Computer System Design (Advanced Digital Systems Design) 4190.309 2008 Fall Semester

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

- Undergraduate course that covers advanced digital systems design
- Schedule
 - Monday and Wednesday, 2:30 PM to 3:45 PM
- Instructor
 - Prof. Naehyuck Chang
 - naehyuck@snu.ac.kr
 - Phone: SNU-1834
 - Office: 301-506
- TA
 - Sangyoung Park (박상용), Jaeam Seo (서재암)
 - sypark@elpl.snu.ac.kr and jaseo@elpl.snu.ac.kr
 - Phone: SNU-1836
 - Office: 301-551

- Homepage
 - <u>http://etl.snu.ac.kr</u> Computer System Design (BBS)
- Language
 - Korean + English (dependent on situation)
- Evaluation
 - Attendance (5%)
 - Midterm project (30%)
 - Final exam and project (50%)
 - Assignment (15%)

- Digital logic design
 - Theory
 - Axioms and theorems of Boolean algebra
 - Combinational logic design and optimization
 - Sequential logic elements: FF and latch
 - Sequential logic design and optimization
 - Practice
 - Principle of operation of digital logic elements
 - Unit delay model, rise time, falling time, and propagation delay
 - Random logic, regular logic, and simple programmable devices
 - Lab
 - Prototyping techniques

- Advanced digital system design
 - Specially tailored digital "system" design for real practices
 - System architects
 - More about practice
 - Inside the digital logic gates
 - Circuit theory
 - Diode and transistors
 - Modern logic gates
 - Interface between digital logic gates and non-digital logic devices
 - Fanout, driving capability, impedance, power consumption and signal integrity
 - Power supply for digital logic gates
 - Logic synthesis
 - •
- Verilog

- Advanced digital system design
 - More about practice (contd)
 - Advanced tools
 - Data translation
 - Bigger design projects
 - Advanced instruments: digital storage oscilloscope
 - Review of finite state machines
 - Concept of digital "systems"
 - Beyond "logic" and toward "systems"
 - Bridge to microprocessor-based systems
 - This course covers only hardwired logic
 - Concept of microprocessor-based systems will be introduced

- Advanced digital system design
 - Intensive lab courses
 - Additional three-credit lab course
 - Designed to combine electric/electronics lab courses

- Textbook
 - There is no single textbook for this course
- References
 - Manuals
 - TA will post some documents
- Course materials
 - PDF format slides will be uploaded soon

What to cover

- Basic prototyping knowledge and technology
 - Design
 - Verification
 - Implementation
 - Layout
 - Wiring
 - Soldering
 - FPGA targeting
- Understanding real-world digital systems design
 - Beyond the math theory
 - Optimal design

Comments: toward your career goal

- What do you want to be in the future?
 - 5 years later
 - 10 years later
 - 15 years later
 - 20 years later
 - 30 years later
 - 40 years later
- System architect and top engineering
 - What will be the job of that position?

Who can or cannot attend this course

- What do you want to maximize?
 - Yield
 - What is your performance metric?
 - Grade/man hour?
 - Knowledge/man hour?

