
Java Acceleration Compilers

Java Software Platform

Java VM is a popular embedded S/W platform
• Why VM in embedded systems?

– Diverse H/W platforms (CPU, OS, display…)
– Provide consistent runtime environment

• Why Java?
– Security issues

• Hard to kill the whole system with malicious Java code

– Easy to develop S/W contents
• Mature API
• Robust language features: garbage collection, exception handling

Java Performance

• One critical problem: performance
– Due to its “write once, run everywhere” portability
– Compiled into bytecode, not native machine code
– Software layer (JVM) to interpret bytecode is really slow

• Solution: Java acceleration
– S/W solution: translation into machine code

• Just-in-Time compilation (JITC)
• Ahead-of-Time compilation (AOTC)
• Client-AOTC (c-AOTC), install-time compilation (ITC)

– H/W solution: direct hardware execution of bytecode
• ARM Jazelle, Nazomi JSTAR, …

S/W Solution: Translation

• Translate bytecode method into native method
– JITC: on-line, just before it is executed

• Translated methods are cached for later use
• Hotspot, J9, Jikes RVM, …

– AOTC: off-line, even before the programs starts
• Dynamically loaded methods should be interpreted
• WIPI, Jbuild, …

• Allow Java programs run as native executables

A Translation Example

0: iload_1
1: iload_2
2: if_icmplt 9
5: iload_1
6: goto 10
9: iload_2
10: iload_3
11: iadd
12: istore 4
14: aload_0
15: iload 4
17: invokevirtual

<int work(int)>
20: ireturn

Bytecode

int work_on_max(int x, int y, int tip) {
int val = ((x>=y) ? x : y) + tip;
return work (val);

}

Java source code Translated RISC (SPARC) code

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

JVM and SPARC Calling Convention

• JVM is a stack machine where an activation record is
pushed/popped when a method is invoked/returned

– Activation record has local variables and operand stack
– Parameters become local variables of callee method
– Return value is pushed on top of caller’s operand stack

An Example Object Model

Method table pointer

Lock

Instance
data

Interface method ptr

Interface method ptr

Class object ptr

Virtual method ptr

Virtual method ptr

Virtual method ptr

Virtual method ptr

Object

Code

Code

Code

Code

Interface/Virtual
Method Dispatch Table

Object Reference

Class Object
Class Information

Issues in Translation: Optimization
• Naïve translation is not enough

– Likely to generate inefficient, low-performance code
• Mapping variables/stack locations to memory generates slow code
• Naïve register allocation makes too many copies for pushes & pops
• Null check for each reference? Bound check for each array access?
• Method call overheads?

• Solution: code optimization
– Quality of optimizations
– Optimization overhead

An Optimization Example

11: add %i1,%i3,%o1
17: ld [%i0],%l0
17: ld [%i0+48], %l0

mov %i0, %o0
17: call %l0

mov %o0, %i0
20: ret

2: cmp %i1,%i2
2: bl

mov %i2,%i1

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

8 copies
are reduced

to only 3
copies.

Optimizations in JITC & AOTC
• AOTC

+ No runtime translation/optimization overhead
+ Full, off-line optimizations

• JITC
+ Optimizations can exploit runtime information

• e.g, Inlining of hot spot methods

+ Transparent

Bytecode-to-C AOTC

• Translate bytecode to C code, which is then
compiled by gcc optimizing compiler

– Simpler to implement, better portability
– Resort to gcc for code optimization

• AOTC performs Java-specific optimizations
– To cope with the quality of bytecode-to-native code

• check eliminations, OO optimziations, …

• Integration of VM components (GC, EH, ..)

Structure of the AOTC

Bytecode

AOTC

Generated C Code CVM Source Code

C Compiler

CVM Executable
with AOTC Classes

An AOTC Example

package java.lang;
public class Math {

public int max(int a, int b) {
return (a >= b) ? a : b;

}
}

0: iload_0 // push a
1: iload_1 // push b
2: if_icmplt 9 // if(a<b) goto9
5: iload_0 // push a
6: goto 10 // goto 10
9: iload_1 // push b
10: ireturn // return

int Java_java_lang_Math_max__II
(CVMExecEnv *ee, int l0_int,
int l1_int)

{
int s0_int;
int s1_int;

s0_int = l0_int; // 0:
s1_int = l1_int; // 1:
if (s0_int < s1_int) { // 2:

goto L9;
}
s0_int = l0_int; // 5:
goto L10; // 6:

L9:
s0_int = l1_int; // 9:

L10:
return s0_int; // 10:

}

Java source

Bytecode

Generated C file

s0_int, s1_int: stack entries

l0_int, l1_int: Java local variables

JITC

• Many JITCs employ adaptive compilation
– A method is first executed by the interpreter
– If the method is determined to be a hot spot, it is JITCed
– We will discuss hot spot detection on 6/4

• Many optimizations are done by the JITC
– Register allocation
– Method inlining

• Method call overhead is very high in JVM

– Traditional optimizations, …

Another S/W Solution: client-AOTC

• AOTC at the client for downloaded applications
– Using JITC
– Translate bytecode into machine code at a client

device and save it in a permanent storage there
– When the saved machine code is needed later

during execution, it is loaded directly and run

– cf. server-AOTC where AOTC occurs at the server

JITC-based Client-AOTC

• Translate using the JITC module at idle time
• We can save the JITC overhead when the

machine code is loaded for execution
• Relocation is a major issue due to addresses

that can change from run to run
– Relocation information as well as machine code are saved

H/W Solution: Jazelle Approach

• Execute Java bytecode natively in hardware
– Interoperate alongside existing ARM and Thumb modes
– Fetch and decode bytecodes
when branch-to-Java execute
– Maintain Java operand stack
– Assign six ARM registers

• SP
• Top 4 elements of stack
• Local variable 0

H/W Solution: Jazelle Approach

• ~60% of bytecode can be executed directly
– Other complex bytecode must be emulated

• 2~4x performance compared to interpreter
– For MIDP applications for cellular phones
– Actual speedup is known to be less than this (max. ~2x)
– Less performance advantage with faster CPUs

• Faster startup than JITC
• Less memory overhead than AOTC, JITC

Hybrid Acceleration Solution

• Hybrid solutions can also be useful – Why?
• Many embedded Java systems consist of

– Java middleware installed statically at client devices
– Java classes downloaded dynamically from service provider
– e.g., OCAP (middleware) and xlet (dynamic classes) in DTV
– e.g., MIDP (middleware) and midlet in cellular phones
– e.g., BD-J (middleware) and xlet in Blu-ray disks

• AOTC for middleware and JITC/c-AOTC for
dynamic classes would be a natural choice

Hybrid Solution Environment

DTV platform

Server
AOTC

OCAP, system
Class files

Machine code
OCAP, system

class files

Downloaded
xlet class files

CDC Java VM

Linux

Interpreter

Machine code

of xlet class files

JITC
client

AOTC

	Java Acceleration Compilers
	Java Software Platform
	Java Performance
	S/W Solution: Translation
	A Translation Example
	JVM and SPARC Calling Convention
	An Example Object Model
	Issues in Translation: Optimization
	An Optimization Example
	Optimizations in JITC & AOTC
	Bytecode-to-C AOTC
	Structure of the AOTC
	An AOTC Example
	JITC
	Another S/W Solution: client-AOTC
	JITC-based Client-AOTC
	H/W Solution: Jazelle Approach
	H/W Solution: Jazelle Approach
	Hybrid Acceleration Solution
	Hybrid Solution Environment

