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Introduction

* Bayesian learning methods are relevant to our study of machine
learning.

- Bayesian learning algorithms are among the most practical
approaches to certain types of learning problems

ex) the naive Bayes classifier

- Bayesian methods provide a useful perspective for understanding
many learning algorithms that do not explicitly manipulate probabilities

Al & CV Lab, SNU



Introduction (cont.)

» Features of Bayesian learning methods

- Each observed training example can incrementally decrease or increase
the estimated probability that a hypothesis is correct (flexible)

- Prior knowledge can be combined with observed data to determine the
final probability of a hypothesis

- Bayesian methods can accommodate hypotheses that make probabilistic
predictions

- New instances can be classified by combining the predictions of multiple
hypotheses, weighted by their probabilities
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Introduction (cont.)

 Practical difficulties

- Require initial knowledge of many probabilities

- The significant computational cost required to determine the Bayes
optimal hypothesis in the general case
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Bayes Theorem

* Determine the best hypothesis from some space H, given the
observed training data D

= the most probable hypothesis

- given data D + any initial knowledge about the prior probabilities of the various
hypotheses in H

- provides a way to calculate the probability of a hypothesis based on its prior
probability

* Notation
P(h) : initial probability that hypothesis h holds
P(D) : prior probability that training data D will be observed

P(DJh) : probability of observing data D given some world in which hypothesis h
holds

P(h|D) : posterior probability of h that h holds given the observed training data D
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Bayes Theorem (cont.)

e Bayes theorem:

P(D [h)P(h)
P(D)

P(h|D) =

- Is the cornerstone of Bayesian learning methods because it provides a way
to calculate the posterior probability P(h|D), from the prior probability P(h),
together with P(D) and P(DJh)

- It can be applied equally well to any set H of mutually exclusive
propositions whose probabilities sum to one
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Bayes Theorem (cont.)

e Maximum a posteriori (MAP) hypothesis
— The most probable hypothesis h e H given the observed data D

h,.. =argmax P(h| D)

heH

_ arg max P(D [h)P(h)
heH P(D)

=argmax P(D |h)P(h)

heH
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Bayes Theorem (cont.)

o Maximum likelthood (ML) hypothesis

— assume : every hypothesis in H is equally probable a priori
(P(h)=P(h,) forall hyand hjinH)

h, =argmaxP(D |h)

heH
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Bayes Theorem (cont.)

o Example: Medical diagnosis problem

— Two alternative hypothesis
(1) the patient has a cancer
(2) the patient does not

— Two possible test outcomes
(1) + (positive)
(2) — (negative)

— Prior knowledge
* P(cancer)=0.008 P (1 cancer)=0.992
e P(+|cancer)=0.98 P (-|cancer)=0.02
e P(+|71cancer)=0.03 P (-|71cancer)=0.97
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Bayes Theorem (cont.)

« Example: Medical diagnosis problem (cont.)
— Suppose a new patient for whom the lab test returns a positive result

P(+|cancer) P(cancer)=0.0078
P(+| 71 cancer) P(~1cancer)=0.0298

thus, Ny,.p = "Tcancer

0078
0078 +.0298

=0.21

by normalizing, P(cancer|+) =
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Bayes Theorem (cont.)

« Basic probability formulas

— Product rule :
P(AAB) = P(AB) P(B) = P(B|A) P(A)

— Sum rule :
P(AVB)=P(A) + P(B) — P(AAB)
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Bayes Theorem (cont.)

« Basic probability formulas (cont.)

— Bayes theorem :
P(h|D) = P(D|h)P(h)/P(D)

— Theorem of total probability :
If events A,,....A, are mutually exclusive with Z P(A)=1

then, P(B) = P(B|A)(A)
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Review of Other Learning Methods

by Bayesian Approach

« Bayesian theorem provides a principled way to calculate the
posterior probability of each hypothesis given the training data.

e We can use It as the basis for a straightforward learning algorithm
that calculates the probability for each possible hypothesis, then
outputs the most probable

e Contents
— Version space in concept learning
— Least-squared error hypotheses (case of continuous-value target function)

— Minimized cross entropy hypotheses (case of probabilistic output target
function)

— Minimum description length hypotheses
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Version Space In Concept Learning

 Finite hypothesis space H defined over the instance space X,
Learn target concept c: X — {0,1}

Sequence of training example : ((x,d,)..{x,.d, }),where d =c(x)
1. Calculate the posterior probability
P(h|D)=P(D|h)P(h)/P(D)

2. Output the hypothesis h,,,, with the highest posterior
probability
... =argmaxP(h|D)
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Version Space in Concept Learning (cont.)

o Assumptions :

1) The training data D is noise free

2) The target concept c is contained in the hypothesis space H

3) No priori reason to believe that any hypothesis is more probable
than any other

* P(h)

Assign the same prior probability (from 3)
These prior probabilities sum to 1 (from 2)

P(h):%, for all hin H
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Version Space in Concept Learning (cont.)

if d =h(x) for all d in D

1
y P(D|h):{o

otherwise

e The posterior probability

( P(h|D)=O'P(h) If h is inconsistent with D
P(D)
-
\ P(h|D)= = = If h 1s consistent with D
MOV =50) " Vool Moo

H

Al & CV Lab, SNU



Version Space in Concept Learning (cont.)

* VS, Isthe version space of H with respect to D

o Alternatively, derive P(D) from the theorem of total
probability
P(D) = Z P(D |hi)P(hi)

hiEH

1 1 1
— 1.—+ 0.-— = 1.—
T IR IR Y Y

hiEVSH,D h,éVSH’D

_ VS wo]

H

- The hypotheses are mutually exclusive
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Version Space in Concept Learning (cont.)

e Tosummarize,
1
= if d,=h(x) for all d in D
P(h| D)={ VS0

0 otherwise

e The posterior probability for inconsistent hypothesis
becomes zero while the total probability summing to one is
shared equally by the remaining consistent hypotheses in
VS, b, each of which is a MAP hypothesis

. R '
P{R) i P{RID1) PRIDY,D2) | I

hypotheses bypotheses hypotheses
(a) : (b) {c}
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Version Space in Concept Learning (cont.)

o Consistent learner, a learning algorithm which outputs a
hypothesis that commits zero errors over the training examples,
outputs a MAP hypothesis if we assume a uniform prior
probability distribution over H and if we assume deterministic,
noise free data (i.e., P(D|h)=1 if D and h are consistent, and O
otherwise 0)

« Bayesian framework allows one way to characterize the behavior
of learning algorithms, even when the learning algorithm does
not explicitly manipulate probabilities.
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east-Squared Error Hypotheses for a Continuous-

Valued Target Function

« Letf:X—R where R iIs a set of reals. The problem is to find h to

approximate f. Each training example is <x;, d;> where
d.=f(x;)+e; and random noise e; has a normal distribution with

zero mean and variance & 2
e  Probability density function for continuous variable

p(x,) = lim = P(x, < x < %, +¢)
E—> 8

e d; has a normal density function with mean  =f(x;) and variance

ok . 1
p(d,) = ———e 2

2o

~(x=f(x))?
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east-Squared Error Hypotheses for a Continuous-

Valued Target Function (cont.)

e Use lower case p to refer to the probability density

h, =argmax p(D|h)

heH

e Assume the training examples are mutually independent
given h,

hy, =arg maXH p(d; [h)

heH i—1

e p(di|h) is a normal distribution with variance 2 and mean
1= 1(x)=h(x) (
AL _—Z(di_h(xi ))2
— 1 20
Ny = arg Hmaxli;[—fmz e
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east-Squared Error Hypotheses for a Continuous-

Valued Target Function (cont.)

e Since In p Is a monotonic function of p,

L 1 1
hy, =argmax )’ In 7 207 (d. —h(x,))?

heH i=1

hML

heH | 1

hy,, =argmin Z

hEH | 1

h,, =argmin Z(d —h(x.))?

hEH i=1

Minimizes the sum of the squared errors between the observed tra

Ining values and the hypothesis predictions
Al & CV Lab, SNU
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east-Squared Error Hypotheses for a Continuous-

Valued Target Function (cont.)

 Normal distribution to characterize noise
- allows for mathematically straightforward analysis
- the smooth, bell-shaped distribution is a good approximation to
many types of noise in physical systems

e Some limitations of this problem setting
- noise only in the target value of the training example
- does not consider noise In the attributes describing the
Instances themselves

Al & CV Lab, SNU

24



Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function

 Given f:X—{0,1}, a target function is defined to be
f':X—[0,1] such that f' (x)=P(f(x)=1).

e Then the target function is learned using neural network
where a hypothesis h Is assumed to approximate f'

—  Collect observed frequencies of 1’s and Q’s for each possible value of x and train
the neural network to output the target frequency for each x

—  Train a neural network directly from the observed training examples of f and derive
a maximum likelihood hypothesis, h,, , for f'

Let D={<x,,d,>,...,<x...d. >}, d.€{0,1}.
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Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function (cont.)

 Treatboth x; and d; as random variables, and assume that each
training example is drawn independently

PDIh) =] [P(x.d, 1) =T [P(d,1hx)P(x)
( x; is independent of h )

P(d, [h,x.) =h(x) it d =1

P(d, |h,x)=0Q-h(x)) if d. =0

P(d; [0, %) =h(x)" (L~ h(x))"*

P(D1h) =T Thx)* (A= h(x))* P(x)
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Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function (cont.)

Write an expression for the ML hypothesis
hy, =argmax | [h(x)® (1—h(x))"" P(x)

heH i=1

last term is a constant independent of h

. =argmax [ [h(x)* (L-h(x)

heH i—1

seen as a generalization of Binomial distribution

 Log of Likelihood
h,, =arg madei Inh(x;)+(1—-d.)In(1—-h(x))

heH i=1
=arg min (-)_ (d; Inh(x;) + (1-d;) In(1 - h(x;))))
heH i=1\ S

cross entropy
Al & CV Lab, SNU
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Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function (cont.)

 Howto find hy, ?

— Gradient Search in a neural net is suggested

Let G(h, D) be the negation of cross entropy, then

oG(h,D) Zm: 0G(h, D) oh(x.)
5ij i i=1 ah(Xi) aij
_ Zm: o(d; Inh(x;) + (1—d;) In—h(x))) oh(x)
- i=1 ah(xi) aij
_Zm: d, —h(x) oh(x)
- = n(X)A—h(x)) ow,

wj: weight from input & to unit /

Al & CV Lab, SNU
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Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function (cont.)

— Suppose a single layer of sigmoid units
oh(x.)

= GI(Xi)Xijk = h(xi)(l_ h(Xi))Xijk
jk
where Xiii Is the k th input to unit j for i th training example

0G(h,D) B
ow, —;(di h (X)) X

— Maximize P(D|h)
- gradient ascent
- using the weight update rule

Wy < Wy + AW,

Aij = U_Zm: (di — h(Xi))Xijk

Al & CV Lab, SNU
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Minimized Cross Entropy Hypotheses

for a Probabilistic Output Target Function (cont.)

o Compare it to backpropagation update rule, minimizing sum of
squared errors, using our current notation

W <= Wy, +ijk

AWy =13 X RO}, R ),

Note this is similar to the previous update rule except for the extra
term h(x,)(1-h(x,)), derivation of the sigmoid function

Al & CV Lab, SNU
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Minimum Description Length hypotheses

e Occam’s razor
— Choose the shortest explanation for the observed data
hy.p =argmaxP(D | h)P(h)
heH

h,,.» =argmaxlog, P(D|h)+log, P(h)

heH

h,.» =argmin —log, P(D |h)-log, P(h)

heH

— Short hypotheses are preferred

Al & CV Lab, SNU
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Minimum Description Length hypotheses (cont.)

* From coding theory
L, (h) =—log, P(h)

where C,, is the optimal encoding for H
L, (D] h)=—log, P(D|h)

where Cp;, is the optimal encoding for D given h

hye =argminL. (h)+L. (D]|h)
heH

h wae Minimizes the sum given by the description length of the
hypothesis plus the description length of data

Dhh
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32



Minimum Description Length hypotheses (cont.)

MDL principle : choose h,,,, where

hyor =argmin L, (h)+L. (D|h)
heH

- C, : codes used to represent the hypothesis
- C,: codes used to represent the data given the hypothesis

If C,ischosen to be the optimal encoding of hypothesis C,and C,
to be the optimal encoding of hypothesis C then h

Dh vt = Muap

Al & CV Lab, SNU
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Minimum Description Length hypotheses (cont.)

e  Problem of learning decision trees

—  C, : Encoding of decision tree, in which the description length grows with
the number of nodes and edges

—  GC;: Encoding of data given a particular decision tree hypothesis in which
description length is the number of bits necessary for identifying
misclassification by the hypothesis.

— No error in hypothesis classification : zero bit

—  Some error in hypothesis classification : at most (log,m-+log.k) bits when
m is the number of training examples and k is the number of possible
classifications

« MDL principle provides a way of trading off hypothesis
complexity for the number of errors committed by the hypothesis
—  One method for dealing with the issue of over-fitting the data

Al & CV Lab, SNU
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Bayes Optimal Classification

« “What is the most probable hypothesis given the training data?”
=> “What is the most probable classification of the new instance given
the training data?”

- MAP hypothesis may be simply applied to the new instance
« Bayes optimal classification

argmax » P(v; |h)P(h | D)

Vj eV hiEH

- Most probable classification of the new instance is obtained by combining the
predictions of all hypothesis, weighted by their posterior probabilities

Al & CV Lab, SNU
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Bayes Optimal Classification (cont.)

o Example

— Posterior hypothesis
« h,=0.4, h,=0.3, h,=0.3

— A set of possible classifications of the new instance isV = { +, —}
« P(h/D)=4 P (—|h)=0 P (+h))=1
* P(hD)=3 P (—|hy)=1 P (+|h,)=0
* P(hyD)=3 P (—[hy)=1 P (+/hy)=0

— Y P(+|h)P(h|D)=.4

hiEH

> "P(~|h)P(h | D) = 6

hiEH

Al & CV Lab, SNU
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Bayes Optimal Classification (cont.)

argmax > P(v, |h)P(h |D) = -

viel+ -} h;eH

— This method maximizes the probability that the new instance is classified
correctly (No other classification method using the same hypothesis space and
same prior knowledge can outperform this method on average.)

e Example

— In learning boolean concepts using version spaces, the Bayes optimal
classification of a new instance is obtained by taking a weighted vote among
all members of the version spaces, with each candidate hypothesis weighted
by its posterior probability

* Note that the predictions it makes can correspond to a hypothesis not
contained in H
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Gibbs Algorithm

« Bayes optimal classifier

— Obtains the best performance, given training data
— Can be quite costly to apply

* Gibbs algorithm

— Chooses a hypothesis h from H at random, according to the posterior
probability distribution over H, P(h|D), and uses h to predict the
classification of the next instance X

— Under certain conditions the expected error is at most twice those of the
Bayes optimal classifier (Harssler et al. 1994)
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Optimal Bayes Classifier

» Let each instance x be described by a conjunction of attribute values,
where the target function f (x) can take on any value from some finite set

vV

« Bayesian approach to classifying the new instance
- Assigns the most probable target value

Vue = arg max P(v, [a,,a,...a,)

VjeV

M
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Optimal Bayes Classifier (cont.)

e Rewrite with Bayes theorem

P(a,,a,..a |V.)P(v.
VMAP :arg max ( 1 2 n| j) ( J)

vjeV P(a11a2"'an)
= arg max P(al,az---an |Vj)P(Vj)
vieV

* How to estimate P(a;, a,, ..., a,|V;) and P(v;) ?
(Not feasible unless a set of training data is very large

but the number of different P(a,,a,,...,a,|v;) = the number of possible
Instances X the number of possible target values.)

» Hypothesis space
={ <P(Vj)’ P(<a;, a,, ..., a,> | v)) >|(v; € V) and
(<a, a,, ..., a,> < A XA, X... XA) }

Al & CV Lab, SNU
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Naive Bayes Classifier

e Assume
— Attribute values are conditionally independent given the target value

P(a,,a,..a,|Vv;) = H P(a;|v;)
* Naive Bayes classifier
Ve =argmax P(v,)[ | P(a; |v;)

v;eVv
- Hypothesis space
={<p(v)), p(@glvy), ..., p(a,lvj)> | (v; € V) and (<a; = A;, 1=1,...,n) }
aNB classifier needs a learning step to estimate its hypothesis space from the training
ata.

 |If the naive Bayes assumption of conditional independence Is satisfied,
then, Vie = Ve

Al & CV Lab, SNU
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Naive Bayes Classifier (cont.)

« An illustrative example

— PlayTennis problem
- Table 3.2 from Chapter 3

— Classify the new instance
- <Qutlook =sunny, Temperature = cool, Humidity = high, Wind = strong>
- Predict target value (yes or no)

=arg max P(v, )H P(a |v))

v; €{yes,no}

=arg max P(v;) P(Outlook = sunny|v, )P(Temperature = cool | v, )

v; {yes,no}

P(Humidity = high|v,)P(Wind = strong | v,)

Al & CV Lab, SNU
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Naive Bayes Classifier (cont.)

e From training examples
— Probabilities of the different target values
» P(Play Tennis = yes) = 9/14 = .64
« P(Play Tennis =no) =5/14 = .36

— the conditional probabilities
« P(Wind = strong | Play Tennis = yes) = 3/9 = .33
« P(Wind = strong | Play Tennis = no) =3/5=.60

— P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) =.0053

— P(no) P(sunny|no) P(cool|no) P(high|no) P(strong|no) = .0206

Al & CV Lab, SNU
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Naive Bayes Classifier (cont.)

o Target value, PlayTennis, of this new Instance Is no.

o Conditional probability that target value IS no is

0206
.0206+.0053

Al & CV Lab, SNU
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Naive Bayes Classifier (cont.)

e Estimating probabilities

I,-]C

Conditional probability estimation by F

- poor when Mg is very small

m-estimate of probability

p : prior estimate of probability we wish to
n, + mp determine from n./n

n+ m m : a constant (equivalent sample size)

- Can be interpreted as augmenting the n actual observations by an additional
m virtual samples distributed according to p

- Example : Let p(wind=strong | playtennis=no) = 0.08

If “‘wind” has k possible values, then p=1/k is assumed.

Al & CV Lab, SNU
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Example: Learning to Classify Text

e Instance space X : all possible text documents
Target value : { like, dislike }

e Design issues involved in applying the naive Bayes classifier

- Represent an arbitrary text document in terms of attribute
values

- Estimate the probabilities required by the naive Bayes
classifier

Al & CV Lab, SNU
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Example: Learning to Classify Text (cont.)

 Represent arbitrary text documents

— an attribute - each word position in the document
—  the value of that attribute - the English word found in that position

e For the new text document (p180),

111

= arg max P(v, )H P(a |v))

v; {like, dislike}

= arg max P(v,)P(a, ="our”|v,)P(a, ="approach” |v,)

v; {like, dislike}

.. P(a,,, ="trouble"|v,)

111

Al & CV Lab, SNU
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Example: Learning to Classify Text (cont.)

 The independence assumption

111

P(aw Ay |Vj) :H P(ai |Vj)

- The word probability for one text position are independent of the words that
occur in other positions, given the document classification V;

- Clearly incorrect
ex) “machine” and “learning”

- Fortunately, in practice the naive Bayes learner performs remarkably well in
many text classification problems despite the incorrectness of this independence
assumption

Al & CV Lab, SNU
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Example: Learning to Classify Text (cont.)

* P(V j)
—  Can easily be estimated based on the fraction of each class in the training data
—  P(like) =.3  P(dislike) = .7

'P(ai |Vj)

—  Must estimate a probability term for each combination of text position, English

word, and target value
=» about 10 million such terms

— Assume : the probability of encountering a specific word W, is independent of the
specific word position being considered

Al & CV Lab, SNU
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Example: Learning to Classify Text (cont.)

P(a, =w.|v,)=P(a,=w,|v,) forall I, J,k,and m

- Estimate the entire set of probability by the single position-independent
probability P(Wk | Vj)

o  Estimate : Adopt the m-estimate

n.+mp n,+1
n+m  n+|Vocabulary|

P(Wk |Vj):

. Document classification

Ve =argmaxP(v,) []P(a lv,)

vjeVv i positions

Al & CV Lab, SNU
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Example: Learning to Classify Text (cont.)

o  Experimental result
—  Classify usenet news article (Joachims, 1996)
— 20 possible newsgroups
— 1,000 articles were collected per each group
—  Use 2/3 of 20,000 docs as training examples
—  Performance was measured over the remaining 1/3

—  The accuracy achieved by the program was 89%

Al & CV Lab, SNU
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Bayesian Belief Networks

* Nalve Bayes classifier

— Assumption of conditional independence of the attributes =» simple but too
restrictive =» intermediate approach

« Bayesian belief networks
— Describes the probability distribution over a set of variables by specifying
conditional independence assumptions with a set of conditional
probabilities.
— Joint space: V (Y,)xV (Y,)x..V(Y,)
— Joint probability distribution : Probability for each of the possible bindings
for the tuple (Y,...Y,)

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

« Conditional Independence

— X is conditionally independent of Y given Z : When the probability distributi
on governing X is independent of the value of Y given a value Z

— Extended form:

P(X,. X, Y, Z,Z) = P(Xy X, | Z,.Z,)

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

e Representation
— Directed acyclic graph
— Node : each variable

— For each variable next two are given

 Network arcs: variable is conditionally independent of its nondescendants in the
network given its immediate predecessors

» Conditional probability table (Hypothesis space)
— D-separation (conditional dependency in the network)

S.B 5-B -§B -S5-B
C 0.4 0.1 0.8 0.2
=C 06 “09° 02 0.8

Lightning

Al & UV Lab, oNU
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Bayesian Belief Networks (cont.)

o D-separation (conditional dependency in the network)

— Two nodes V; and V; are conditionally independent given a set
of nodes € (thatis I(V;, V;| €) If for every undirected path in
the Bayes network between V; and V;, there is some node, V,,
on the path having one of the following three properties
1. V,isin €, and both arcs on the path lead out of V,

2. V,isin €, and one arc on the path leads in to VV, and one arc leads out.

3. Neither V, nor any descendant of V, is in €, and both arcs on the path
lead into V,.

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

e Example: V, Evidence nodes, E

®
Vb3

V; Is independent of V; given the evidence nodes because all three paths between them are
blocked. The blocking nodes are

(a) V., is an evidence node, and both arcs lead out of V,,.
(b) V,, is an evidence node, and one arc leads into V,, and one arc leads out.
(c) V5 is not an evidence node, nor are any of its descendants, and both arcs lead into V,,

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

e The joint probability for any desired assignment of values
<Y,,...,y, >to the tuple of network variables <Y,,....Y, >

P(Yye V) =H P(y, | Parents(Y,))

— The values of P(y; | Parents(Y;)) are precisely the values stored
In the conditional probability table associated with node Y.

Al & CV Lab, SNU

57



Bayesian Belief Networks (cont.)

e |Inference

— Infer the value of some target variable, given the observed values of the other
variables

— More accurately, infer the probability distribution for target variable, specifying the
probability that it will take on each of its possible values given the observed values of
the other variables.

« Example : Let the Bayesian belief network with (n+1) attributes (variables) A,, ..., A,, T,
be constructed from the training data.

Then the target value of the new instance <a,, ... ,a,> would be
arg max P(T =v, |A, =a,,..., A =a,)
vieV (T)
— Exact inference of probabilities = generally, NP-hard

» Monte Carlo methods : Approximate solutions by randomly sampling the distributions of
the unobserved variables

» Polytree network : Directed acyclic graph in which there is just one path, along edges in
either direction, between only two nodes.

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

o Learning Bayesian belief networks
— Different settings of learning problem

« Network structure: known
— Case 1: all variables observable - Straightforward
— Case 2: some variables observable = Gradient ascent procedure

» Network structure: unknown

— Bayesian scoring metric
- K2

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

« Gradient ascent training of B.B.N.

— Structure i1s known, variables are partially observable
« Similar to learn the weights for the hidden units in an neural network

— Goal : Find h,, =arg max P(D | h)

heH

» Use of a gradient ascent method

Al & CV Lab, SNU
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Bayesian Belief Networks (cont.)

 Maximizes P(D|h) by following the gradient of InP(D|h)

dInP(D|h) _Z P(Y, = yij’Uij =u, |d)
aWijk deD Wijk

— Y; : network variable

— U, : Parents(Y;)

— Wy, - asingle entry in conditional probability table

— Wy, = P(Yi=y;lUi=ug)

— For example, If Y; is the variable Campfire, then y;=True, u;=<False, False >
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Bayesian Belief Networks (cont.)

- Perform gradient ascent repeatedly
1. Update Wiy using D

Wi <= Wy +77 ) (Y Ui 19)

deD Wijk

n . learning rate

2. Renormalize Wijkto assure Zwijk =1, 0<w, <1
j
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Bayesian Belief Networks (cont.)

e Derivation processof  dIn P, (D)
OW;j,
— Assume that the training example d in the data set D are drawn independently

oInP, (D) 0
= In| | P.(D)
8Wijk aWijk H h
B Z6In P.(d)
aWijk

1 6P (d)
ZP(ol) oW,

dInR (D) 1
aNljk (;H](d) ukakl:)(dlyIJ 'k)P(yIJ W)

1
_th(d) o, Jzk P.d] YU )R (Y U )P )
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Bayesian Belief Networks (cont.)

Given thatwy, = P, (y; [uy) , the only term in this sum for
which -2 is nonzero is the term for which i'=J andi’ =i

8Wijk

alna(D)_Z 1 0
O, 4o Ry (d) Oy,

1 ©
= P]|y.,u)w, P

1
) deD Ph(d)H‘ A1y, i) PUy)

P.(d] Yy Ui )R (Y5 [ Ui ) P(U )
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Bayesian Belief Networks (cont.)

 Applying Bayes theorem,

8|nPh(D):Z 1 Ry Uy [ )R (d)R ()
Oy 4o P (d) B, (Vi Uye)
= P (Y by [ )Py )

_dezt; B, (Vi Ui )
By [d)
_dezt; B, (Y3 [Uy)

B (Y Uy [d)
=2,

deD Vvuk
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Bayesian Belief Networks (cont.)

« Learning the structure of Bayesian networks
— Bayesian scoring metric (Cooper and Herskovits,1992)

— K2 algorithm
» Heuristic greedy search algorithm when data is fully observed data

— Constraint-based approach (Spirtes et al, 1993)
 Infer dependency and independency relationships from data
 Construct structure using this relationship
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EM Algorithm

 When to use
— Learning in the presence of unobserved variables
— When the form of probability distribution is known

e Applications
— Training Bayesian belief networks
— Training radial basis function networks (Chapter 8.)
— Basis of many unsupervised clustering algorithms

Al & CV Lab, SNU

67



EM Algorithm (cont.)

e Estimating means of k Gaussians

— Each instance Is generated using a two-steps
1. Select one of the k normal distributions at random
(all the & s of the distributions are the same and known)
2. Generate an instance x; according to this selected distribution

F
J.-'"

'\.x‘ r'
AN

/
/ HTON

.

=
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EM Algorithm (cont.)

e Task

— Finding (maximum likelihood) hypothesis h = <z,...,z4>, that maximizes
p(DIh)

« Conditions
— Instances from X are generated by mixture of k normal distributions.
— Which x; is generated by which distribution is unknown
— Means of that k distribution, <z,...,£4>, are unknown
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EM Algorithm (cont.)

 Single normal distribution
: 1
Hy, =argmin Z (X _lu)z = EZ X

 Two normal distribution

i’ Tl T2

{1 if x generated by j th distribution

ij o

0 otherwise
X, I th observed value

— If z is known : Use the straightforward way
— Else use EM algorithm : Repeated re-estimating
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EM Algorithm (cont.)

* Initialize h=<yy,1,> with arbitrary small value
« Step 1: Calculate E[z; ], assuming h holds

1 2
(- ap)
POX | ;) e 2o
E[ZU] = 5 J = , 1 ( )2
> (Xi—Hy
Z p(Xillun) Ze 20
n=1

n=1

« Step 2 : Calculate a new maximum likelyhood hyphothesis
h’=<u,’,1,"> (use E[z;] from stepl)
1 m
M < HZ E[Zij]xi
i=1
 Until the procedure converges to a stationary value for h
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EM Algorithm (cont.)

* General statement of EM algorithm

— Given:
e Observed data X = {X;,...,.X, }
e Unobserved data Z = {z,,...,Z, }

» Parameterized probability distribution P(Y|h), where
- Y ={y,.... ¥, }isthe full data y, = x; Uz,
— @: underlying probability distribution
— h : current hypothesis of 4
— h’ : revised hypothesis

— Determine:
 h that (locally) maximizes E[In P(Y]|h)]
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EM Algorithm (cont.)

e Assume @=h, define Q(h'|h)
Q(h'[h) =E[ln p(Y [h") |h, X]

* Repeats until convergence:
— Step 1:Estimation step:

Q(h"[h) < E[In p(Y [h") [h, X]
— Step 2:Maximization step:

h «<—argmax Q(h’| h)
"
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EM Algorithm (cont.)

o Example : Derivation of the k mean algorithm

— The probability P(Y; |h) of a single instancey, = < Ziy e zik> of the full
data

o0 1) = PO 21ty 1) = 7 7
i? =i I2""’ ik \/ﬁ

- only one of Zij can have the value 1, and all others must be 0

~ InP(Y |h) = Inf[ p(y, |)

=371 by 1)

m 1 k -
:;( o2 T 557 jz;zij(xi_:uj)]
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EM Algorithm (cont.)

* Expression for Inp(y. |h)) Isa linear function of these Z;

Ein P(Y [h)] = {Z[ 7y JZKJZ(X—/J)H

k

5| e B -

e The function Q(h'|h) for the k means problem

m

Q(h'lh)=Z( ﬁ = ZZE[z.,](x—u)]
=1 2 mo
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EM Algorithm (cont.)

e—%(xi—u,-)z
E[Zij]: 1
Zk F(X )
n=1
M 1
ar max h'|h)=ar max In — Ez X, —
g max Q(h'| h) =arg Z;,( — 20 ,=1 [.,]( u)}
m k
=arg | min » > E[zij Iix, - uh)?

I
[y

i j=1

Minimized by setting each £/ ;  to the weighted sample mean

1
Hi < m.lE[Z]
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