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Overview

• Motivation
• Estimating Hypothesis Accuracy
• Basics of Sampling Theory
• A General Approach for Driving Confidence Intervals
• Difference in Error of  Two Hypotheses
• Comparing Learning Algorithms
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Motivation

• The importance of evaluating hypotheses
– To understand whether to use the hypothesis
– An integral component of learning algorithm  Ex) Post-pruning in DT

• Two difficulties
– Bias in Estimate

→ Test examples chosen independently of the training examples
– Variance in Estimate

→ Larger set of test examples

• Subjects in this chapter
– Evaluating learned hypotheses
– Comparing the accuracy of two hypotheses
– Comparing the accuracy of two learning algorithms
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Estimating Hypothesis Accuracy

• Notations

• Sample error and true error
– Sample Error : the fraction of S that it misclassifies

– True Error : the misclassification probability a randomly drawn instance from D

“While we want to know                       ,   we can measure only                       .”
→ ““How good an estimate of                        is provided by   How good an estimate of                        is provided by   ??””

instances possible all of space:X XD  ofon distributiy probabilit:
DS  fromdrawn  sample: functiontarget :f hypothesis:h

( )∑
∈

=
Sx

S xhxf
n
1herror )(),()( δ

[ ])()(Pr)( xhxfherror
DxD ≠≡

∈

)(herrorS)(herrorD

)(herrorS
)(herrorD



AI & CV Lab, SNU 5

Estimating Hypothesis Accuracy (cont.)

• Confidence interval for discrete-valued hypothesis

Requirements
Discrete-valued hypothesis
S drawn randomly from D
The data independent of hypothesis

Recommendation
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Basics of Sampling Theory

• Error estimation and estimating binomial poportions
– The probability that h misclassifies

Repeated experiment → Random variable 
~ Binomial Distribution
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“The probability of observing r heads”
≈ “The probability that h misclassifies”

)(ˆ   ),( herror
n
rpherrorp SD ≈=≈

• Toss a worn and bent coin n times
• The probability p
• Heads turn up r times

Coin toss example
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Basics of Sampling Theory (cont.)

• Y : A random variable which can take on two values  (Ex) 0 or 1
• p : The probability that on any single trial Y=1
• : The sequence of i.i.d random variables Y
• : The number of trials for which                in n independent 

experiments

The probability that R will take on a specific value r

Binomial distributionBinomial distribution
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Basics of Sampling Theory (cont.)

• Mean and variance
Expected Value (or Mean)

Variance
“How far the random variable is expected to vary from its mean value”

Standard Deviation

※ In case of binomial distribution
Expected Value (or Mean)

Variance

Standard Deviation
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Basics of Sampling Theory (cont.)

• Estimators, bias, and variance
– An estimator estimates the true value we do not know

[Example]                      estimates the true error 

– Estimation bias
: The difference between the expected value of estimator and the true value

– Unbiased estimator : Y such that 
• As n grows larger, 
• is the unbiased estimator of

– Variance : The smaller, the better

Two quick remarks
S and h chosen independently
Don’t be confused by “Estimation Bias” and “Inductive Bias”
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Basics of Sampling Theory (cont.)

• Example
– 12 errors on a sample of 40 randomly drawn test examples
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• Example
– 300 errors on a sample of 1000 randomly drawn test examples

– As              gets smaller, the confidence interval gets narrower with same 
probability

Basics of Sampling Theory (cont.)
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Basics of Sampling Theory (cont.)

• Normal distribution
– A bell shaped distribution specified by its mean         and standard deviation 
– Central limit theorem (See Section 5.4.1)

σμ

• X : A random variable
Probability density function

Cumulative distribution

Expected value, variance, and standard deviation

NormalNormal distributiondistribution
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“Binomial distribution can be approximated by normal distribution”
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Basics of Sampling Theory (cont.)

• Normal distribution
– Table about the Standard Normal distribution                    ; Table 5.1 
– The size of the interval about the mean that contains N% of the probability

Confidence Level N% 50% 68% 80% 90% 95% 98% 99%

Constant 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Table 5.1

Nz
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Basics of Sampling Theory (cont.)

• Confidence intervals
– N% confidence interval

: An interval that is expected with probability N % to contain p
– Confidence interval for       and       :

– Two approximations involved
• approximated by
• Binomial distribution approximated by normal distribution
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Obtaining Confidence Intervals for

~ Binomial distribution where 

For large n, this binomial distribution is approximated by a normal distribution

Find the N% confidence interval for estimating        of a Normal distribution
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Basics of Sampling Theory (cont.)

• Two-sided and one-sided bounds
– Two-sided bound specifies both lower and upper bound
– One-sided bound specifies either of them

“What is the probability that                   is at most U ?” → One-sided bound)(herrorD
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Basics of Sampling Theory (cont.)

• Example
– 12 errors on a sample of 40 randomly drawn test examples
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is at most 0.3+0.14=0.44
No assertion about the lower bound!
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• A General approach for driving confidence intervals
− Central Limit Theorem

• Difference in errors of two hypotheses
− Hypothesis testing

• Comparing learning algorithms     
− Paired t-tests
− Practical considerations

Next…
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PopulationPopulation

SampleSample

X

EstimationEstimation Hypothesis TestingHypothesis Testing
0H μμ = :0

ParameterParameter

EstimatorEstimator
Test Test 
StatisticsStatistics

Central Limit TheoremCentral Limit Theorem

Estimation and Hypothesis Testing
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A General Approach for

Deriving Confidence Intervals
• General process estimating parameter P

(1) Identify the underlying population parameter population parameter pp : errorD(h)

(2) Define the estimator estimator YY : errorS(h)
: minimum variance, unbiased estimator desirable 

(3) Determine the probability distribution  probability distribution  DDYY of  of  YY
: mean(    ) and variance(      ) of Y

(4) Determine the N%N% confidence intervalconfidence interval from DDYY

: LowerBound and UpperBound
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A General Approach for

Deriving Confidence Intervals (cont.)

• Central limit theorem
Consider a set of iid random variables             governed by an arbitrary probability 

distribution with mean      and finite variance    .  Define the sample mean,         
Then as , the distribution  governing            approaches a Normal Distn.  
with zero mean and standard deviation equal to 1.
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A General Approach for

Deriving Confidence Intervals (cont.)
• Why central limit theorem is useful ?

– We can know the distn. of sample mean     
( even when we do not know the distn. of     )

– We can determine the mean(    ) and variance(     ) of      . 
( from the mean and variance of     )

Then we can compute confidence interval !Then we can compute confidence interval !
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A Difference in Error of  Two Hypotheses

• Parameter to be estimated
: The difference between the true error of  2 hypotheses, h1 & h2.

: Parameter Parameter 

• CASE 1 : Tested on independent test samples
– Hypothesis h1 :  sample S1 containing n1 examples
– Hypothesis h2 :  sample S2 containing n2 examples

: Estimator

– gives an unbiased estimate of d :
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A Difference in Error of  Two Hypotheses (cont.)

• CASE 1 : Tested on independent test samples (continued)
– For large n1, n2 ( >= 30),  distn. of         is approximately Normal distn.

Difference of  2 normal distributions is also a normal distribution
–– MeanMean of      

recall  :                                                       (if X and Y are independent R.V.)

– VarianceVariance of     

recall  :                                                       (if X and Y are independent R.V.)

– Confidence IntervalConfidence Interval of           (when n1, n2 are large enough).
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A Difference in Error of  Two Hypotheses (cont.)

• CASE 2 : Tested on a single test sample
:: Hypothesis h1 &  Hypothesis h2 are tested on a single test sample S.

: Estimator

– Confidence interval  Confidence interval  of     .

– Smaller variance comparing with CASE1.
: Single sample S eliminates the variance due to random differences in the S1 and S2.
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A Difference in Error of  Two Hypotheses (cont.)

• Hypothesis testing
: Testing for some specific conjecture (rather than in confidence intervals for some parameter)

– Situation 
• Independent sample S1 & S2 ( |S1| =|S2|=100)
• errorS1(h1) = 0.30
• errorS2(h2) = 0.20
• = 0.10

• falls into the one-sided interval

Two-sided constant for 90% confidence interval

– Test result 
Therefore, the probability the errorD(h1) > errorD(h2) is approximately 95% .

• Accept H0 with  95%  confidence
• Reject  H0 with    5%  significant level
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Comparing Learning Algorithms

Which of LA and LB is the better learning method on average for learning 
some particular target function f ?

• Comparing the performance of two algorithms (LA, LB)
: Expected value of the difference in errors between LA and LB. where LA(S) is the hypothesis output by 

learning method, LA, on the sample, S, of training data.

(S : Training Data sampled from underlying distribution D)

• Practical ways of algorithm comparison given limited sample, D0, of data

(1) Partitioning data set into training set & test set
: A limited sample D0 is divided into a training set S0 and Test Set T0
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Comparing Learning Algorithms (cont.)

(2) Repeated partitioning and averaging : k-fold method

: D0 is divided into disjoint  training  and test sets repeatedly and then the mean of the test set errors 

for these different experiment is calculated.

returned from the above is the estimate of 

which is again the approximation of
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Comparing Learning Algorithms (cont.)

(2) Repeated partitioning and averaging : k-fold method (continued)

•• The approximate N% confidence interval

where

- N : Confidence level , 
- k-1 : Degrees of freedom ν, number of independent 

random events producing the values for random 
variable

- If k ∞ tN,k-1 approaches the constant zN.
Paired test :Paired test : Tests  where the hypotheses are evaluated over identical samples.

Paired Test generate tighter confidence interval than Test on Separate        
Data samples (Due to eliminate the difference of sample makeup)
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Comparing Learning Algorithms (cont.)

• Paired t-test 

: Statistical justification of the previous comparing algorithm 
procedure

– Estimation procedure

(1) Given i.i.d. random variables : Y1,…,Yk

(2) Estimate the mean μ of distribution governing Yi from estimator

(3) Estimator  : ∑
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k
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Comparing Learning Algorithms (cont.)

- t-test, which is applicable to the special case of the estimator procedure where 
each Yi follows a Normal distribution, provides 

where tN,k-1 is a constant characterizing t distribution as zn characterizes a Normal 
distribution.

- In the previous comparing learning algorithm, if on each iteration a new random 
training set Si and new random test set Ti are drawn from the underlying instance 
distribution instead of the fixed sample D0, then each                                           

with |Ti|≥30 follows a normal distribution and thus 
from t-test result, 
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Comparing Learning Algorithms (cont.)

• Practical considerations
Paired t-test does not strictly justify the confidence interval previously discussed 
because it is evaluated on a limited data D0 and partitioned  method. Nevertheless, this 
confidence interval provides good basis for experimental comparisons of learning 
methods.

-- When data is limitedWhen data is limited……
, (1) (1) kk--fold methodfold method

• k is  limited.
• Test set are drawn independently (examples are tested exactly once) 

(2) Randomized method(2) Randomized method
: Randomly choose a test set at least 30 examples from D0 and use remaining  
examples for training.

• Procedure can be repeated infinitely 
(k can be infinite number narrower confidence interval)

• Test sets are not independent.
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