
Java Acceleration Compilers



Java Software Platform

Java VM is a popular embedded S/W platform
• Why VM in embedded systems?

– Diverse H/W platforms (CPU, OS, display…)
– Provide consistent runtime environment

• Why Java?
– Security issues 

• Hard to kill the whole system with malicious Java code

– Easy to develop S/W contents
• Mature API
• Robust language features: garbage collection, exception handling



Java Performance

• One critical problem: performance
– Due to its “write once, run everywhere” portability
– Compiled into bytecode, not native machine code
– Software layer (JVM) to interpret bytecode is really slow

• Solution: Java acceleration
– S/W solution: translation into machine code

• Just-in-Time compilation (JITC)
• Ahead-of-Time compilation (AOTC)
• Client-AOTC (c-AOTC), install-time compilation (ITC)

– H/W solution: direct hardware execution of bytecode
• ARM Jazelle, Nazomi JSTAR, …



S/W Solution: Translation

• Translate bytecode method into native method
– JITC: on-line, just before it is executed

• Translated methods are cached for later use
• Hotspot, J9, Jikes RVM, …

– AOTC: off-line, even before the programs starts
• Dynamically loaded methods should be interpreted
• WIPI, Jbuild, …

• Allow Java programs run as native executables



A Translation Example

0:   iload_1
1:   iload_2
2:   if_icmplt 9
5:   iload_1
6:   goto 10
9:   iload_2
10: iload_3
11: iadd
12: istore 4
14: aload_0
15: iload 4
17: invokevirtual

<int work(int)>
20: ireturn

Bytecode

int work_on_max(int x, int y, int tip) {
int val = ( (x>=y) ? x : y ) + tip;
return work (val);

}

Java source code Translated RISC (SPARC) code

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T



JVM and SPARC Calling Convention

• JVM is a stack machine where an activation record is 
pushed/popped when a method is invoked/returned 

– Activation record has local variables and operand stack
– Parameters become local variables of callee method
– Return value is pushed on top of caller’s operand stack



An Example Object Model
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Issues in Translation: Optimization
• Naïve translation is not enough

– Likely to generate inefficient, low-performance code
• Mapping variables/stack locations to memory generates slow code
• Naïve register allocation makes too many copies for pushes & pops
• Null check for each reference? Bound check for each array access?
• Method call overheads?

• Solution: code optimization
– Quality of optimizations
– Optimization overhead



An Optimization Example

11:    add  %i1,%i3,%o1
17:    ld  [%i0],%l0
17:    ld  [%i0+48], %l0

mov  %i0, %o0
17:    call %l0

mov  %o0, %i0
20:    ret

2:    cmp %i1,%i2
2:    bl

mov %i2,%i1

0: mov il1, is0
1: mov il2, is1
2: cmp is0, is1

bl

5: mov il1, is0 9: mov il2, is0

10: mov il3, is1
11: add is0,is1,is0
12: mov is0, il4
14: mov al0, as0
15: mov il4,is1
17: ld [as0], at0

ld [at0+48], at1
call at1

20: ret

F T

8 copies 
are reduced 

to only 3 
copies.



Optimizations in JITC & AOTC
• AOTC

+ No runtime translation/optimization overhead
+ Full, off-line optimizations

• JITC
+ Optimizations can exploit runtime information

• e.g, Inlining of hot spot methods

+ Transparent



Bytecode-to-C AOTC

• Translate bytecode to C code, which is then 
compiled by gcc optimizing compiler

– Simpler to implement, better portability
– Resort to gcc for code optimization

• AOTC performs Java-specific optimizations
– To cope with the quality of bytecode-to-native code

• check eliminations, OO optimziations, …

• Integration of VM components (GC, EH, ..)



Structure of the AOTC
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An AOTC Example

package java.lang;
public class Math {

public int max(int a, int b) {
return (a >= b) ? a : b;

}
}

0:  iload_0 // push a
1:  iload_1 // push b
2:  if_icmplt 9 // if(a<b) goto9
5:  iload_0 // push a
6:  goto     10 // goto 10
9:  iload_1 // push b
10:  ireturn // return

int Java_java_lang_Math_max__II
(CVMExecEnv *ee, int l0_int,
int l1_int)

{
int s0_int;
int s1_int;

s0_int = l0_int; // 0:
s1_int = l1_int; // 1:
if (s0_int < s1_int) { // 2:

goto L9;
}
s0_int = l0_int; // 5:
goto L10; // 6:

L9:
s0_int = l1_int; // 9:

L10:
return s0_int; // 10:

}

Java source

Bytecode

Generated C file

s0_int, s1_int: stack entries

l0_int, l1_int: Java local variables



JITC

• Many JITCs employ adaptive compilation
– A method is first executed by the interpreter
– If the method is determined to be a hot spot, it is JITCed
– We will discuss hot spot detection on 6/4

• Many optimizations are done by the JITC
– Register allocation
– Method inlining

• Method call overhead is very high in JVM

– Traditional optimizations, …



Another S/W Solution: client-AOTC

• AOTC at the client for downloaded applications
– Using JITC
– Translate bytecode into machine code at a client 

device and save it in a permanent storage there
– When the saved machine code is needed later 

during execution, it is loaded directly and run

– cf. server-AOTC where AOTC occurs at the server



JITC-based Client-AOTC

• Translate using the JITC module at idle time
• We can save the JITC overhead when the 

machine code is loaded for execution
• Relocation is a major issue due to addresses 

that can change from run to run
– Relocation information as well as machine code are saved



H/W Solution: Jazelle Approach

• Execute Java bytecode natively in hardware
– Interoperate alongside existing ARM and Thumb modes
– Fetch and decode bytecodes
when branch-to-Java execute
– Maintain Java operand stack
– Assign six ARM registers

• SP
• Top 4 elements of stack
• Local variable 0



H/W Solution: Jazelle Approach

• ~60% of bytecode can be executed directly
– Other complex bytecode must be emulated

• 2~4x performance compared to interpreter
– For MIDP applications for cellular phones
– Actual speedup is known to be less than this (max. ~2x)
– Less performance advantage with faster CPUs

• Faster startup than JITC
• Less memory overhead than AOTC, JITC



Hybrid Acceleration Solution

• Hybrid solutions can also be useful – Why?
• Many embedded Java systems consist of

– Java middleware installed statically at client devices
– Java classes downloaded dynamically from service provider 
– e.g., OCAP (middleware) and xlet (dynamic classes) in DTV
– e.g., MIDP (middleware) and midlet in cellular phones
– e.g., BD-J (middleware) and xlet in Blu-ray disks

• AOTC for middleware and JITC/c-AOTC for
dynamic classes would be a natural choice



Hybrid Solution Environment
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