Machine Learning

Concept Learning and The General-To-Specific Ordering

> Artificial Intelligence & Computer Vision Lab School of Computer Science and Engineering Seoul National University

Overview

- Concept Learning
- Find-S Algorithm
- Version Space (List-then-Eliminate Algorithm)
- Candidate-Elimination Learning Algorithm
- Inductive Bias

Concept Learning

- Concept
 - 'car', 'bird'
 - 'situations in which I should study more in order to pass the exam'
- Concept Learning
 - Inferring a boolean-valued function from training examples of its input and output

Concept Learning Task

- Example target concept
 - days on which my friend Aldo enjoys his favorite water sport
- Hypothesis representation
 - ? : any value is acceptable for this attribute
 - Single value (e.g. Warm, Strong etc.)
 - $-\Phi$: no value is acceptable
 - ex)
- < ?, Cold, High, ?, ?, ? >
- < ?, ?, ?, ?, ?, ? > most general
- $\langle \Phi, \Phi, \Phi, \Phi, \Phi, \Phi \rangle$ most specific

Concept Learning Task (cont.)

- Example: *EnjoySport* learning task
 - Given:
 - Instance *X* : Possible days, each described by the attributes
 - Hypothesis H: Each hypothesis is described by a conjunction of constraints on the attributes. The constraints may be "?", " Φ ", or specific value.
 - Target concept $c : EnjoySport: X \rightarrow \{0,1\}$
 - Training Example *D*
 - Determine:
 - A hypothesis h in H such that h(x) = c(x) for all x in X.

Example	Sky	Airtemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Inductive learning hypothesis

• Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

General-To-Specific Ordering

x₁ = < Sunny, Warm, High, Strong, Cool, Same > x₂ = < Sunny, Warm, High, Light, Warm, Same > $h_1 = \langle Sunny, ?, ?, Strong, ?, ? \rangle$ $h_2 = \langle Sunny, ?, ?, ?, ?, ? \rangle$ $h_3 = \langle Sunny, ?, ?, ?, Cool, ? \rangle$

Note the subset of instances characterized by h_2 subsumes the subset characterized by h_1 , hence h_2 is more_general_than h_1 !!!

AI & CV Lab, SNU

General-To-Specific Ordering (cont.)

- Let h_j and h_k be boolean-valued functions defined over X Then,
 - h_j is more_general_than_or_equal_to $(h_j \ge_g h_k) h_k$ if and only if $(\forall x \in X)[(h_k(x)=1) \rightarrow (h_j(x)=1)]$
 - $h_j more_general_than (h_j >_g h_k) h_k$ if and only if $(h_j \ge_g h_k) \land (h_k \ge_g h_j)$
- The ≥_g relation defines a *partial order* over the hypothesis space *H* (The relation is reflexive, antisymmetric, and transitive).
 "The structure is a partial order" ⇒ There may be pairs of hypotheses such as *h*₁ and *h*₃, such that *h*₁ ∠_g *h*₃ and *h*₃ ∠_g *h*₁.

Find-S Algorithm

Algorithm

- 1. Initialize h to be the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in h
 - If the constraint a_i is satisfied by x
 - then do nothing
 - Else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h

Steps

- $-h \leftarrow < \Phi, \Phi, \Phi, \Phi, \Phi, \Phi >$: most specific
- h ← < Sunny,Warm,Normal,Strong,Warm,Same>
- h ← < Sunny, Warm, ?, Strong, Warm, Same>
- h ← < Sunny, Warm, ?, Strong, Warm, Same>
- $-h \leftarrow <$ Sunny, Warm, ?, Strong, ?, ? >
- Find-S Algorithm simply ignores every negative example!
- Find-S is guaranteed to output the most specific hypothesis within *H* that is consistent with the positive training examples.

Key Property of Find-S Algorithm

- For hypothesis space described by conjunctions of attribute constraints (such as *H* for the *EnjoySport* task), Find-S is guaranteed to output the most specific hypothesis within *H* that is consistent with the positive training examples.
- Its final hypothesis will also be consistent with the negative examples, provided the correct target concept is contained in H, and provided the training examples are correct.

Problems

- Has the learner converged to the correct target concept ?
- Why prefer the most specific hypothesis ?
- Are the training examples consistent ?
- What if there are several maximally specific consistent hypotheses ?

Version Space and The Candidate Elimination Algorithm

• Key idea

- Output a description of the **set** of *all hypotheses consistent with the training examples*.

• Limit

 Performs poorly when given noisy training data both Candidate Elimination algo. And Find-S

Representation

- Consistent
 - A hypothesis h is **consistent** with a set of training examples D

if and only if h(x) = c(x) for each example $\langle x, c(x) \rangle$ in D.

 $-Consistent(h,D) \equiv (\forall < x, c(x) > \subseteq D)h(x) = c(x)$

• Version Space

$$-VS_{H,D} = \{ h \in H \mid Consistent(h, D) \}$$

AI & CV Lab, SNU

List-Then-Eliminate Algorithm

- Initializes the version space to contain all hypotheses in *H*, then eliminates any hypothesis found inconsistent with any training example.
- When hypothesis space *H* is finite.
- Exhaustive!

Version Space (Diagram)

Compact Representation of Version Space

- Represented by its most general and least general members. (general/specific boundary)
- general boundary G, with respect to hypothesis space H and training data D, is the set of maximally general members of H consistent with D.
 - $G \equiv \{ g \in H \mid Consistent (g, D) \land \\ (\nexists g' \in H)[(g' >_g g) \land Consistent(g', D)] \}$
- specific boundary *S*, with respect to hypothesis space *H* and training data *D*, is the set of maximally specific members of *H* consistent with *D*.
 - $S \equiv \{ s \in H \mid Consistent(s, D) \land (\nexists s' \in H)[(s >_g s') \land Consistent(s', D)] \}$
- Version Space representation(thm)

$$-VS_{H,D} = \{ h \in H \mid (\exists s \in S)(\exists g \in G) (g \geq_g h \geq_g s) \}$$

Candidate-Elimination Learning Algorithm

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do If d is a positive example Remove from G any hypothesis inconsistent with d For each hypothesis s in S that is not consistent with d Remove s from S Add to S all minimal generalizations h of s such that h is consistent with d, and some member of G is more general than h Remove from S any hypothesis that is more general than another hypothesis in S

If d is a negative example

Remove from S any hypothesis inconsistent with d

For each hypothesis g in G that is not consistent with d

Remove g from G

Add to G all minimal specializations h of g such that h is consistent with d, and some member of S is more specific than h

Remove from G any hypothesis that is the symplemeral than another hypothesis in G^6

Process making Version Space

Process making Version Space (cont.)

Example	Sky	Airtemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Remarks on Version Space and Candidate-Elimination

- Will the C-E algorithm converge to the correct hypothesis?
- What training example should the learner request next?
- How can partially learned concepts be used?

(details on next page)

Remarks on Version Space and Candidate-Elimination (cont.)

Will the C-E algorithm converge to the correct hypothesis?

- Converge if...
 - there are no errors in the training examples
 - there is some hypothesis in *H* that correctly describes the target concept
- Error example may result empty version space
- Similar symptom when target concept cannot be described in the hypothesis representation.

What training example should the learner request next?

- The term '*query*' to refer to such instances constructed by the learner, which are then classified by an external oracle.
- to find an optimal hypothesis among all hypotheses of *VS*, queries must be classified as positive by some of hypothesis in version space, but negative by others.
- the optimal query is to generate instances that satisfy exactly half the version space.
 - $-\left\lceil \log_2 |VS| \right\rceil$ experiments required to find correct target function

Remarks on Version Space and Candidate-Elimination (cont.)

How can partially learned concepts be used?

- The instance is classified as positive if and only if the instance satisfies every member of *S*.
- The instance is classified as negative if and only if the instance satisfies none of the members of *G*.
- When Classified as pos. by some members of *VS*, as neg. by the other members of *VS*
 - don't know!!

(Note that in this case, the Find-S algorithm outputs "negative")

- Majority voting : not exact (just probability)

Inductive Bias

Question:

- As discussed above we assumed that initial hypothesis space contain the target concept.
- What if the target concept is not in the hypothesis space?

A Biased Hypothesis Space:

- Bias the learner to consider only conjunctive hypotheses.
- Hypothesis space is unable to represent even simple disjunctive target concepts such as "*Sky=Sunny* or *Sky=Cloudy*".
- So, we need more expressive hypothesis space

Unbiased Learner

- Extend hypothesis space to the *power set* of *X*(*every teachable concept*!)
- e.g: *<Sunny*, ?, ?, ?, ?, ?> *V<Cloudy*, ?, ?, ?, ?>
- Problem: Unable to generalize beyond the observed examples.
 - Positive example (x_1, x_2, x_2)
 - negative example (x_4, x_5)
 - $S:\{(x_1 \lor x_2 \lor x_2)\}, G:\{\neg (x_4 \lor x_5)\}$
 - S boundary will always be simply the disjunction of the observed positive examples, while the G boundary will always be the negated disjunction of the observed negative examples.
 - The only examples that will be classified by *S* and *G* are the observed training examples themselves.
 - In order to converge to a single, final target concept, we will have to present every single instance in X as a training example!

Futility of Bias-Free Learning

• Property of inductive inference:

 a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances.

•
$$(D_c \land x_i) > L(x_i \land D_c)$$

- $y > z : z$ is inductively inferred from y

•
$$(B \land D_c \land x_i) \vdash L(x_i \land D_c)$$

 $- y \vdash z : z$ follows deductively from y

cf) L : An inductive learning algorithm $L(x_i \wedge D_c)$: the classification that L assigns to x_i after learning from the training data D_c

Inductive Bias

- Consider
 - concept learning algo. L
 - instance *X*, target concept *c*
 - training examples $D_c = \{\langle x, c(x) \rangle \}$
 - Let $L(X_i, D_c)$ denote the classification assigned to the instance x_i by *L* after training on the dada D_c .
- Definition:
 - inductive bias B of L is minimal set of assertion B such that for any target concept c and corresponding training example D_c
 - $\forall (x_i \in X) [(B \land D_c \land x_i) \vdash L(x_i \land D_c)]$
- Inductive bias of C-E algorithm
 - The target concept c is contained in the given hypothesis space H.

Inductive Bias (cont.)

- Advantage of inductive bias
 - provides nonprocedural means of characterizing their policy for generalizing beyond the observed data
 - comparison of different learners according to the strength of the inductive bias
- Consider three learning algorithms, which are listed from weakest to strongest bias.
 - 1. Rote-learning : storing each observed training example in memory. If the instance is found in memory, the store classification is returned.

Inductive bias : nothing – Weakest bias

2. Candidate-Elimination algo : new instances are classified only in the case where all members of the current version space agree in the classification.
 Inductive bias : Target concept can be represented in its hypothesis space

Inductive Bias (cont.)

3. Find-S : find the most specific hypothesis consistent with the training examples. It then uses this hypothesis to classify all subsequent instances.

Inductive bias : Target concept can be represented in its hypothesis space + All instances are negative instances unless the opposite is entailed by its other knowledge – **Strongest bias**

• More strongly biased methods make more inductive leaps, classifying a greater proportion of unseen instances!!