loop Parallelization

Data dependences
Loop parallelization
How to extract data dependence information

Parallelization Goal

DoAll loops: Loops whose iterations can
execute in parallel
Example

for (i = 0; i < n; i++)
A[i] = B[i] + C[i]

Statically assign each iteration to a processor

Data Dependence of Scalars

True dependence
Anti dependence
Output dependence

Data dependence exists from a dynamic
instance i to i’ iff

either i or i’ is a write operation
i and i’ refer to the same variable
i executes before i’

Lack of Data Flow Information

Example
(1) x = f()
(2) x = g()
(3) = x

Standard data dependences are flow-insensitive
Don’t care if there is no intervening write between a
write and a read; (3) is dependent on (1) in the above

Standard data dependence
Alias analysis
Memory disambiguation

Data Dependences for Arrays

for (i = 2; i < 5; i++)
A[i] = A[i-2] + 1

for (i = 0; i < 3; i++)
A[i] = A[i] + 1

Recognize DOALL loops (intuitively)
Find data dependences in loops
No dependences crossing iteration boundaries
⇒ parallelizable

Iteration Space

n-dimensional discrete space for n-deep loops

i

j

Iteration Space

Program

FOR i = 0 TO 5
FOR j = i TO 7

A[i,j] = A[i,j-1] + 1

Iteration Space

Iteration is represented as coordinates in
iteration space
Sequential execution order of iteration:
Lexicographic order

Iteration is lexicographically less than , iff
]6,1[...],1,1[],7,0[,..],1,0[],0,0[

i
r

i
r
′

cccc iiandiiiitsc ′<′′=∃ −−)..,()..,.(. 1111

Distance Vectors

Distance vector=[1,1]
A loop has a distance vector
if there exists data dependence from a node to
a later node and
Since

is lexicographically greater than or equal to 0

:d
r

i

j

Iteration Space

i
r

i
r
′ iid

rrr
−′=

0, ≥′≤ dii
rrr

d
r

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j-1] + 1

Distance Vectors

Distance vector(infinitely large set)
([0,0][0,1],..[0,n])([1,-n],..,[1,0],..[1,n])..([n,-n],..[n,0],..[n,n])
Summarized as direction vector (0 or lexicographically positive)
([0,0][0,+][+,-][+,0][+,+])

i

j

Iteration Space

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

a = a + a;

Direction Vectors

Common notations
(0 =),(+ <),(－ >),(+/－ *)

What can the direction vectors for 3-D loops
be like?

[? ? ?]

[0 ? ?]

[0 0 ?]

[0 0 0][0 0 －] [0 0 +]

[0 + ?]

[+ ? ?]

[0 － ?]

[－ ? ?]

Test for Parallelization

Example
for (j = 0; j < n; j++)

A[j] = A[j] + 1;

Distance Vector: [0]
Test for parallelization:

A loop with data dependence is parallelizable if
for all = (0)d

r Dd∈
r

Parallelization of Loops

is loop-carried at level i if di is the first
non-zero element ⇒ does not affect the parallelizability of
inner loop (= 0: no dependence; ≠ 0: second-order effect)

⎥
⎦

⎤
⎢
⎣

⎡
1
0

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i,j-1] + 1

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j] + 1

FOR (i = 0; i < n; i++)
FOR (j = 0; j < n; j++)

A[i,j] = A[i-1,j-1] + 1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

⎥
⎦

⎤
⎢
⎣

⎡
1
1

),..,,(21 ndddd =
v

j

j

j

i

i

i

Test for Parallelization

The i th loop of an n-dimensional loop is
parallelizable if there does not exist any level i
dependences
The i th loop of an n-dimensional loop is
parallelizable for all dependences , either)..,,(1 nddd =

v

0)..,,(1 =idd
0)..,,(11 >−idd

Improving Parallelizability

Scalar Privatization

float t;
for (i = 0; i < n; i++) {

t = A[i];
b[i] = t*t;

}

for (i = 0; i < n; i++)
{

float t;
t = A[i];
b[i] = t*t;

}

Summary

Data Dependence
read/write
same variable
in direction of sequential ordering

Representation
iteration space
dependence vectors: distance vectors,
direction vectors

Parallelization Testing

	Basic Loop Parallelization
	Parallelization Goal
	Data Dependence of Scalars
	Lack of Data Flow Information
	Data Dependences for Arrays
	Iteration Space
	Iteration Space
	Distance Vectors
	Distance Vectors
	Direction Vectors
	Test for Parallelization
	Parallelization of Loops
	Test for Parallelization
	Improving Parallelizability
	Summary

