
Reference: Reinforcement learning An Introduction
By Richard S. Sutton and Andrew G. Barto

Artificial Intelligence & Computer Vision Lab
School of Computer Science and Engineering

Seoul National University

Machine Learning

Reinforcement Learning

AI & CV Lab, SNU 2

Overview (from reference)

• Reinforcement learning is learning what to do – how to map situations to actions
– so as to maximize a numerical reward signal (value). The agent (learner) is not
told which actions to take, as in most forms of machine learning, but instead
must discover which actions yield the most reward by trying them.

• The agent and the environment interact continually: the agent selecting actions
by sensing the state of the environment (exploration & expoitation) and the
environment responding to those actions and presenting new situations to the
agent. The environment also gives rewards, special numerical values that the
agent tries to maximize over time.

• A task is a complete specification of an environment, one instance of the
reinforcement learning problem: If the agent-environment interaction breaks into
subsequences, called episodes, such as plays of a game, trips through maze, or
any sort of repeated interactions, then the task with episodes of this kind is
called a episodic task. If it does not break naturally into identifiable episodes but
goes on continually without limit, it is called a continuing task.

AI & CV Lab, SNU 3

Overview (cont.)

• The agent implements a mapping (policy) from states (situations) to actions so as
to maximize the total amount it receives, not the immediate reward but the
cumulative reward over time.

• The goal of the reinforcement learning methods is to find the optimal policy
maximizing the cumulative reward starting from any given state (situation).

• Markov property for reinforcement learning problem: When considered how a
general environment might respond at time t +1 to the action at time t, in most
general and casual cases this response depends on everything that has happened
earlier. If the state and reward response at t +1 depends on only on state and
action happened at time t, then the environment is said to have the Markov
property.

• A reinforcement learning task satisfying the Markov property is called a Markov
decision process. If the state and action spaces are finite, then it is called a finite
Markov decision process.

AI & CV Lab, SNU 4

Preview (from text)

• Reinforcement learning
– How an autonomous agent that senses and acts in its

environment can learn to choose optimal actions to achieve its
goals?

– Learn from indirect, delayed reward to choose sequences of
actions that produce the greatest cumulative reward.

– Q learning that can acquire optimal control strategies from
delayed rewards, even when the agent has no prior knowledge
of the effects of its actions on the environment.

• Related to dynamic programming algorithm

AI & CV Lab, SNU 5

Introduction

• Agent
– Has a set of sensors to observe the state of its environment, and

a set of actions it can perform to alter its state

Agent

Environment

ActionState Reward

0s 1s 2s0a 1a 2a
0r 1r 2r

Goal: Learn to choose actions that maximize +++ 2
2

10 rrr γγ
10where <≤ γ

AI & CV Lab, SNU 6

• Agent’s learning task
– At each discrete time step t, the agent senses the current state st, chooses a

current action at, and performs it. The environment responds by giving the
agent a reward and by producing the succeeding state. The succeeding state
functions δ and the reward function r, which are either nondeterministic or
deterministic, are part of the environment and are not necessarily known to
the agent.

– In an MDP (Markov Decision Process), the functions δ(st,at) and r(st,at),
as defined here, depend only on the current state and action, and not earlier
states, actions, and rewards.

– Agent performs sequences of actions, observes their consequences, and
learns a control policy to choose actions that maximize the
reward accumulated over time.

AS →:π

Introduction (cont.)

AI & CV Lab, SNU 7

• Several characteristics of reinforcement learning
– Delayed reward

• Training example has the form of a sequence of immediate reward
values as the agent executes its sequence of actions rather than the form
of : Temporal credit assignment problem determining which of
the actions in its sequence are to be credited with producing the eventual
rewards.

– Exploration & Exploitation
• The agent influences the distribution of training examples by the action

sequence it chooses.
• Exploration of unknown states and actions (to gather new information)
• Exploitation of states and actions that it has already learned will yield

high reward (to maximize its cumulative reward)

)(, ss π

Introduction (cont.)

AI & CV Lab, SNU 8

– Partially observed states
• In many practical situations agent’s sensors cannot perceive the entire

state of the environment at each time step but provide only partial
information. When agent chooses actions, thus, it needs to consider its
previous observations together with its current sensors.

– Life-long learning
• Robot learning often requires that robot learns several related tasks

within same environment using same sensors: A mobile robot need to
learn how to dock on its battery charger, how to navigate through
narrow corridors, and how to pick up output from laser printers. This
setting raises the possibility of using previously obtained experience or
knowledge to reduce sample complexity when learning new tasks.

Introduction (cont.)

AI & CV Lab, SNU 9

Learning Task

• Problem based on Markov Decision Process (MDP)
– Assume a finite set of states, a finite set of actions, and the

deterministic functions of δ and r.
• Task of the agent

– Learn a policy, , that maximize the cumulative
reward.

– Cumulative reward value following an arbitrary policy from an arbitrary
initial state :

• : discounted cumulative reward
• : discounted factor for future rewards.

tt asAS =→)(,: ππ

S A

10 <≤ γ
)(sV π

ts

∑
∞

=
+++ ≡+++≡

0
2

2
1)(

i
it

i
tttt rrrrsV γγγπ

π

AI & CV Lab, SNU 10

– Other definition

– Optimal policy
• Policy that maximizes for all statesπ)(sV π

)(),(argmax* ssV ∀≡ π

π
π

)(
*

sV π)(* sV

finite horizon reward average reward

∑ = +
h

i itr0

Learning Task (cont.)

∑ = +∞→

h

i ith
r

h 0

1lim

AI & CV Lab, SNU 11

– Simple grid-world environment 9.0=γ
G : goal state,

an absorbing state 90001000 32 =++++ γγγ

81010000 32 =++++ γγγ

Learning Task (cont.)

AI & CV Lab, SNU 12

Q Learning
• How can an agent learn an optimal policy in arbitrary environment?

– difficult to learn the function directly
• The training examples of the form (s,a) is not given but the sequence of

immediate rewards for i = 0,1,2… is available.
• Learn a numerical evaluation function defined over states and actions

and implement the optimal policy in terms of this evaluation function.
• What evaluation function should the agent attempt to learn?

– The optimal action in state ,

– Agent can acquire the optimal policy by learning V*, provided it has prefect
knowledge of the immediate the reward function and the state transition ,
which is impossible in many practical robot control problems.

AS →:*π

),(ii asr

))],((),([maxarg)(** asVasrs
a

δγπ +≡
s

r δ

Evaluation function Q

AI & CV Lab, SNU 13

Q Function

• Q function
– Maximum discounted cumulative reward that can be achieved starting from s

and applying a as the first action

– Optimal action a in s,

– If the agent learn the Q function,
• it can choose optimal actions even when it has no knowledge of the

functions and

• it can choose optimal action without ever conducting a look ahead search
– get optimal policy by selecting actions with maximal Q values

)),((),(),(* asVasrasQ δγ+=

r δ

),(maxarg)(* asQs
a

=π

AI & CV Lab, SNU 14

Algorithm for Learning Q

• Iterative approximation
– Relationship between Q and V*:
– Recursive definition of Q:

– : learner’s estimate (hypothesis) to Q.
• Represent hypothesis by large lookup table (Q table) for each state-

action pair
• Table entry with the pair <s, a> stores

• Training rule

– Learn by observing the resulting new state and reward r

),(max)(* asQsV
a

′=
′

)),,((max),(),(aasQasrasQ
a

′+=
′

δγ

Q̂

s′

),(ˆ asQ

),(ˆ max),(ˆ asQrasQ
a

′′+←
′

γ

Q̂

AI & CV Lab, SNU 15

• Q learning algorithm (for deterministic MDP)
– For each initialize the table entry to zero
– Observe the current state
– Do forever

• Select an action and execute it
• Receive immediate reward
• Observe the new state
• Update the table entry for as follows

• s

as,
s

),(ˆ asQ

a
r

s′

),(ˆ max),(ˆ asQrasQ
a

′′+←
′

γ
s′←

),(ˆ asQ

deterministic Markov decision process

r is bounded

every state-action pair is visited infinitely often

Algorithm for Learning Q (cont.)

AI & CV Lab, SNU 16

Illustrative Example

• Assume that training consists of a series of episodes, where episode
is a sequence of interactions between agent and environment:

AI & CV Lab, SNU 17

– During each episode, the agent begins at some randomly chosen initial state
and execute actions until it reaches the goal state

– When it reaches the goal state, the episode ends and the agent is transported
to a new, randomly chosen, initial state for the next episode.

• Two general properties of Q learning algorithm
– values never decrease during training.

– Every value will remain in the interval [0, true Q].

• Deterministic MDP.
• Initialize all values to zero.
• Non-negative reward.

Q̂

Q̂

),(ˆ),(ˆ),,(1 asQasQnas nn ≥∀ +

),(),(ˆ0),,(asQasQnas n ≤≤∀
Q̂

Illustrative Example (cont.)

AI & CV Lab, SNU 18

Convergence

• The converge to the true Q!
– Assumption

• System is a deterministic MDP.
• The immediate reward values are bounded.
• The agent selects actions in such a fashion that it visits every possible

state-action pair infinitely often.

– The key idea
• The table entry with the largest error must have its error reduced

by a factor whenever it is updated.

Q̂

casras ≤∀),(),(

),(ˆ asQ
γ

converges to as , for all s, a),(ˆ asQn),(asQ ∞→n

AI & CV Lab, SNU 19

• Proof:
– Let be the table after n updates, and be the maximum

error in ; that is

– For any table entry updated on iteration n+1, the error in
the revised estimate is

nQ̂
nQ̂

nΔ

|),(),(ˆ|max
,

asQasQnasn −≡Δ

),(ˆ asQn

),(ˆ
1 asQn+

|)),(ˆmax()),(ˆmax(|),(),(ˆ
1 asQrasQrasQasQ

anan ′′+−′′+=−
′′+ γγ

|),(ˆ),(ˆ|max
,

asQasQnas
′′′−′′′≤

′′′
γ

nn asQasQ Δ≤−+ γ|),(),(ˆ| 1

∞→→ΔΔ≤−+ nasQasQ n
n

n as 0 ,|),(),(ˆ| 01 γ

Convergence (cont.)

AI & CV Lab, SNU 20

Experimental Strategies

• How actions are chosen by the agent?
– Selection the action that maximizes (exploitation)

• The risk to overcommit to actions that are found during early training to
have high values

• failing to explore other actions that have even higher values.

– Use a probabilistic approach

• Actions with higher Q values are assigned higher probabilities
• Large k exploit, Small k explore (k<1, k=1, 1<k)
• k is varied with the number of iterations (exploration exploitation)

a),(ˆ asQ

∑
=

j

asQ

asQ

i
j

i

k
ksaP

),(ˆ

),(ˆ

)|(

Q̂

0>k

AI & CV Lab, SNU 21

Updating Sequence

• Strategy for improving the rate of convergence (training
efficiency)
– Train the identical episode in reverse chronological order

• Converge in fewer iterations, but requires more memory

– Store past state-action transitions along with the immediate
reward

• If is determined by of the successor state
and subsequent training changes , retaining on the

transition <s,a> may result in the altered value for

• If and are known, many more efficient
methods possible (simulation)

),(ˆ asQ

),(ˆ asQ

),(asr),(asδ

),(' ass δ=),(ˆ asQ ′

),(ˆ asQ ′

AI & CV Lab, SNU 22

Nondeterministic Reward and Actions

• Nondeterministic case
– Reward function and transition function :

probabilistic outcomes

• Nondeterministic Markov decision process
– The probabilistic distributions of and depend

solely on the current state and action
– Expected value of the discounted cumulative reward

– Covered the deterministic case

),(asr),(asδ

),(asr),(asδ

⎥
⎦

⎤
⎢
⎣

⎡
≡ ∑

∞

=
+

0
1)(

i
i

i
t rEsV γπ

AI & CV Lab, SNU 23

• Redefine of Q-value: taking expected value of Q

• Training rule

• : the number of times this state-action pair has been visited
up to and including the nth iteration

() ()()[]asVasrEasQ ,),(, * δγ+≡

()[] ()()[]asVEasrE ,, * δγ+=

()[] ()∑
′

′′+=
s

sVassPasrE)(,|, *γ

[]),(ˆmax),(ˆ)1(),(ˆ
11 asQrasQasQ nannnn ′′++−← −′− αα

where),(1
1

asvisitsn
n +
=α

),(asvisits n

() ()[] ()∑
′ ′

′′′+=
s a

asassPasrEasQ),(max,|,, γ

Nondeterministic Reward and Actions (cont.)

AI & CV Lab, SNU 24

– Revisions to are made more gradually than deterministic
case

– By reducing at some rate during training, convergence to
correct Q function is achieved

• Convergence of Q learning for nondeterministic MDP
– bounded reward, initialize to arbitrary finite value,

Q̂

α

If and then

converges to as , for all s, a with
probability 1.

∞→n),(ˆ asQ),(asQ

10 <≤ nα []∑ ∑
∞

=

∞

=

∞<∞=
1 1

2
),,(),,(,

i i
asinasin αα

Q̂

Nondeterministic Reward and Actions (cont.)

AI & CV Lab, SNU 25

Temporal Difference Learning

• Q-learning
– Learns by iteratively reducing the discrepancy between Q value

estimates for adjacent states
– A special case of general class of temporal difference algorithms

• learn by reducing discrepancies between estimates made by agent at
different times

– Q learning training rule :

...

• TD(λ) by Sutton(1988)

),(ˆ max),(1
)1(

1
)(asQrrrasQ nta

n
nt

n
tttt

n
+−+

−
+ ++++≡ γγγ

)],(),(ˆmax)1[(),(11 +++−+= ttttattt asQasQrasQ λλ λλγ 10 ≤≤ λ

),(ˆ max),(1
)1(asQrasQ tattt ++≡ γ

AI & CV Lab, SNU 26

– If ,
• Considers only one-step discrepancies in the estimate

As λ increases, the algorithm emphasizes on discrepancies
based on more distance lookaheads

– If ,
• Only the observed values are considered, with no contribution from

the current estimate

Motivation of TD(λ)
• In some settings, training will be more efficient if more distant

lookaheads are considered

0=λ

1=λ

Q̂

Q̂
1+ir

Temporal Difference Learning (cont.)

AI & CV Lab, SNU 27

Generalizing from Examples

• Most constraining assumption of Q learning
» The target function is represented as an explicit lookup table,

with a distinct table entry for every distinct input value (state-
action pair)

– A kind of rote learning and make no attempt to estimate the Q
value for unseen state-action pairs by generalizing from those
that have been seen

AI & CV Lab, SNU 28

• Practical systems
– Incorporate function approximation methods (BP) into the Q

learning rule, by substituting a neural network for the lookup
table and using each update as a training examples :

• Using the encoded state and action as input the network is trained to
output the target values of given by training rules (13. 7) and (13,10)

),(ˆ asQ

Q̂

Generalizing from Examples (cont.)

AI & CV Lab, SNU 29

Relationship to Dynamic Programming

• Reinforcement learning (Q learning) are closely related
with dynamic programming to solve MDP.
– DP: Perfect knowledge of and

• Find method using less computational effect

• Bellman’s equation
– The foundation for many dynamic programming

• Note that Bellman showed that the optimal policy satisfies the above
equation, and any policy satisfying this equation is an optimal policy.

() [])))(,(())(,()(** ssVssrEsVSs πδγπ +=∈∀

π
*π

),(asr),(asδ

AI & CV Lab, SNU 30

• Dynamic Programming: It refers to a collection of algorithms that can be
used to compute optimal policies, given a perfect model of the environment as a
Markov decision process. Classical DP algorithms are of limited utility in
reinforcement learning both because of their assumption of a perfect model and
because of their great computational expense, but still important theoretically.

• Monte Carlo Methods: Not assuming complete knowledge of the
environment, they require only experience – sample sequences of states, actions,
and rewards from online or simulated interaction with an environment. Monte
Carlo methods are the ways of solving the reinforcement learning problem based
on averaging sample returns. They are defined only for episodic tasks.

• Temporal-Difference Learning Methods (Combination of Monte Carlo
and Dynamic programming): Like Monte Carlo methods, TD methods can learn
directly from raw experience without a model of the environment’s dynamics.
Like DP, TD update estimates based on in part on other learned estimates
without waiting for a final outcome as in MC methods.

	Reference: Reinforcement learning An Introduction�By Richard S. Sutton and Andrew G. Barto��Artificial Intelligence & Compute
	Overview (from reference)
	Overview (cont.)
	Preview (from text)
	Introduction
	Introduction (cont.)
	Introduction (cont.)
	Introduction (cont.)
	Learning Task
	Learning Task (cont.)
	Learning Task (cont.)
	Q Learning
	Q Function
	Algorithm for Learning Q
	Algorithm for Learning Q (cont.)
	Illustrative Example
	Illustrative Example (cont.)
	Convergence
	Convergence (cont.)
	Experimental Strategies
	Updating Sequence
	Nondeterministic Reward and Actions
	Nondeterministic Reward and Actions (cont.)
	Nondeterministic Reward and Actions (cont.)
	Temporal Difference Learning
	Temporal Difference Learning (cont.)
	Generalizing from Examples
	Generalizing from Examples (cont.)
	Relationship to Dynamic Programming

