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Motivation

* The importance of evaluating hypotheses
— To understand whether to use the hypothesis
— An integral component of learning algorithm EX) Post-pruning in DT

 Two difficulties
— Bias in Estimate

— Test examples chosen independently of the training examples
— Variance in Estimate

— Larger set of test examples
e Subjects in this chapter
— Evaluating learned hypotheses

— Comparing the accuracy of two hypotheses
— Comparing the accuracy of two learning algorithms
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Estimating Hypothesis Accuracy

 Notations

X :space of all possible instances D : probability distribution of X
S :sample drawn from D f : target function h : hypothesis

o Sample error and true error
— Sample Error : the fraction of S that it misclassifies

error, (h) = 25( £ (x),h(x))

— True Error : the mlsclassne‘ cation probability a randomly drawn instance from D

error, (h) = Pr[f (x) # h(x)]

“While we want to know €I'rOry, (h) , we can measure only €Frror (h).”
— “How good an estimate of error, (h) is provided by error; (h) 27

Al & CV Lab, SNU 4



Estimating Hypothesis Accuracy (cont.)

- Confidence interval for discrete-valued hypothesis

S|=n, n=30, error,(h)="

Confidence interval : error, (h)+z, \/e’”m”s(h)(

[ —error, (h))
n

Requirements
© Discrete-valued hypothesis
® S drawn randomly from D
© The data independent of hypothesis

Recommendation

n>30 &error,(h) isnottoo close to 0 or 1
or

n error, (h)(] — error; (h)) > 5
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Basics of Sampling Theory

* Error estimation and estimating binomial poportions
_  The probability that  misclassifies error, (h)
Repeated experiment — Random variable error, (h)
error, (h) ~ Binomial Distribution

Coin toss example “The probability of observing r heads”

 Toss a worn and bent coin n times ~ “The probability that h misclassifies”
* The probability p ‘ N T

= error,(h), p=—~=error,(h
e Heads turn up r times P »(h), P . 5 (/)

Binomial distribution for n = 40, p =0.3
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Basics of Sampling Theory (cont.)

Binomial distribution

- Y : A random variable which can take on two values (Ex) 0 or 1
- p : The probability that on any single trial Y=1

-Y,,Y,,--+, Y : The sequence of i.i.d random variables Y

‘R = ZY : The number of trials for which Yl = [ in n independent
=1 experiments

The probability that R will take on a specific value r

Pr(R N r) A (nnl r)!

pU-p)”
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Basics of Sampling Theory (cont.)

e Mean and variance < n
E[Y. =2 Pr(Y = Yi)
Expected Value (or Mean) i—1

varly |= E[(Y - E[Y])Z]

\Variance

“How far the random variable is expected to vary from its mean value”
Standard Deviation oy = ,/Var |Y | = \/ E l(Y — E[Y ])2]

¢ In case of binomial distribution

Expected Value (or Mean) E[Y]= np
Variance Var[Y]= np(1— p)
Standard Deviation o, = \/np(l— D)
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Basics of Sampling Theory (cont.)

» Estimators, bias, and variance
— An estimator estimates the true value we do not know
[Example] errorg (h) estimates the true error errorD(h)

— _Estimation bias (E[Y]— p)
. The difference between the expected value of estimator and the true value

— Unbiased estimator : Y such that E[Y]— p=0

e Asngrows larger, E[Y ] ->Pp
« errorg (h) is the unbiased estimator of errorg(h)

— Variance : The smaller, the better

o, =\/ p(1- p) z\/errors(h)(l—errors(h))

(o) =0 =
errorg (h) r/n N N N

Two quick remarks

© S and /# chosen independently
@® Don’t be confused by “Estimation Bias” and “Inductive Bias”
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Basics of Sampling Theory (cont.)

® Example
— 12 errors on a sample of 40 randomly drawn test examples

- r 12
=error.(h)=—=—=

P 5 (7) 10

o’ =np(l—p)=np(dl-p)=40x0.3x(1-0.3)=8.4

o.=+84=29
o, 29

=0, =—= =0.07
n 40

0.3

O

errorg (h)
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Basics of Sampling Theory (cont.)

® Example
— 300 errors on a sample of 1000 randomly drawn test examples
R r 30
p =errorg(h) =—=—-=0.3
n 1000

o’ =np(l— p)=np(l- p) =1000x0.3x (1-0.3) = 210

o =210 =145

O errorg(h) = Orin = 7 — 14.5 =0.0145
’ n 1000

— As o, .m gets smaller, the confidence interval gets narrower with same
probability
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Basics of Sampling Theory (cont.)

« Normal distribution

— A bell shaped distribution specified by its mean £ and standard deviation O
— Central limit theorem (See Section 5.4.1)

“Binomial distribution can be approximated by normal distribution”

Normal distribution

- X : A random variable X € (—0,+) 1(X—,uj2

Probability density function p(X) =

\ 270 ?

Cumulative distribution Prla< X <b]=[" p(x)dx

Expected value, variance, and standard deviation
E[X]J=¢  Vvar[X]=6? oyx=0
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Basics of Sampling Theory (cont.)

* Normal distribution
— Table about the Standard Normal distribution (,u =0, o= 1) , Table 5.1
— The size of the interval about the mean that contains N% of the probability

04 Normal distribution with mean 0, standard deviation 1

0.3%
03
0.2

Table 5.1

Confidence Level N% 50% 68% 80% 90% 95% 98% 99%
Constant ZN 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Al & CV Lab, SNU

13



Basics of Sampling Theory (cont.)

Confidence Intervals

— N% confidence interval
. An interval that is expected with probability N % to contain p
— Confidence interval for # and Y: Y*ZIyo, utiyo

Obtaining Confidence Intervals for error,(h)

errorg (h)(l — errorg (h))
n

@ errorg (h)~ Binomial distribution where g =errory(h), o =\/

@® For large n, this binomial distribution is approximated by a normal distribution

© Find the N% confidence interval for estimating x of a Normal distribution

errorg (h)(l — €errorg (h))
n

(n230 or np(l—p)25)

errorg (h) £ zN\/

— Two approximations involved
« errory(h) approximated by errorg(h)
« Binomial distribution approximated by normal distribution
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Basics of Sampling Theory (cont.)

e Two-sided and one-sided bounds
— Two-sided bound specifies both lower and upper bound
— One-sided bound specifies either of them

“What is the probability that errory(h) is at most U ?” — One-sided bound

{100(1 -a )% Confidence Interval | o : The probability that the correct value

100(1 —al 2)% Confidence Interval lies outside the interval
o4} ) ’ ,.r-:-»\ o 1 04 ) ’ r»ﬂ';w,
03s | PN ] oas | AR \
03 t : )Y . 03 b £ \
023 i i 1 025 1 ; i
02} ii:ii it 02t it e ]l
013 ¢ os | -
o1 i o1 |
005 1 il 005 |
o , THHHH it , o .
3 -2 -1 0 1 2 3 -3 0 1 2 3
(a) b)
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Basics of Sampling Theory (cont.)

* Example
— 12 errors on a sample of 40 randomly drawn test examples

errorg (h)=0.3
Oerrorg (h) = 0.07

(Two-sided) 95% confidence interval (¢ =0.05)
error, (h) £ 2, \/errors (h)(1 —errorg (h))

=0.3+1.96x0.07 =0.3+0.14

n

(One-sided) 97.5% confidence interval (e =0.05)

errory (h) 1Is at most 0.3+0.14=0.44
No assertion about the lower bound!
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* A General approach for driving confidence intervals
— Central Limit Theorem

* Difference in errors of two hypotheses
— Hypothesis testing

e Comparing learning algorithms
— Paired t-tests
— Practical considerations
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Estimation and Hypothesis Testing

.~ Central Limit Theorem

Estimation Hypothesis Testing

Ho:/uzluo
leu

Test
Estimator Statistics
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A General Approach for

Deriving Confidence Intervals

General process estimating parameter P
(1) Identify the underlying population parameter p : errory(h)

(2) Define the estimator Y : errorg(h)
: minimum variance, unbiased estimator desirable

(3) Determine the probability distribution D, of Y
: mean(u ) and variance(c’ ) of Y

(4) Determine the N% confidence interval from D,
: LowerBound and UpperBound

Utz -o ForDiscrete-valued Hypothesis error (k) % z, .\/errors (h)(X— error (h))

n
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A General Approach for

Deriving Confidence Intervals (cont.)

Central limit theorem

Consider a set of iid random variables v, ...y, governed by an arbitrary probability
distribution with mean # and finite varlance o> Define the sample mean, v, “ZY

Then as n >« , the distribution governing /f approaches a Normal Dist". B
with zero mean and standard deviation equal to 1.

Yn~N(ﬂ

’[ﬁjz)
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A General Approach for

Deriving Confidence Intervals (cont.)

*  Why central limit theorem is useful ?

— We can know the dist". of sample mean y
( even when we do not know the dist". of Y))

— We can determine the mean(x ) and variance(s?) of v, .
( from the mean and variance of Y)

Yy ~UD (u,0°)i 1Y, ~N(u,S?)!

MDY, ..V —i-7 _

E () 11 1n : : Zl mean (Yk)zﬂ

(2) Yy -+ Yy, HEE S & : - , o2
s & : — 3 i Y = = —=5
(3) Yy - Yo E E Ys variance( Y«) =S 3

=> Then we can compute confidence interval ! Utz -o
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A Difference in Error of Two Hypotheses

e Parameter to be estimated
. The difference between the true error of 2 hypotheses, 4, & k.,

. Parameter ¢ = error,, (b)) — error, (h,)

« CASE 1: Tested on independent test samples
— Hypothesis #, : sample S, containing n, examples
— Hypothesis 4, : sample S, containing n, examples

7AN
. Estimator  d = errorg, (h;) —errorg, (h,)

-~ 21 gives an unbiased estimate of 4: E(d) =d

E(cAZ) —d = E{errorg, (h) —errorg, (h,)}—{error, (h,) —error,(h,)}
= E{errorg, (b))} — E{errors, (h,)} —{error, (h) —error, (h,)}

=[E{errorg, (h)}—error,(h)]+[—-E{errory,(h,)} + error,(h,)]
= [error, (k) — error, (h)] + [—error, (h,) + error,(h,)]

=0
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A Difference in Error of Two Hypotheses (cont.)

 CASE 1 : Tested on independent test samples (continued)
— For large ny, n, (>=30), dist". of 21 is approximately Normal dist".

" errorg () ~ N(uy,0,),  errorg,(h,) ~ N(u,,0,)

Difference of 2 normal distributions is also a normal distribution

AN

— Mean of ¢4 N
E(d) = E{errory, () —errors,(hy)} = — 1,

recall : E(aX —bY)=aE(X)-bE(Y) (if Xand Y are independent R.V.)
— Variance of 21
o _ errorg (h)(1—errorg, (h)) | errors, (h,)L—errorg,(h,))

d n, n,
recall : Var(aX —bY)=a*Var(X)+b*Var(Y) (if X and Y are independent R.V.)

VAN

— Confidence Interval of d (when ny, n, are large enough).

" errory (h)(1—errorg (b)) errorg,(h,)d—error,(h,))
d*tz, - n + ;
1 2
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A Difference in Error of Two Hypotheses (cont.)

CASE 2 : Tested on a single test sample
. Hypothesis /#; & Hypothesis /, are tested on a single test sample S.

AN

. Estimator  d = errory(h) —errorg(h,)

— Confidence interval of d.

" \/errorS (h,)(I —errorg(h;)) +errorg(h,)(I —errorg(h,))
di ZN *
n

— Smaller variance comparing with CASE1.
- Single sample S eliminates the variance due to random differences in the S; and S,
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A Difference in Error of Two Hypotheses (cont.)

e Hypothesis testing

: Testing for some specific conjecture (rather than in confidence intervals for some parameter)

— Situation
« Independent sample S; & S, (|S,| =[S,|=100)
* errorg(h;) =0.30 ~
. eniorsz(hz) =0.20 “What is the probability the errorg(h,) > error,(h,) given 4 =0.10 ?”
* d =0.10

“What is the probability that d>0 given d =0.10 ?”

« d falls into the one-sided interval cAl< d+0.10 —> cAZ< 1. +0.10
d

d<u +Z72,-0o,.
d

d
Z,-0,=010 , GA:\/0-3(1—0.3)+0.2(1_o,2)
‘ 100

d

~0.061

Z, =164

Two-sided constant for 90% confidence interval

— Test result
Therefore, the probability the errory(h,) > errorp(h,) is approximately 95% .

 Accept H, with 95% confidence

* Reject H, with 5% significant level
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Comparing Learning Algorithms

Which of L, and L, is the better learning method on average for learning
some particular target function /2

« Comparing the performance of two algorithms (L ,, L;)

: Expected value of the difference in errors between L, and L where L,(S) is the hypothesis output by
learning method, L,, on the sample, S, of training data.

[ lerror, (L,(S))—error, (Ly(S))]

ScD

(S : Training Data sampled from underlying distribution D)

 Practical ways of algorithm comparison given limited sample, D,, of data

(1) Partitioning data set into training set & test set
: A limited sample D, is divided into a training set .S, and Test Set 7,

error;, (L,(S,)— error, (L,(S,))

DO SO TO
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Comparing Learning Algorithms (cont.)

(2) Repeated partitioning and averaging : £-fold method

. D, is divided into disjoint training and test sets repeatedly and then the mean of the test set errors

for these different experiment is calculated.  F [error , (L ,(S)) — error , (L, (S))]

Sc D,
DO
1. Partition the available data Dg into k disjoint subsets 13, B3, ..., Ti of equal size, where this size
is at least 30. (1) S 1

2. Fori from 1 to k, do

use T; for the test set, and the remaining data for training set §; (2) :ﬂ S
o Si < {Do-T} 2
o hy « La(5) =
o hp < Lp(S) (3) S3
o &; « errory;(ha) —errorg (hp)
3. Return the value §, where -

§= %Z&' (T5.1) ; E
- - _ (k) S T,
s returned from the above is the estimate of :
F lerror,(L,(S))—error, (Ly(S))] |Sk| = %|DO|, |Tk| > 30
ScD
which is again the approximation of SE;’) [error, (L, (S)) —error;, (L (S))]
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Comparing Learning Algorithms (cont.)

(2) Repeated partitioning and averaging : k-fold method (continued)

* The approximate N% confidence interval

Confidence level N
0% 95% 98% 99%

_ k
Oxt,, -5~ Wwhere g_ = \/
AR °\ k(k-1) Z;‘ y=2 292 430 696 992
y=5 202 257 336 403

- N Confidence level , v=10 181 223 276 3.17
- k-1 . Degrees of freedom v, number of independent v=20 172 209 253 284

- v=30 170 204 246 275
random events producing the values for random L=120 166 198 236 262

variable 5 v=o0 164 196 233 258
- If k20 1, , approaches the constant z,,

Paired test : Tests where the hypotheses are evaluated over identical samples.

Paired Test generate tighter confidence interval than Test on Separate

Data samples (Due to eliminate the difference of sample makeup)
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Comparing Learning Algorithms (cont.)

Paired r-test

. Statistical justification of the previous comparing algorithm
procedure

— Estimation procedure

(1) Given i.i.d. random variables : Y,,..., Y,

(2) Estimate the mean p of distribution governing ¥, from estimator

(3) Estimator : y _ % Zk: Y
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Comparing Learning Algorithms (cont.)

- t-test, which is applicable to the special case of the estimator procedure where
each Y, follows a Normal distribution, provides

Y—ty, 15, Su=EY,)<Y +1t,,, 5. ,where s, E\/k(kl—ni(y"_?)z

where ¢, Is a constant characterizing ¢ distribution as z, characterizes a Normal
distribution.

- In the previous comparing learning algorithm, if on each iteration a new random
training set S; and new random test set 7, are drawn from the underlying instance
distribution instead of the fixed sample D,, then each
o, = errory, (h,) —error; (hy) With |7 =30 follows a normal distribution and thus

from z-test result,

H=E(S,)= SlC;JD[eI”I”OI”D (L,(S)) —error, (Ly(S))] = gitN,K—l ‘S5
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Comparing Learning Algorithms (cont.)

Practical considerations

Paired z-test does not strictly justify the confidence interval previously discussed
because it is evaluated on a limited data D, and partitioned method. Nevertheless, this
confidence interval provides good basis for experimental comparisons of learning
methods.

- When data is limited...

(1) k-fold method

o kis limited.
» Test set are drawn independently (examples are tested exactly once)

(2) Randomized method
: Randomly choose a test set at least 30 examples from D, and use remaining

examples for training.

» Procedure can be repeated infinitely
(k can be infinite number = narrower confidence interval)

» Test sets are not independent.
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