Machine Learning

Evaluating Hypotheses

Artificial Intelligence & Computer Vision Lab School of Computer Science and Engineering Seoul National University

Overview

- Motivation
- Estimating Hypothesis Accuracy
- Basics of Sampling Theory
- A General Approach for Driving Confidence Intervals
- Difference in Error of Two Hypotheses
- Comparing Learning Algorithms

Motivation

- The importance of evaluating hypotheses
 - To understand whether to use the hypothesis
 - An integral component of learning algorithm Ex) Post-pruning in DT
- Two difficulties
 - Bias in Estimate
 - \rightarrow Test examples chosen independently of the training examples
 - Variance in Estimate
 - \rightarrow Larger set of test examples
- Subjects in this chapter
 - Evaluating learned hypotheses
 - Comparing the accuracy of two hypotheses
 - Comparing the accuracy of two learning algorithms

Estimating Hypothesis Accuracy

- Notations
 - X: space of all possible instancesD: probability distribution of XS: sample drawn from Df: target functionh: hypothesis
- Sample error and true error
 - Sample Error : the fraction of *S* that it misclassifies

$$error_{S}(h) = \frac{1}{n} \sum_{x \in S} \delta(f(x), h(x))$$

- True Error : the misclassification probability a randomly drawn instance from D

$$error_{D}(h) \equiv \Pr_{x \in D} [f(x) \neq h(x)]$$

"While we want to know $error_D(h)$, we can measure only $error_S(h)$." \rightarrow "How good an estimate of $error_D(h)$ is provided by $error_S(h)$?"

Estimating Hypothesis Accuracy (cont.)

• Confidence interval for discrete-valued hypothesis

$$|S| = n, n \ge 30, error_{S}(h) = \frac{r}{n}$$

Confidence interval : $error_{S}(h) \pm z_{N}\sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$

Requirements

- **1** Discrete-valued hypothesis
- **2** S drawn randomly from D
- The data independent of hypothesis

Recommendation

$$n \ge 30$$
 & $error_{s}(h)$ is not too close to 0 or 1
or
 $n \ error_{s}(h)(1 - error_{s}(h)) \ge 5$

Basics of Sampling Theory

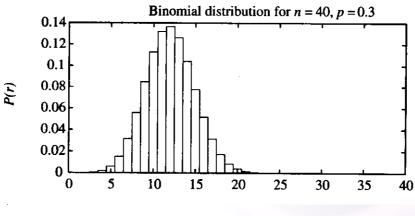
- Error estimation and estimating binomial poportions
 - The probability that *h* misclassifies $error_{S_i}(h)$ Repeated experiment \rightarrow Random variable $error_{S_i}(h)$ $error_{S_i}(h) \sim$ Binomial Distribution

Coin toss example

- Toss a worn and bent coin *n* times
- The probability *p*
- Heads turn up *r* times



"The probability of observing *r* heads" \approx "The probability that *h* misclassifies" $p \approx error_D(h), \quad \hat{p} = \frac{r}{n} \approx error_S(h)$



Binomial distribution

- Y : A random variable which can take on two values (Ex) θ or 1
- *p* : The probability that on any single trial *Y*=1
- Y_1, Y_{2_n}, \dots, Y_n : The sequence of i.i.d random variables Y• $R \equiv \sum Y_i$: The number of trials for which $Y_i = 1$ in *n* independent
 - experiments

The probability that R will take on a specific value r

$$\Pr(R=r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

• Mean and variance

Expected Value (or Mean)

Variance

$$E[Y] \equiv \sum_{i=1}^{n} y_i \operatorname{Pr}(Y = y_i)$$
$$Var[Y] \equiv E[(Y - E[Y])^2]$$

"How far the random variable is expected to vary from its mean value"

Standard Deviation

$$\sigma_{Y} \equiv \sqrt{Var[Y]} = \sqrt{E[(Y - E[Y])^{2}]}$$

* In case of binomial distribution

Expected Value (or Mean)

Variance

Standard Deviation

$$E[Y] = np$$
$$Var[Y] = np(1-p)$$
$$\sigma_Y = \sqrt{np(1-p)}$$

- Estimators, bias, and variance
 - An <u>estimator</u> estimates the true value we do not know [Example] $error_{S}(h)$ estimates the true error $error_{D}(h)$
 - <u>Estimation bias</u> (E[Y] p)
 - : The difference between the expected value of estimator and the true value
 - <u>Unbiased estimator</u> : Y such that E[Y] p = 0
 - As n grows larger, $E[Y] \rightarrow p$
 - $error_{S}(h)$ is the unbiased estimator of $error_{D}(h)$
 - <u>Variance</u> : The smaller, the better

$$\sigma_{error_{S}(h)} = \sigma_{r/n} = \frac{\sigma_{r}}{n} = \sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{error_{S}(h)(1-error_{S}(h))}{n}}$$

Two quick remarks

• S and h chosen independently

2 Don't be confused by "Estimation Bias" and "Inductive Bias"

- Example
 - 12 errors on a sample of 40 randomly drawn test examples

$$\hat{p} = error_{S}(h) = \frac{r}{n} = \frac{12}{40} = 0.3$$

$$\sigma_{r}^{2} = np(1-p) \cong n\hat{p}(1-\hat{p}) = 40 \times 0.3 \times (1-0.3) = 8.4$$

$$\sigma_{r} = \sqrt{8.4} \cong 2.9$$

$$\sigma_{error_{S}(h)} = \sigma_{r/n} = \frac{\sigma_{r}}{n} = \frac{2.9}{40} = 0.07$$

- Example
 - 300 errors on a sample of 1000 randomly drawn test examples

$$\hat{p} = error_{S}(h) = \frac{r}{n} = \frac{30}{1000} = 0.3$$

$$\sigma_{r}^{2} = np(1-p) \cong n\hat{p}(1-\hat{p}) = 1000 \times 0.3 \times (1-0.3) = 210$$

$$\sigma_{r} = \sqrt{210} \cong 14.5$$

$$\sigma_{error_{S}(h)} = \sigma_{r/n} = \frac{\sigma_{r}}{n} = \frac{14.5}{1000} = 0.0145$$

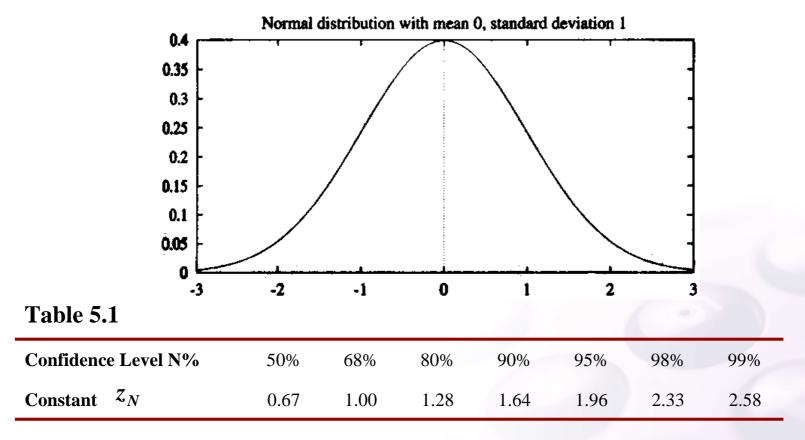
– As $\sigma_{error_{s}(h)}$ gets smaller, the confidence interval gets narrower with same probability

- Normal distribution
 - A bell shaped distribution specified by its mean μ and standard deviation σ
 - Central limit theorem (See Section 5.4.1)

"Binomial distribution can be approximated by normal distribution"

Normal distribution• X : A random variable $X \in (-\infty, +\infty)$
Probability density function $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ Cumulative distribution $\Pr[a \le X \le b] = \int_a^b p(x) dx$ Expected value, variance, and standard deviation
 $E[X] = \mu$ $Var[X] = \sigma^2$ $\sigma_X = \sigma$

- Normal distribution
 - Table about the Standard Normal distribution $(\mu = 0, \sigma = 1)$; Table 5.1
 - The size of the interval about the mean that contains N% of the probability



- Confidence intervals
 - -N% confidence interval
 - : An interval that is expected with probability N% to contain p
 - Confidence interval for μ and $y : y \pm z_N \sigma$, $\mu \pm z_N \sigma$

Obtaining Confidence Intervals for $error_D(h)$

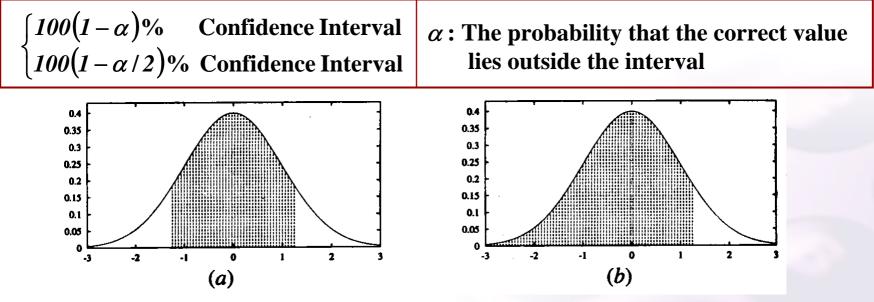
- $error_{S}(h) \sim \text{Binomial distribution where } \mu = error_{D}(h), \ \sigma = \sqrt{\frac{error_{S}(h)(1 error_{S}(h))}{n}}$
- **2** For large *n*, this binomial distribution is approximated by a normal distribution
- **3** Find the N% confidence interval for estimating μ of a Normal distribution

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}} \qquad (n \ge 30 \text{ or } np(1-p) \ge 5)$$

- Two approximations involved
 - $error_D(h)$ approximated by $error_S(h)$
 - Binomial distribution approximated by normal distribution

- Two-sided and one-sided bounds
 - <u>Two-sided bound</u> specifies both lower and upper bound
 - <u>One-sided bound</u> specifies either of them

"What is the probability that $error_D(h)$ is at most U?" \rightarrow One-sided bound

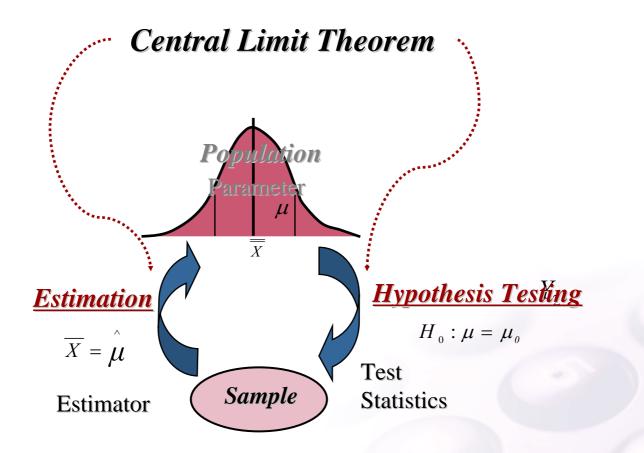


- Example
 - 12 errors on a sample of 40 randomly drawn test examples

 $error_{S}(h) = 0.3$ $\sigma_{error_{S}(h)} = 0.07$ $(Two-sided) 95\% \text{ confidence interval} \qquad (\alpha = 0.05)$ $error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}} = 0.3 \pm 1.96 \times 0.07 = 0.3 \pm 0.14$ $(One-sided) 97.5\% \text{ confidence interval} \qquad (\alpha = 0.05)$ $error_{D}(h) \text{ is at most } 0.3+0.14=0.44$ No assertion about the lower bound!

- A General approach for driving confidence intervals
 - Central Limit Theorem
- Difference in errors of two hypotheses
 - Hypothesis testing
- Comparing learning algorithms
 - Paired t-tests
 - Practical considerations

Estimation and Hypothesis Testing



A General Approach for Deriving Confidence Intervals

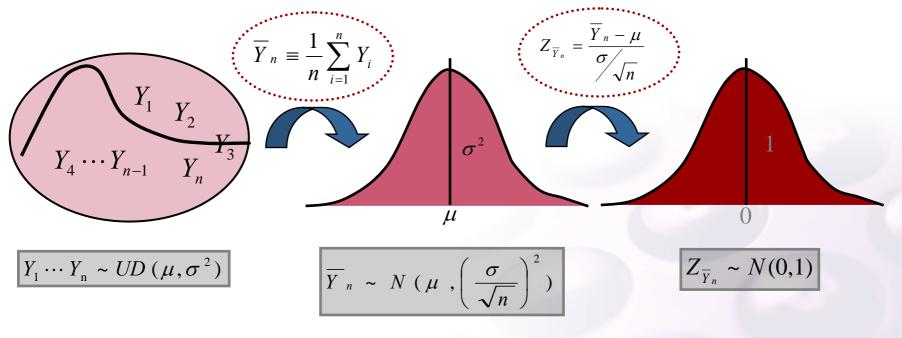
- General process estimating parameter *P*
 - (1) Identify the underlying population parameter p : $error_D(h)$
 - (2) Define the estimator $Y : error_{S}(h)$
 - : minimum variance, unbiased estimator desirable
 - (3) Determine the probability distribution D_Y of Y
 - : mean(μ) and variance(σ^2) of Y
 - (4) Determine the *N*% confidence interval from D_Y
 - : LowerBound and UpperBound

 $\mu \pm z_n \cdot \sigma \xrightarrow{\text{For Discrete-valued Hypothesis}} error_s(h) \pm z_n \cdot \sqrt{\frac{error_s(h)(1 - error_s(h))}{n}}$

A General Approach for Deriving Confidence Intervals (cont.)

• Central limit theorem

Consider a set of iid random variables $Y_1 \cdots Y_n$ governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean, $\overline{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i$ Then as $\underline{n \to \infty}$, the distribution governing $\frac{\overline{Y}_n - \mu}{\sigma \sqrt{n}}$ approaches a Normal Distⁿ. with zero mean and standard deviation equal to 1.



A General Approach for Deriving Confidence Intervals (cont.)

- Why central limit theorem is useful ?
 - We can know the dist^{*n*}. of sample mean \overline{Y} (even when we do not know the dist^{*n*}. of Y_i)
 - We can determine the mean(μ) and variance(σ^2) of Y_i . (from the mean and variance of \overline{Y})

 \rightarrow Then we can compute confidence interval ! $\mu \pm z_n \cdot \sigma$

A Difference in Error of Two Hypotheses

- Parameter to be estimated
 - : The difference between the true error of 2 hypotheses, $h_1 \& h_2$.

: Parameter $d \equiv error_D(h_1) - error_D(h_2)$

- CASE 1 : Tested on <u>independent</u> test samples
 - Hypothesis h_1 : sample S_1 containing n_1 examples
 - Hypothesis h_2 : sample S_2 containing n_2 examples

: Estimator
$$d \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$$

- \hat{d} gives an unbiased estimate of d: $E(\hat{d}) = d$

$$E(\hat{d}) - d = E\{error_{S1}(h_1) - error_{S2}(h_2)\} - \{error_D(h_1) - error_D(h_2)\}$$

= $E\{error_{S1}(h_1)\} - E\{error_{S2}(h_2)\} - \{error_D(h_1) - error_D(h_2)\}$
= $[E\{error_{S1}(h_1)\} - error_D(h_1)] + [-E\{error_{S2}(h_2)\} + error_D(h_2)]$
 $\cong [error_D(h_1) - error_D(h_1)] + [-error_D(h_2) + error_D(h_2)]$
= 0

A Difference in Error of Two Hypotheses (cont.)

- CASE 1 : Tested on <u>independent</u> test samples (continued)
 - For large n_1, n_2 (>= 30), dist^{*n*}. of d is approximately Normal dist^{*n*}.

 $\because error_{S1}(h_1) \sim N(\mu_1, \sigma_1), \quad error_{S2}(h_2) \sim N(\mu_2, \sigma_2)$

Difference of 2 normal distributions is also a normal distribution - Mean of \hat{d} $E(\hat{d}) = E\{error_{s_1}(h_1) - error_{s_2}(h_2)\} \cong \mu_1 - \mu_2$

recall : E(aX - bY) = aE(X) - bE(Y) (if X and Y are independent R.V.) - Variance of \hat{d}

 $\sigma_{\hat{d}}^{2} = \frac{error_{S1}(h_{1})(1 - error_{S1}(h_{1}))}{n_{1}} + \frac{error_{S2}(h_{2})(1 - error_{S2}(h_{2}))}{n_{2}}$ recall : $Var(aX - bY) = a^{2}Var(X) + b^{2}Var(Y)$ (if X and Y are independent R.V.)

- **Confidence Interval** of d (when n_1, n_2 are large enough).

$$\hat{d} \pm z_N \cdot \sqrt{\frac{error_{S1}(h_1)(1 - error_{S1}(h_1))}{n_1} + \frac{error_{S2}(h_2)(1 - error_{S2}(h_2))}{n_2}}$$

A Difference in Error of Two Hypotheses (cont.)

- CASE 2 : Tested on <u>a single</u> test sample
 - : Hypothesis h_1 & Hypothesis h_2 are tested on a single test sample S.
 - : Estimator $d = error_s(h_1) error_s(h_2)$
 - **Confidence interval** of d.

$$\hat{d} \pm z_N \cdot \sqrt{\frac{\operatorname{error}_S(h_1)(1 - \operatorname{error}_S(h_1)) + \operatorname{error}_S(h_2)(1 - \operatorname{error}_S(h_2))}{n}}$$

- Smaller variance comparing with CASE1.
 - : Single sample S eliminates the variance due to random differences in the S_1 and S_2 .

A Difference in Error of Two Hypotheses (cont.)

Hypothesis testing

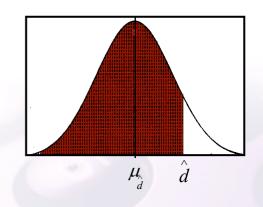
: Testing for some specific conjecture (rather than in confidence intervals for some parameter)

– Situation

- Independent sample $S_1 \& S_2$ ($|S_1| = |S_2| = 100$)
- $\operatorname{error}_{SI}(h_1) = 0.30$
- $\operatorname{error}_{S2}(h_2) = 0.20$
- = 0.10

"What is the probability the error_{*D*}(h_1) > error_{*D*}(h_2) given d = 0.10?" "What is the probability that d>0 given d = 0.10?"

 \hat{d} falls into the one-sided interval $\hat{d} < d + 0.10 \rightarrow \hat{d} < \mu_{1} + 0.10$ ٠ $\hat{d} < \mu_{A} + Z_{N} \cdot \sigma_{A}$ $Z_N \cdot \sigma_{\dot{d}} = 0.10^d, \ \sigma_{\dot{d}} = \sqrt{\frac{0.3(1-0.3)+0.2(1-0.2)}{100}} \approx 0.061$ $Z_N = 1.64$ Two-sided constant for 90% confidence interval



– Test result

Therefore, the probability the error_D $(h_1) > error_D(h_2)$ is approximately 95%.

- Accept H_0 with 95% confidence
- Reject H_0 with 5% significant level

Comparing Learning Algorithms

Which of L_A and L_B is the better learning method on average for learning some particular target function f?

• Comparing the performance of two algorithms (L_A, L_B)

: Expected value of the difference in errors between L_A and L_B , where $L_A(S)$ is the hypothesis output by learning method, L_A , on the sample, S, of training data.

$$E_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

(S: Training Data sampled from underlying distribution D)

• Practical ways of algorithm comparison given limited sample, D_0 , of data

(1) Partitioning data set into training set & test set

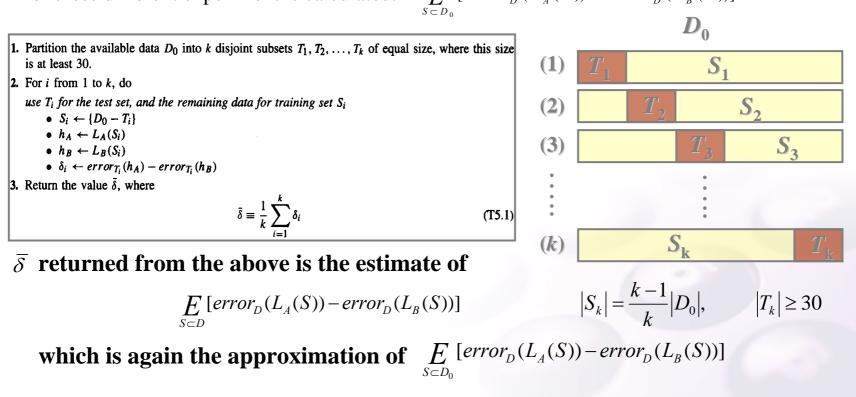
: A limited sample D_0 is divided into a training set S_0 and Test Set T_0

$$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$$

 $D_0 \qquad S_0 \qquad T_0$

(2) Repeated partitioning and averaging : k-fold method

: D_0 is divided into disjoint training and test sets repeatedly and then the mean of the test set errors for these different experiment is calculated. $E [error_D(L_A(S)) - error_D(L_B(S))]$



(2) Repeated partitioning and averaging : k-fold method (continued)

• The approximate N% confidence interval

$$\overline{\delta} \pm t_{N,k-1} \cdot s_{\overline{\delta}} \quad \text{where} \quad s_{\overline{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \overline{\delta})^2}$$

- N : Confidence level ,
- k-l: Degrees of freedom ν , number of independent random events producing the values for random variable $\overline{\delta}$
- If $k \rightarrow \infty t_{N,k-1}$ approaches the constant z_N .
- **Paired test :** Tests where the hypotheses are evaluated over <u>identical samples</u>. Paired Test generate tighter confidence interval than Test on Separate Data samples (Due to eliminate the difference of sample makeup)

	Confidence level N			
	90%	95%	98%	99%
v = 2	2.92	4.30	6.96	9.92
v = 5	2.02	2.57	3.36	4.03
v = 10	1.81	2.23	2.76	3.17
v = 20	1.72	2.09	2.53	2.84
v = 30	1.70	2.04	2.46	2.75
v = 120	1.66	1.98	2.36	2.62
$\nu = \infty$	1.64	1.96	2.33	2.58

Paired *t*-test

: Statistical justification of the previous comparing algorithm procedure

- Estimation procedure

- (1) Given i.i.d. random variables : $Y_1, ..., Y_k$
- (2) Estimate the mean μ of distribution governing Y_i from estimator

(3) Estimator :
$$\overline{Y} \equiv \frac{1}{k} \sum_{i=1}^{k} Y_i$$

- *t*-test, which is applicable to the special case of the estimator procedure where each Y_i follows a Normal distribution, provides

$$\overline{Y} - t_{N,k-1} \cdot s_{\overline{Y}} \le \mu = E(Y_i) \le \overline{Y} + t_{N,k-1} \cdot s_{\overline{Y}} \text{, where } s_{\overline{Y}} = \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^k (Y_i - \overline{Y})^2}$$

where $t_{N,k-1}$ is a constant characterizing *t* distribution as z_n characterizes a Normal distribution.

In the previous comparing learning algorithm, if on each iteration a new random training set S_i and new random test set T_i are drawn from the underlying instance distribution instead of the fixed sample D_0 , then each $\delta_i = error_{T_i}(h_A) - error_{T_i}(h_B)$ with $|T_i| \ge 30$ follows a normal distribution and thus

from *t*-test result,

$$\mu = E(\delta_i) = \mathop{E}_{S \subset D}[error_D(L_A(S)) - error_D(L_B(S))] = \overline{\delta} \pm t_{N,K-1} \cdot s_{\overline{\delta}}$$

Practical considerations

Paired *t*-test does not strictly justify the confidence interval previously discussed because it is evaluated on a limited data D_0 and partitioned method. Nevertheless, this confidence interval provides good basis for experimental comparisons of learning methods.

- When data is limited...
 - (1) k-fold method
 - k is limited.
 - Test set are drawn independently (examples are tested exactly once)

(2) Randomized method

: Randomly choose a test set at least 30 examples from D_0 and use remaining examples for training.

- Procedure can be repeated infinitely
 (*k* can be infinite number → narrower confidence interval)
- Test sets are not independent.