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Overview

• Motivation
• Inductive-Analytical Approaches to Learning
• KBANN
• TangentProp
• EBNN
• FOCL
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Motivation

Inductive Learning Analytical Learning

Goal Hypothesis fits data Hypothesis fits domain theory

Justification Statistical inference Deductive inference

Advantages Requires little prior knowledge Learns from scarce data

Pitfalls Scarce data, incorrect bias Imperfect domain theory

The two approaches work well for different types of problem.

How to combine the two into a single algorithm 
that captures the best aspects of both ?
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Inductive learning Analytical learning

Plentiful data
No prior knowledge

Perfect prior knowledge
Scarce data

Most practical problems lie
somewhere between these two extremes

In analyzing a database of medical records…

In analyzing a stock market database…

Motivation (cont.)
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• Desirable properties
– Given no domain theory, it should learn at least as effectively as purely 

inductive methods.
– Given a perfect domain theory, it should learn at least as effectively as 

purely analytical methods.
– Given an imperfect domain theory and imperfect training data, it should 

combine the two to outperform either purely inductive or purely 
analytical methods.

– It should accommodate an unknown level of error in the training data 
and in the domain theory.

Motivation (cont.)
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Inductive-Analytical Approaches to Learning

• The learning problem
– Given

• A set of training examples D, possibly containing errors
• A domain theory B, possibly containing errors
• A space of candidate hypotheses H

– Determine
• A hypothesis that best fits the training examples and domain theory
• Tradeoff

– errorD(h): Proportion of examples from D that are misclassified by h
– errorB(h): Probability that h will disagree with B on the classification of a randomly 

drawn instance
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• Learning methods as search algorithms
– H : Hypothesis space
– h0 : Initial hypothesis
– O : Set of search operators
– G : Goal criterion

• Use prior knowledge to…
– Derive an initial hypothesis h0 from which to begin the search 

• KBANN
– Alter the objective G of the hypothesis space search

• TangentProp, EBNN
– Alter the available search steps (operator O)

• FOCL

Inductive-Analytical Approaches to Learning 
(cont.)
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KBANN

• Intuitively
– Initialize the network using prior knowledge
– If the domain theory is correct

• The initial hypothesis will correctly classify all the training examples, 
no need to revise it.

– If the initial hypothesis is found to imperfectly classify the training 
examples

• Refine inductively to improve its fit to training examples

• c.f.) Purely inductive BACKPROPAGATION
– Weights are typically initialized to small random values

Even if the domain theory is only approximately correct,
Better than random

““InitializeInitialize--thethe--hypothesishypothesis””



AI & CV Lab, SNU 9

• Given
– A set of training examples
– A domain theory consisting of nonrecursive, propositional Horn clauses

• Determine
– An artificial neural network that fits the training examples, biased by 

the domain theory

Create an artificial neural network 
that perfectly fits the domain theory
Create an artificial neural network 

that perfectly fits the domain theory

BACKPROPAGATION
To refine the initial network to fit the 

training examples

BACKPROPAGATION
To refine the initial network to fit the 

training examples

Analytical step

Inductive step

KBANN (cont.)



AI & CV Lab, SNU 10

• KBANN(Domain_Theory, Training_Examples)
– Domain_Theory: Set of propositional, nonrecursive Horn clauses.
– Training_Examples: Set of (input output) pairs of the target function.

KBANN (cont.)
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• Analytical step: Create an initial network equivalent to the domain theory• Analytical step: Create an initial network equivalent to the domain theory

– For each instance attribute, create a network input.
– For each Horn clause in the Domain_Theory, create a network unit as follows:

• Connect the inputs of this unit to the attributes tested by the clause antecedents.
• For each non-negated antecedent of the clause, assign a weight of W to the corresponding 

sigmoid unit input.
• For each negated antecedent of the clause, assign a weight of –W to the corresponding 

sigmoid unit input.
• Set the threshold weight w0 for this unit to –(n-0.5)W, where n is the number of non-negated 

antecedents of the clause.
– Add additional connections among the network units, connecting each network unit at 

depth i from the input layer to all network units at depth i+1. Assign random near-zero 
weights to these additional connections.

KBANN (cont.)
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• A neural network equivalent to the domain theory
– Created in the first stage of the KBANN
– Sigmoid output value >= 0.5 is true, < 0.5 as false

weight = W

weight = ~ 0

Threshold weight w0 = -1.5W

※Towell and Shavlik(1994), W=4.0

KBANN (cont.)
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• Inductive step: Refine the initial network• Inductive step: Refine the initial network

– Apply the BACKPROPAGATION algorithm to adjust the initial network weights to fit 
the Training_Examples.

KBANN (cont.)
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• Benefits of KBANN
– Generalizes more accurately than BACKPROPAGATION

• When given an approximately correct domain theory
• When training data is scarce

– Initialize-the-hypothesis
• Outperform purely inductive systems in several practical problems

– Molecular genetics problem (1990)
» KBANN: Error rate of 4/106
» Standard BACKPROPATATION: Error rate of 8/106
» Variant of KBANN(1993) by Fu: Error rate of 2/106

• Limitations of KBANN
– Accommodate only propositional domain theories

• Collection of variable-free Horn clauses
– Misled when given highly inaccurate domain theories

• Worse than BACKPROPAGATION

KBANN (cont.)
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• Hypothesis space search in KBANN

KBANN (cont.)
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TangentProp

• Prior knowledge
– Derivatives of the target function

• Trains a neural network to fit both
– Training values
– Training derivatives

• TagentProp & EBNN
– Outperform purely inductive methods 

• Character and object recognition
• Robot perception and control tasks
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• Training examples

– Up to now:
– In TangentProp:

• Assumes various training derivatives of the target function 
are also provided
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TangentProp (cont.)
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f(x)

x1 x2 x3

f(x1)

f(x2)

f(x3)

f

g

h

BACKPROPAGATION

• Intuitively

TagentProp

The learner has a better chance to correctly generalize from 
the sparse training data

TangentProp (cont.)
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• Accept training derivatives with respect to various transformations 
of the input x
– Learning to recognize handwritten characters

• Input x: An image containing a single handwritten character
• Task: Correctly classify the character
• Prior knowledge

– “The target function is invariant to small rotations of the character within 
the image”

– : Rotates the image x by α degrees),( xs α
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TangentProp (cont.)
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• TargentProp
– Accept multiple transformations

• Each transformation must be of the form
– α : Continuous parameter
– sj : Differentiable, sj (0,x) = x

– μ : Constant
» Relative importance of fitting training values / training derivatives

• c.f.) BACKPROPAGATION
– Performs gradient descent to attempt to minimize the sum of squared errors
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TangentProp (cont.)
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• Recognizing handwritten characters (1992)
– Images containing a single digit 0 ~ 9
– Prior knowledge

• Classification of a character is invariant of vertical and horizontal translation

Percent error on test setTraining 
set size

TangentProp BACKPROPAGATION

10
20
40
80

160
320

34
17
7
4
0
0

48
33
18
10
3
0

TangentProp (cont.)
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• The behavior of algorithm is sensitive to μ
• Not robust to errors in the prior knowledge

– Degree of error in the training derivatives is unlikely to be 
known in advance

TangentProp (cont.)
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• Hypothesis space search in TangentProp

TangentProp (cont.)



AI & CV Lab, SNU 24

EBNN 
(Explanation-Based Neural Network Learning)

• EBNN
– Automatically selects values for μ on an example-by-example 

basis in order to address the possibility of incorrect prior 
knowledge

• Using the prior knowledge to alter the search objective
• Builds on TangentProp

– Compute training derivatives itself for each examples
– “How to weight the relative importance of the inductive and 

analytic components of learning”
→ Determined by itself
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EBNN (cont.)

• Given
– Training example : <xi, f(xi)> 
– Domain theory : represented as a set of previously trained neural 

networks

• Determine
– A new neural network that approximates the target function f
– This learned network is trained to fit both the training examples and 

training derivatives of f extracted from the domain theory
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EBNN (cont.)

Create a feedforward NetworkCreate a feedforward Network

Determines training derivativesDetermines training derivatives

Train the target networkTrain the target network

Initialize : small random weightsInitialize : small random weights

Predict the value A(xi) of the target 
function for training example xi using 

domain theory network
↓

Analyze the weights and activation of 
the domain theory networks

↓
Extract derivatives of A(xi)

Predict the value A(xi) of the target 
function for training example xi using 

domain theory network
↓

Analyze the weights and activation of 
the domain theory networks

↓
Extract derivatives of A(xi)

Error functionError function

• Algorithm



AI & CV Lab, SNU 27

Error function

xi : The i th training instance

A(x) : The domain theory prediction for input x

xj : The j th component of the vector x

c : A normalizing constant (0 ≤ μj ≤ 1, for all i)
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Inductive constraint
that the hypothesis must fit

the training data

Analytical constraint
that the hypothesis must fit 

the training derivatives

EBNN (cont.)
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EBNN (cont.)
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Learns target network
by invoking

TangentProp algorithm
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EBNN (cont.)

• Remarks
– Domain theory

: Expressed as a set of previously learned neural networks

– Training derivative
: How the target function value is influenced  by a small change to 
attribute value 

– μi

: Determined independently for each training example,  based on how 
accurately the domain theory predicts the training value for example 
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EBNN (cont.)

• Hypothesis Space Search in EBNN
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• EBNN vs. PROLOG-EBG

EBNN PROLOG-EBG

Explanation

Neural network Horn clause
Domain 
theory

Size

Training derivatives Weakest preimage

Imperfect Perfect

Learns a fixed size neural 
network

Learns a growing set of Horn 
clause

EBNN (cont.)
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FOCL

• Using prior knowledge to augment  search operators
• Extension of the purely FOIL

FOCL FOIL

Generating 
candidate 

specialization

FOIL + Additional 
specializations  based on 

the domain theory

Add a single new literal to the 
clause precondition

Learn a set of first-order Horn clauses
Sequential covering algorithm
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• Operational
– If a literal is allowed to be used  in describing an output hypothesis

• Nonoperational 
– If a literal occur only as intermediate features in the  domain theory

FOCL (cont.)
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FOCL (cont.)

• Algorithm
– Generating candidate specializations

Selects one of the domain theory clause

Nonoperational literal is replaced

Prune the preconditions of h 
unless pruning reduces classification accuracy 

over training examples

1. Cup ← Stable, Liftable, Openvessel
2. BottomIsFlat , HasHandle, Light, HasConcavity, 

ConcavityPointsUp
3. Remove HasHandle

Cup ← BottomIsFlat , Light, HasConcavity, 
ConcavityPointsUp
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FOCL (cont.)

− Horn clause of the form

− Uses both a syntactic generation of candidate specialization and a domain 
theory driven generation of candidate specialization at each step

C ← Oi∧ Ob ∧ Of

Oi : An initial conjunction of operational literals
(added one at a time by the first syntactic operator)

Ob : A conjunction of operational literals
(added in a single step based on the domain theory)

Of : A final conjunction of operational literals
(added one at a time by the first syntactic operator)

• Remarks
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• Hypothesis space

FOCL
search FOIL

search

Hypothesis that fits
training data 
equally well

FOCL (cont.)
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