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CMOS Inverter

 The CMOS inverter and (b) its representation as a pair of switches 
operated in a complementary fashion
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CMOS Inverter

 Static operation
 The voltage transfer characteristic (VTC) of the CMOS inverter when QN 

and QP are matched
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CMOS Inverter

 Static operation
 Matching for symmetrical transfer characteristic

 μn is 2 to 4 times larger than μp

 Generally devices have the same channel length for a given technology
 Device size: (n+p)L2 where n=1.5 and p=4.5 for example 
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CMOS Inverter

 Dynamic operation
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CMOS Inverter

 Dynamic operation
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Power and Energy

 Power consumption of digital circuits is defined by the supply 
voltage times the current flow from VDD to GND
 Generally, VDD is constant and IDD is variable

 Instantaneous power:

 Energy:

 Average power:
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Source of Power Consumption

 Dynamic power
 Current flow from VDD to GND when logic transition occurs

 Switching power
 Short-circuit power
 Glitch power

 Static power
 Current flow from VDD to GND regardless of logic transition

 DC current
 Leakage power
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 Traditional CMOS circuits
 Slow operation

 Negligible dynamic power consumption
 Electric watches, calculators, etc.

 High VDD and high VT

 Negligible leakage power consumption
 Small short-circuit current

9
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Source of Power Consumption

 Modern high-speed CMOS
 Fast operation

 High dynamic power
 Low VDD and low VT

 Less dynamic power but more leakage power per unit transistor
 Power is the most important design constraints

 Large-scale integration and thus power per unit area increase dramatically
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Source of Power Consumption

 Switching power

 A step voltage is applied at t=0

 Energy transferred from the power supply
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Source of Power Consumption

 Switching power
 When
               is dissipated by heat
               is stored in the capacitor
 The remaining               is dissipated by heat again when high-to-low 

transition occurs
 High-to-low transition does not

draw additional current from the
power supply
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Source of Power Consumption

 Switching power:
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Source of Power Consumption

 Gate capacitance

      : sum of the gate-to-bulk capacitances

 Overlap capacitance

 Due to Miller effect:
  

 Diffusion capacitance
 Interconnect capacitance
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Source of Power Consumption

 Reduced swing switching power
 Rail-to-rail swing: VDD to GND

 When VOH < VDD, swing is VOH to GND

 Reduced bit-line in memory
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Source of Power Consumption

 Short-circuit power
 Transient current from VDD to GND when logic transition occurs
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Source of Power Consumption

 Short-circuit power
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Static Power

 DC current
 Pseudo NMOS logic
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Static Power

 DC current
 Steady current flow from VDD to GND
 Either logic value is 0 or 1 depending on the logic structure

 Mostly when the output is 0
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Static Power

 Leakage current
 A transistor switch is a resistive-capacitive network between the power 

supply and GND
 Non-ideal off-state characteristics (a finite resistance) makes current 

draw even when the transistor is in the cut-off state
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Static Power

(DIBL)

 Long channel (L>1um): negligible leakage
 Short channel (L>180nm, Tox>30Å): subthreshold leakage
 Very short channel (L>90nm, Tox>20Å): subthreshold+gate leakage
 Nano scaled (L<90nm, Tox<20Å): subthreshold+gate+BTBT leakage

(Gate leakage)

(BTBT)
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Transistor Scaling

 Two key transistor scaling schemes
 CE (Constant electric field) scaling

 All the horizontal and vertical dimensions are scaled with the power supply to 
maintain constant electric fields throughout the device

 Standard scaling methodology in industry in a 30% reduction (1/S=0.7) of all 
dimensions per generation

 Supply and threshold voltages are scaled down by the factor of 1/S
 Current, gate capacitances, and delay also scaled by 1/S
 Results in 50% improvement in frequency
 Improvement gradually degrades due to interconnect dominant delay

 CV (Constant voltage) scaling
 Maintains a constant power supply
 Gradually scales the gate oxide thickness to slow down the growth of fields in 

the oxide
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Transistor Scaling

 CE scaling
 Switching energy scaled down by 1/S3  
 Dynamic power scaled down by 1/S2

 Operating frequency scaled up by S
 Dynamic power for a constant die size is the same
 Number of switching elements scaled up by S2

 Leakage power increases exponentially
 Total effective width of a device scaled up by S

 Example
 Leakage power is 0.1% in 25um technology
 Leakage power is 25% in 0.1um technology
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Transistor Scaling

 Short-channel effect
 VT roll-off: charge partitioning model

 Long channel

 Short channel



ELPL
Embedded Low-Power

Laboratory

Transistor Scaling

 Alpha-Power model
 Simple hand calculation model that empirically fits the real data

 α is close to 1 than 2, which is approximately 1.25, and continue to 
approach to 1 as technology scales

25

IDS = KS
W
L

(VGS−VT)α

Measured data

Measured data

Isub = I0e−  e
VGS−VT

S

Delay ∝ VD D

(VD D−VT )α

ION = I0(Sα)−α(VGS−VT)α
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(DIBL)

Static Power

 Summary of leakage power components

Off-state leakage

On-state leakage
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Total Power Management

 Power minimization in both active and standby modes
 Dynamic power in active mode
 Subthreshold leakage power in standby mode
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Switching Activity

 Activity Factor: α
 System clock frequency = f
 Let fsw = αf, where α = activity factor

 If the signal is a clock, α = 1
 If the signal switches once per cycle, α = ½
 Dynamic gates: switch either 0 or 2 times per cycle, α = ½
 Static gates: depending on design, but typically α = 0.1

 Switching power:
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Switching Activity

 Abnormal switching 
activity
 Glitch power

 Power dissipated in 
intermediate transitions 
during the evaluation of the 
logic function

 Unbalanced delay paths are 
principle cause

 Usually 8% -25% of 
dynamic power 
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Path Balancing

 Equalize the delay of input paths of each gate to reduce the 
possibility of spurious transitions
 Spurious transitions are reported to amount to 10~40% of all switching 

activities
 Balancing the paths
  Increase the possibility of simultaneous transition at the input 

  Decrease the possibility of hazards at the output
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Path Balancing

 Balance the paths by restructuring the logic circuit

 Balance the paths by inserting unit-delay buffers
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“Don’t-care” Optimization

 Traditionally have been used for area minimization
 Include appropriate “don’t-care” sets in either the ON set or the OFF set

 Exploit the “don’t-care” set so as to decrease the output transition 
probability
 Include the “don’t-care” set in the ON set if Pone(F) > 0.5

 Include the “don’t-care” set in the OFF set if Pone(F) < 0.5

CMOS
gate

* Transition probability of CMOS: Ptransition(F) = 2 Pone(F) (1- Pone(F))

 Maximized when Pone(F) = 0.5 (Pone(F): the probability of F being 1)

F

Ptransition(F)
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Logic Factorization

 Have been commonly used for area optimization
 Reduce literal count to minimize the number of transistors being used to 

represent the target logic

 Perform the factorization to reduce the switched capacitance
 The smaller literal count does not guarantee the smaller switched 

capacitance unlike the case of area optimization
 Should consider both the transition probability at the input and the load 

capacitance 
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Logic Factorization

 Should select the circuit (a) for area optimization 
 Should select the circuit (b) for power optimization

(a)

(b)
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Technology Mapping

 The process of binding a set of logic equations to the gates in target 
cell library
 Have been originally developed to optimize area and delay

 Hide nodes with high switching activity inside the gates 
 Generally, internal capacitances in gates are much smaller than external 

load capacitances
 Select the library with same function but different capacitances 

while meeting the delay constraints
 Most technology libraries include the same logic element with different 

sizes
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Technology Mapping

 Should select the circuit (a) for area optimization 
 Should select the circuit (b) for power optimization

(a)

(b)

Gate Area Intrinsic

cap.

Input load

cap.

INV 928 0.1029 0.0514

NAND2 1392 0.1421 0.0747

AOI22 2320 0.3410 0.1033
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State Encoding

 The process of assigning a unique binary code to each state in a 
FSM (Finite State Machine)
 Have been studied well for area minimization

 Assign codes with smaller Hamming distance to states with larger 
state transition probability when focusing on low power
 Minimize the following cost function
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State Encoding

 Gray coding example

 Need to consider not only the switching activity in the state registers 
but also in the combinational logic affected by assigned codewords 
for further optimization

S1
S2

S3

S4
S5

S6

S7

S8

State Gray Binary

S1 0 0

S2 1 1

S3 11 10

S4 10 11

S5 110 100

S6 111 101

S7 101 110

S8 100 111

Total # of transitions 8 14

Max. transitions / cycle 1 3
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Retiming

 The process of repositioning registers (FFs) in a pipelined circuit 
(while maintaining I/O functionality)
 First proposed to minimize the number of registers or the delay of the 

critical path (the longest pipeline stage)
 Pipeline the circuit by adding a register

 Block the glitch propagation to the large load cap. (CL)
 Generally, input load cap. of registers are much smaller than CL
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Retiming

 Move registers to nodes with higher switching activity 
 Maintain I/O functionality and (sequential) timing 
 May change the switching activity at one or more nodes
 Choose the circuit with less switched capacitance
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Retiming

 Add a register with different clock phase
 Maintain I/O functionality and (sequential) timing while placing more 

registers in the pipeline
 Replace an existing register with multiple non-overlapping level-clocked 

latches or registers synchronous to different phase clocks and reposition 
them over the circuit
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Clock Gating

 Provide a way to selectively stop the clock 
 Force the circuit to make no switching whenever the computation 

at the next cycle is unnecessary
 Should be implemented as follows

 Construct an idleness-detecting circuit which is small (i.e., consume little 
power) and accurate (i.e., able to stop the clock whenever idle)

 Design gated-clock distribution circuit with minimum routing overhead 
 Keeps clock skew under tight control
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Clock Gating

 One activation function and a latch
 fa: activation function
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Clock Gating

 FSM conversion
 Transform Mealy FSM to Moore FSM
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Clock Gating

 Partitioned state diagram

46
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Clock Gating

 Partitioned control unit

47
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 Example
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Static Power

 Leakage power reduction
 Lowering VDD (voltage islands, dynamic voltage scaling)

 Cooling and/or refrigeration
 SOI technology
 Dual VT design

 Body bias control (static and/or adaptive)
 Input vector control during sleep mode
 MTCMOS (sleep transistor)
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Leakage Reduction Overview

Active-mode leakage
Idle-mode leakage

High-VT: slow but low leakage
Low-VT: fast but high leakage

Idle-mode leakage
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Delay Estimation

 Locate the critical paths
 Example of delay distribution

 19% performance increase  with only path delay improvement of 15% 
paths

Delay optimization before and afterDelay distributions
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Leakage Estimation

 Transistor leakage estimation
 Leakage power components

 Subthreshold leakage is the focus in leakage current modeling

(DIBL)
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Leakage Estimation

 State probability
 Three-input NAND SPICE leakage simulation
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Generalized Multiple VT Problem

 Power minimization problem
 Given: 

 A random logic network of N static CMOS gates
 The critical path delay is less than equal to Tmax

 The device technology used
 Activity profiles at each input node

 Determine:
 Supply voltage VDD

 Threshold voltage VT

 Channel width (size) W
 Such that:

 Static leakage and dynamic power are minimized
 The area is within the bound
 Generally subthreshold leakage is minimized

 Solution:
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Dual VT Circuit Optimization

 Transistor is assigned either a high or low VT

 Low-VT transistor
 Reduced delay
 Increased leakage

 Speed critical path: low-VT

 Rest: high-VT

Low-VT: 0.8 V High-VT: 0.8 V Low-VT: 1.2 V High-VT: 1.2 V

Normalized

leakage

1 0.05 1 0.049

Normalized

delay

1 1.36 1 1.30
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Dual VT Circuit Optimization

 Objective
 Find an implementation between the two extremes of all low VT, all high 

VT, trading off leakage power for delay
 Delay constraint must be met
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Dual VT Circuit Optimization

 Example
 Dual VT assignment approach
 Transistor on critical path: low VT

 Non-critical transistor: high VT

0

0.2

0.4

0.6

0.8

1.0

1.2

All Low Vt Dual Vt
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Dual VT Circuit Optimization

 VT assignment
 Greedy approach: backward traversal of circuit

 Select high VT gate in critical path
 Set gate to low VT

 Re-compute critical paths

0 1 2 3 4 5 6
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Dual VT Circuit Optimization

 VT assignment granularity
 Gate based assignment
 Pull up network / Pull down network based assignment

 Single VT in P pull up or N pull down trees
 Stack based assignment

 Single VT in series connected transistors
 Individually assignment within transistor stacks

 Possible area penalty
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Dual VT Circuit Optimization

Gate
based

PU/PD
based

Stack
based

 Examples
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IVC (Input Vector Control)

 The idea is based on the transistor stack effect

Least subthreshold leakage Least gate leakage Largest gate leakage



ELPL
Embedded Low-Power

Laboratory

63

IVC (Input Vector Control)

 Subthreshold leakage and gate leakage currents are dependent on the 
input vectors

Input vector
(X0)

Leakage 
(nA)

0 100.3

1 227.2

X0

X0

X1

Input
(X0X1)

Leakage (nA)

0 37.84

1 100.30

10 95.17

11 454.50
Cadence spectra simulation, 0.18um technology
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IVC (Input Vector Control) 

 Implementation of IVC
 Concept

 IVC During the Sleep Mode
 Providing the minimum leakage vector (MLV) to the target logics during the sleep (or 

standby) mode

Target 
Logic

Sleep

MLV

Primary 
input 
vector

0

1
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IVC (Input Vector Control) 

 Implementation of IVC
 Modification of a scan-chain 

registers
 Original MLV is stored in left 

FFs
 Sleep mode

 Sleep = 1
 Test = 1
 MLB is applied (right FF’s)

 Operational mode
 Sleep= 0
 Test = 0
 Inputs are directly applied to the 

target logic
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IVC (Input Vector Control)

 Modifying the internal logic gates for further leakage reduction
 Due to logic dependencies of the internal signals, driving a circuit with 

its MLB does not guarantee
 Increase controllability in the standby mode

Replacing an internal signal line 
with a two-input AND gate Modifying CMOS gate
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MTCMOS: sleep transistor insertion

 Basic concept
 Multi-threshold  CMOS: sleep transistor insertion

 To use both high-VT and low-VT cells in a logic block
 Based on the observation that a circuit’s overall performance is often 

determined by a few critical paths
 Transistors and gates along the critical paths are set to a low-VT

 Transistor size is fixed
 Overall circuit performance can be enhanced significantly
 Leakage is kept within bounds

 Operating frequency of a logic block is limited by the maximum path delay 
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MTCMOS: Sleep Transistor Insertion

 Sleep transistor
 Also called guarding, power gating, ground gating, using sleep 

transistor, etc.
 Sleep transistor is inserted between the VDD and logic, and logic and 

GND.
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MTCMOS: Sleep Transistor Insertion

 Active-mode operation

69
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MTCMOS: Sleep Transistor Insertion

 Idle-mode operation

70
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MTCMOS: Sleep Transistor Insertion

 The worst case
 Low-VT blocks switch at the same time
 I=I1+I2+I3

 The best case
 Low-VT blocks switch exclusively (no time overlap)
 I=max(I1, I2, I3)

 In general
 Partially overlap
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MTCMOS: Sleep Transistor Insertion

 Average current method
 Estimation of the optimum size of the sleep transistor
 If average current flow thought the sleep transistor and maximum speed 

penalty of the MTCMOS block are known, the minimum size of the sleep 
transistor can be estimated

 The current consumed in the MTCMOS block is constant, the voltage 
drop across the sleep transistor is constant
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MTCMOS: Sleep Transistor Insertion

 Samsung’s sleep transistor insertion
 Use of conventional P&R

73
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MTCMOS: Sleep Transistor Insertion

 Example of the sleep transistor placement

74


