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Introduction

• Bayesian learning methods are relevant to our study of machine 
learning.

- Bayesian learning algorithms are among the most practical 
approaches to certain types of learning problems

ex) the naive Bayes classifier
- Bayesian methods provide a useful perspective for understanding 
many learning algorithms that do not explicitly manipulate probabilities
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Introduction (cont.)

• Features of Bayesian learning methods

- Each observed training example can incrementally decrease or increase 
the estimated probability that a hypothesis is correct (flexible)
- Prior knowledge can be combined with observed data to determine the 
final probability of a hypothesis
- Bayesian methods can accommodate hypotheses that make probabilistic 
predictions
- New instances can be classified by combining the predictions of multiple 
hypotheses, weighted by their probabilities
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Introduction (cont.)

• Practical difficulties
- Require initial knowledge of many probabilities
- The significant computational cost required to determine the Bayes 
optimal hypothesis in the general case
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Bayes Theorem

• Determine the best hypothesis from some space H, given the 
observed training data D
= the most probable hypothesis
- given data D + any initial knowledge about the prior probabilities of the various 
hypotheses in H
- provides a way to calculate the probability of a hypothesis based on its prior 
probability

• Notation
P(h) : initial probability that hypothesis h holds
P(D) : prior probability that training data D will be observed
P(D|h) : probability of observing data D given some world in which hypothesis h
holds
P(h|D) : posterior probability of h that h holds given the observed training data D
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• Bayes theorem:

- Is the cornerstone of Bayesian learning methods because it provides a way 
to calculate the posterior probability P(h|D), from the prior probability P(h), 
together with P(D) and P(D|h)
- It can be applied equally well to any set H of mutually exclusive 
propositions whose probabilities sum to one
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Bayes Theorem (cont.)
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Bayes Theorem (cont.)

• Maximum a posteriori (MAP) hypothesis
– The most probable hypothesis                  given the observed data D
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Bayes Theorem (cont.)

• Maximum likelihood (ML) hypothesis
– assume : every hypothesis in H is equally probable a priori 

(                            for all     and     in H)
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Bayes Theorem (cont.)

• Example: Medical diagnosis problem
– Two alternative hypothesis

(1) the patient has a cancer
(2) the patient does not

– Two possible test outcomes
(1) + (positive)
(2) – (negative)

– Prior knowledge
• P(cancer)=0.008        P (ㄱcancer)=0.992
• P(+|cancer)=0.98      P (–|cancer)=0.02
• P(+|ㄱcancer)=0.03   P (–|ㄱcancer)=0.97
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Bayes Theorem (cont.)

• Example: Medical diagnosis problem (cont.) 
– Suppose a new patient for whom the lab test returns a positive result

P(+|cancer) P(cancer)=0.0078
P(+|ㄱcancer) P(ㄱcancer)=0.0298

thus,           = ㄱcancer

by normalizing,  P(cancer|+) =

= 0.21

MAPh

0298.0078.
0078.
+



12

AI & CV Lab, SNU

Bayes Theorem (cont.)

• Basic probability formulas

– Product rule :
P(A∧B) = P(A|B) P(B) = P(B|A) P(A)

– Sum rule :
P(A∨B) = P(A) + P(B) ― P(A∧B)
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Bayes Theorem (cont.)

• Basic probability formulas (cont.)

– Bayes theorem :
P(h|D) = P(D|h)P(h)/P(D)

– Theorem of total probability :
If events A1,….An are mutually exclusive with 

then,

∑
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Review of Other Learning Methods 
by Bayesian Approach

• Bayesian theorem provides a principled way to calculate the 
posterior probability of each hypothesis given the training data.

• we can use it as the basis for a straightforward learning algorithm 
that calculates the probability for each possible hypothesis, then 
outputs the most probable

• Contents
– Version space in concept learning
– Least-squared error hypotheses (case of continuous-value target function)
– Minimized cross entropy hypotheses (case of probabilistic output target 

function)
– Minimum description length hypotheses
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Version Space in Concept Learning

• Finite hypothesis space H defined over the instance space X,
Learn target concept   c : X → {0,1}

Sequence of training example :

1.  Calculate the posterior probability

2. Output the hypothesis           with the highest posterior 
probability

)(,,..., iimm11 xcdwheredxdx =

MAPh

)|(maxarg DhPh
Hh

MAP
∈

≡

)(/)()|()|( DPhPhDPDhP =



16

AI & CV Lab, SNU

• Assumptions :

1)  The training data D is noise free
2)  The target concept c is contained in the hypothesis space H
3)  No priori reason to believe that any hypothesis is more probable 
than any other

• P(h)

Assign the same prior probability (from 3)
These prior probabilities sum to 1 (from 2)

,  for all h in H
H
1hP =)(

Version Space in Concept Learning (cont.)
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•

• The posterior probability

if h is inconsistent with D

if h is consistent with D
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Version Space in Concept Learning (cont.)
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• is the version space of H with respect to D

• Alternatively, derive P(D) from the theorem of total 
probability

- The hypotheses are mutually exclusive
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Version Space in Concept Learning (cont.)
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• To summarize,

• The posterior probability for inconsistent hypothesis 
becomes zero while the total probability summing to one is 
shared equally by the remaining consistent hypotheses in 
VSH,D,  each of which is a MAP hypothesis
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Version Space in Concept Learning (cont.)
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• Consistent learner, a learning algorithm which outputs a 
hypothesis that commits zero errors over the training examples, 
outputs a MAP hypothesis if we assume a uniform prior 
probability distribution over H and if we assume  deterministic, 
noise free data (i.e., P(D|h)=1 if D and h are consistent, and 0 
otherwise 0)

• Bayesian framework allows one way to characterize the behavior 
of learning algorithms, even when the learning algorithm does 
not explicitly manipulate probabilities.

Version Space in Concept Learning (cont.)
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Least-Squared Error Hypotheses for a Continuous-
Valued Target Function

• Let f:X→R where R is a set of reals. The problem is to find h to 
approximate f. Each training example is <xi, di> where 
di=f(xi)+ei and random noise ei has a normal distribution with 
zero mean and variance σ2

• Probability density function for continuous variable

• di has a normal density function with mean μ=f(xi) and variance 
σ2
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• Use lower case p to refer to the probability density

• Assume the training examples are mutually independent 
given h,

• p(di|h) is a normal distribution with variance σ2 and mean
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Least-Squared Error Hypotheses for a Continuous-
Valued Target Function (cont.)
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• Since ln p is a monotonic function of p,
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Minimizes the sum of the squared errors between the observed tra
ining values and the hypothesis predictions

Least-Squared Error Hypotheses for a Continuous-
Valued Target Function (cont.)
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• Normal distribution to characterize noise
- allows for mathematically straightforward analysis
- the smooth, bell-shaped distribution is a good approximation to 
many types of noise in physical systems

• Some limitations of this problem setting
- noise only in the target value of the training example
- does not consider noise in the attributes describing the 
instances themselves

Least-Squared Error Hypotheses for a Continuous-
Valued Target Function (cont.)
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Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function

• Given f:X→{0,1}, a target function is defined to be 
f ' :X→[0,1] such that f ' (x)=P(f(x)=1). 

• Then the target function is learned using neural network 
where a hypothesis h is assumed to approximate f '

– Collect observed frequencies of 1’s and 0’s for each possible value of x and train 
the neural network to output the target frequency for each x

– Train a neural network directly from the observed training examples of f and derive 
a maximum likelihood hypothesis, hML, for f '

Let D={<x1,d1>,…,<xm,dm>}, di∈{0,1}.
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• Treat both  xi and di as random variables, and assume that each 
training example is drawn independently

( xi is independent of h )
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Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function (cont.)
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Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function (cont.)

• Write an expression for the ML hypothesis

last term is a constant independent of h

seen as a generalization of Binomial distribution

• Log of Likelihood

∏
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• How to find hML?

– Gradient Search in a neural net is suggested

Let G(h, D) be the negation of cross entropy, then
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Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function (cont.)
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– Suppose a single layer of sigmoid units

where        is the k th input to unit j for i th training example

– Maximize P(D|h)
- gradient ascent
- using the weight update rule
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Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function (cont.)
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• Compare it to backpropagation update rule, minimizing sum of 
squared errors, using our current notation

Note this is similar to the previous update rule except for the extra 
term h(xi)(1-h(xi)), derivation of the sigmoid function

Minimized Cross Entropy Hypotheses 
for a Probabilistic Output Target Function (cont.)
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• Occam’s razor
– Choose the shortest explanation for the observed data

– Short hypotheses are preferred

Minimum Description Length hypotheses
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• From coding theory

where     is the optimal encoding for H

where        is the optimal encoding for D given h

minimizes the sum given by the description length of the
hypothesis plus the description length of data
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Minimum Description Length hypotheses (cont.)
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MDL principle : choose          where

- : codes used to represent the hypothesis
- : codes used to represent the data given the hypothesis

If       is chosen  to be the optimal encoding of hypothesis    and      
to be the optimal encoding of hypothesis           , then 

)|()(minarg hDLhLh
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Minimum Description Length hypotheses (cont.)
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• Problem of learning decision trees
– : Encoding of decision tree, in which the description length grows with 

the number of nodes and edges
– : Encoding of data given a particular decision tree hypothesis in which 

description length is the number of bits necessary for identifying 
misclassification by the hypothesis.

– No error in hypothesis classification : zero bit
– Some error in hypothesis classification : at most (log2m+log2k) bits when 

m is the number of training examples and k is the number of possible 
classifications

• MDL principle provides a way of trading off hypothesis 
complexity for the number of errors committed by the hypothesis

– One method for dealing with the issue of over-fitting the data

1C

2C

Minimum Description Length hypotheses (cont.)
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Bayes Optimal Classification

• “What is the most probable hypothesis given the training data?”
=>  “What is the most probable classification of the new instance given 
the training data?”

- MAP hypothesis may be simply applied to the new instance

• Bayes optimal classification

- Most probable classification of the new instance is obtained by combining the 
predictions of all hypothesis, weighted by their posterior probabilities
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Bayes Optimal Classification (cont.)

• Example
– Posterior hypothesis

• h1=0.4, h2=0.3, h3=0.3

– A set of possible classifications of the new instance is V = { +, −}
• P(h1|D)=.4    P (−|h1)=0    P (+|h1)=1
• P(h2|D)=.3    P (−|h2)=1    P (+|h2)=0 
• P(h3|D)=.3    P (−|h3)=1    P (+|h3)=0

–
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– This method maximizes the probability that the new instance is classified 
correctly (No other classification method using the same hypothesis space and 
same prior knowledge can outperform this method on average.)

• Example 
– In learning boolean concepts using version spaces, the Bayes optimal 

classification of a new instance is obtained by taking a weighted vote among 
all members of the version spaces, with each candidate hypothesis weighted 
by its posterior probability

• Note that the predictions it makes can correspond to a hypothesis not 
contained in H
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Bayes Optimal Classification (cont.)
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Gibbs Algorithm

• Bayes optimal classifier
– Obtains the best performance, given training data
– Can be quite costly to apply

• Gibbs algorithm
– Chooses a hypothesis h from H at random, according to the posterior 

probability distribution over H, P(h|D), and uses h to predict the 
classification of the next instance x

– Under certain conditions the expected error is at most twice those of the 
Bayes optimal classifier (Harssler et al. 1994)
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Optimal Bayes Classifier

• Let each instance x be described by a conjunction of attribute values, 
where the target function f (x) can take on any value from some finite set 
V

• Bayesian approach to classifying the new instance
- Assigns the most probable target value

)...,|(max arg n21j
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• Rewrite with Bayes theorem

• How to estimate P(a1, a2, …, an | vj)  and P(vj) ? 
(Not feasible unless a set of training data is very large 
but the number of different P(a1,a2,…,an|vj) = the number of possible 
instances × the number of possible target values.)

• Hypothesis space 
= { <P(vj), P(<a1, a2, …, an> | vj) > | (vj ∈ V) and  

( <a1, a2, …, an> ∈ A1×A2×…×An) }
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Optimal Bayes Classifier (cont.)
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Naive Bayes Classifier

• Assume
– Attribute values are conditionally independent given the target value

• Naive Bayes classifier

- Hypothesis space 
= { <p(vj), p(a1|vj), …, p(an|vj)> | (vj ∈ V) and (<ai∈Ai, i=1,…,n) }

- NB classifier needs a learning step to estimate its hypothesis space from the training 
data.

• If the naive Bayes assumption of conditional independence is satisfied,
then, 

∏
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Naive Bayes Classifier (cont.)

• An illustrative example
– PlayTennis problem

- Table 3.2 from Chapter 3

– Classify the new instance
- <Outlook =sunny, Temperature = cool, Humidity = high, Wind = strong>
- Predict target value (yes or no)

)|()|(                               

)|( )(max arg      

)|()(max arg

},{

},{

jj

jjj
noyesv

i
jij

noyesv
NB

vstrongWindPvhighHumidityP

vcoolture)P(Temperasunny|vOutlookPvP

vaPvPv

j

j

==

===

=

∈

∈
∏



43

AI & CV Lab, SNU

• From training examples
– Probabilities of the different target values

• P(Play Tennis = yes) = 9/14 = .64
• P(Play Tennis = no) = 5/14 = .36

…
– the conditional probabilities

• P(Wind = strong | Play Tennis = yes) = 3/9 = .33
• P(Wind = strong | Play Tennis = no) = 3/5 = .60

…

– P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) = .0053
– P(no) P(sunny|no) P(cool|no) P(high|no) P(strong|no) = .0206

Naive Bayes Classifier (cont.)
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• Target value, PlayTennis, of this new instance is no.

• Conditional probability that target value is no is

795.
0053.0206.

0206.
=

+

Naive Bayes Classifier (cont.)
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Naive Bayes Classifier (cont.)

• Estimating probabilities
– Conditional probability estimation by

- poor when        is very small

– m-estimate of probability

- Can be interpreted as augmenting the n actual observations by an additional 
m virtual samples distributed according to p

- Example : Let p(wind=strong | playtennis=no) = 0.08

If ‘wind’ has k possible values, then p=1/k is assumed.

n
nc

cn

mn
mpn c

+
+ p : prior estimate of probability we wish to 

determine from nc/n
m : a constant (equivalent sample size)
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Example: Learning to Classify Text

• Instance space X :  all possible text documents
Target value  :  { like, dislike }

• Design issues involved in applying the naive Bayes classifier

- Represent an arbitrary text document in terms of attribute 
values

- Estimate the probabilities required by the naive Bayes 
classifier
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• Represent arbitrary text documents
– an attribute  - each word position in the document
– the value of that attribute  - the English word found in that position

• For the new text document (p180),
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Example: Learning to Classify Text (cont.)
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• The independence assumption

- The word probability for one text position are independent of the words that 
occur in other positions, given the document classification

- Clearly incorrect
ex) “machine” and “learning”

- Fortunately, in practice the naive Bayes learner performs remarkably well in 
many text classification problems despite the incorrectness of this independence 
assumption
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Example: Learning to Classify Text (cont.)
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•
– Can easily be estimated based on the fraction of each class in the training data
– P(like) = .3      P(dislike) = .7

•

– Must estimate a probability term for each combination of text position, English 
word, and target value

about 10 million such terms

– Assume  :  the probability of encountering a specific word      is independent of the 
specific word position being considered

)|( ji vaP

)( jvP

kw

Example: Learning to Classify Text (cont.)
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- Estimate the entire set of probability by the single position-independent 
probability

• Estimate : Adopt the m-estimate

• Document classification
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Example: Learning to Classify Text (cont.)
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• Experimental result
– Classify usenet news article (Joachims, 1996)

– 20 possible newsgroups

– 1,000 articles were collected per each group

– Use 2/3 of 20,000 docs as training examples

– Performance was measured over the remaining 1/3

– The accuracy achieved by the program was 89%

Example: Learning to Classify Text (cont.)
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• Naive Bayes classifier
– Assumption of conditional independence of the attributes simple but too 

restrictive intermediate approach

• Bayesian belief networks
– Describes the probability distribution over a set of variables by specifying 

conditional independence assumptions with a set of conditional 
probabilities. 

– Joint space: 
– Joint probability distribution : Probability for each of the possible bindings 

for the tuple 

)(...)()( 21 nYVYVYV ××

〉〈 nYY ...1

Bayesian Belief Networks
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• Conditional Independence
– X is conditionally independent of Y given Z : When  the probability distributi

on governing X is independent of the value of Y given a value Z

– Extended form:

)...|...()...,...|...( 11111 nlnml ZZXXPZZYYXXP =

Bayesian Belief Networks (cont.)
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• Representation
– Directed acyclic graph
– Node : each variable
– For each variable next two are given

• Network arcs: variable is conditionally independent of its nondescendants in the 
network given its immediate predecessors

• Conditional probability table (Hypothesis space)
– D-separation (conditional dependency in the network)

Bayesian Belief Networks (cont.)
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Bayesian Belief Networks (cont.)

• D-separation (conditional dependency in the network)
– Two nodes Vi and Vj are conditionally independent given a set 

of nodes ε (that is I(Vi, Vj|ε) if for every undirected path in 
the Bayes network between Vi and Vj, there is some node, Vb, 
on the path having one of the following three properties
1. Vb is in ε, and both arcs on the path lead out of Vb

2. Vb is in ε, and one arc on the path leads in to Vb and one arc leads out.
3. Neither Vb nor any descendant of Vb is in ε, and both arcs on the path 

lead in to Vb.
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Bayesian Belief Networks (cont.)

Vi is independent of Vj given the evidence nodes because all three paths between them are 
blocked. The blocking nodes are
(a) Vb1 is an evidence node, and both arcs lead out of Vb1.
(b) Vb2 is an evidence node, and one arc leads into Vb2 and one arc leads out.
(c) Vb3 is not an evidence node, nor are any of its descendants, and both arcs lead into Vb3

Vi

Vb1

Vb3

Vj

Vb2

Evidence nodes, E• Example:
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• The joint probability for any desired assignment of values
to the tuple of network variables

– The values of                               are precisely the values stored 
in the conditional probability table associated with node 

∏
=

=
n

1i
iin1 YParentsyPyyP ))(|(),...,(

>< n1 yy ,..., >< n1 YY ,...,

))(|( ii YParentsyP

iY

Bayesian Belief Networks (cont.)
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Bayesian Belief Networks (cont.)

• Inference
– Infer the value of some target variable, given the observed values of the other 

variables
– More accurately, infer the probability distribution for target variable, specifying the 

probability that it will take on each of its possible values given the observed values of 
the other variables.

• Example : Let the Bayesian belief network with (n+1) attributes (variables) A1, …, An, T,
be constructed from the training data. 
Then the target value of the new instance <a1, … ,an> would be 

– Exact inference of probabilities generally, NP-hard
• Monte Carlo methods : Approximate solutions by randomly sampling the distributions of 

the unobserved variables
• Polytree network : Directed acyclic graph in which there is just one path, along edges in 

either direction, between only two nodes.
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• Learning Bayesian belief networks 
– Different settings of learning problem

• Network structure: known 
– Case 1: all  variables observable Straightforward
– Case 2: some variables observable Gradient ascent procedure

• Network structure: unknown 
– Bayesian scoring metric
– K2

Bayesian Belief Networks (cont.)



60

AI & CV Lab, SNU

• Gradient ascent training of B.B.N.
– Structure is known, variables are partially observable

• Similar to learn the weights for the hidden units in an neural network

– Goal : Find

• Use of a gradient ascent method

)|(maxarg hDPh
Hh

ML
∈

≡

Bayesian Belief Networks (cont.)
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• Maximizes by following the gradient of 

– Yi : network variable
– Ui : Parents(Yi)
– wijk : a single entry in conditional probability table
– wijk = P(Yi=yij|Ui=uik)
– For example, if Yi is the variable Campfire, then yij=True, uik=<False, False >

∑
∈
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)|( hDP )|(ln hDP

Bayesian Belief Networks (cont.)
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• Perform gradient ascent repeatedly
1. Update         using D

η : learning rate

2. Renormalize         to assure

∑
∈
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Bayesian Belief Networks (cont.)
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• Derivation process of

– Assume that the training example d in the data set D are drawn independently

Bayesian Belief Networks (cont.)

ijk

h

w
DP

∂
∂ )(ln



64

AI & CV Lab, SNU

• Given that                             , the only term in this sum for 
which        is nonzero is the term for which             and   
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Bayesian Belief Networks (cont.)
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• Applying Bayes theorem,
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Bayesian Belief Networks (cont.)
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• Learning the structure of Bayesian networks
– Bayesian scoring metric (Cooper and Herskovits,1992)

– K2 algorithm
• Heuristic greedy search algorithm when data is fully observed data

– Constraint-based approach (Spirtes et al, 1993)
• Infer dependency and independency relationships from data
• Construct structure using this relationship

Bayesian Belief Networks (cont.)
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• When to use
– Learning in the presence of unobserved variables
– When the form of probability distribution is known

• Applications
– Training Bayesian belief networks
– Training radial basis function networks (Chapter 8.)
– Basis of many unsupervised clustering algorithms

EM Algorithm



68

AI & CV Lab, SNU

• Estimating means of k Gaussians 
– Each instance is generated using a two-steps

1. Select one of the k normal distributions at random
(all the σs of the distributions are the same and known)

2. Generate an instance xi according to this selected distribution

EM Algorithm (cont.)
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• Task
– Finding (maximum likelihood) hypothesis h = <μ1,…,μk>, that maximizes

p(D|h)

• Conditions
– Instances from X are generated by mixture of k normal distributions.
– Which xi is generated by which distribution is unknown 
– Means of that k distribution, <μ1,…,μk>, are unknown

EM Algorithm (cont.)
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• Single normal distribution

• Two normal distribution

– If z is known : Use the straightforward way
– Else use EM algorithm : Repeated re-estimating 
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EM Algorithm (cont.)
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• Initialize h=<μ1,μ2> with arbitrary small value
• Step 1 : Calculate E[zij ], assuming h holds

• Step 2 : Calculate a new maximum likelyhood hyphothesis
h’=<μ1’,μ2’> ( use E[zij] from step1)

• Until the procedure converges to a stationary value for h
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EM Algorithm (cont.)
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• General statement of EM algorithm
– Given:

• Observed data X = {x1,…,xn }
• Unobserved data Z = {z1,…,zn }
• Parameterized probability distribution P(Y|h), where

– Y ={y1,… yn } is the full data yi = xi ∪zi

– θ : underlying probability distribution
– h : current hypothesis of θ
– h’ : revised hypothesis

– Determine:
• h that (locally) maximizes E[ln P(Y|h)]

EM Algorithm (cont.)
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],|)|([ln)|( XhhYpEhhQ ′=′
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• Assume θ = h, define

• Repeats until convergence:
– Step 1:Estimation step:

– Step 2:Maximization step:

EM Algorithm (cont.)
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• Example : Derivation of the k mean algorithm
– The probability                of a single instance             of the full 

data

- only one of       can have the value 1, and all others must be 0

–
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• Expression for                      is a linear function of these

• The function                  for the k means problem
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Minimized by setting each       to the weighted sample mean
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