Power Consumption of Digital Circuits 4190.309 2008 Fall Semester

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

• The CMOS inverter and (b) its representation as a pair of switches operated in a complementary fashion

- Static operation
 - The voltage transfer characteristic (VTC) of the CMOS inverter when Q_{N} and Q_{P} are matched

- Static operation
 - Matching for symmetrical transfer characteristic

$$\left(\frac{W}{L}\right)_p = \frac{\mu_n}{\mu_p} \left(\frac{W}{L}\right)_n$$

- μ_n is 2 to 4 times larger than μ_p
- Generally devices have the same channel length for a given technology
- Device size: (n+p)L² where n=1.5 and p=4.5 for example

• Dynamic operation

Seoul National University

• Dynamic operation

Power and Energy

- Power consumption of digital circuits is defined by the supply voltage times the current flow from V_{DD} to GND
 - Generally, V_{DD} is constant and I_{DD} is variable
- Instantaneous power: $P(t) = I_{DD}(t)V_{DD}$

• Energy:
$$E(T) = \int_0^T P(t) dt$$

• Average power:
$$\overline{P(T)} = \frac{E(T)}{T}$$

- Dynamic power
 - Current flow from VDD to GND when logic transition occurs
 - Switching power
 - Short-circuit power
 - Glitch power
- Static power
 - Current flow from VDD to GND regardless of logic transition
 - DC current
 - Leakage power

- Traditional CMOS circuits
 - Slow operation
 - Negligible dynamic power consumption
 - Electric watches, calculators, etc.
 - High V_{DD} and high V_T
 - Negligible leakage power consumption
 - Small short-circuit current

- Modern high-speed CMOS
 - Fast operation
 - High dynamic power
 - Low V_{DD} and low V_T
 - Less dynamic power but more leakage power per unit transistor
 - Power is the most important design constraints
 - Large-scale integration and thus power per unit area increase dramatically

• Switching power

$$P(t) = \frac{dE}{dt} = V_{DD} \times I_{DD}(t)$$

• A step voltage is applied at t=0

$$i_{DD}(t) = C_L \frac{dV_0}{dt}$$

$$E_{01} = \int_0^{t_d} P(t) dt = V_{DD} C_L \int_0^V dV_0 = C_L V_{DD} V$$

- Switching power
 - When $V = V_{DD}, E_{0 \rightarrow 1} = C_L V_{DD}^2$
 - $C_L V_{DD}^2/2$ is dissipated by heat
 - $C_L V_{DD}^2/2$ is stored in the capacitor
 - The remaining $C_L V_{DD}^2/2$ is dissipated by heat again when high-to-low transition occurs
 - High-to-low transition does not draw additional current from the power supply

• Switching power:

$$P_{sw} = f_{sw} V_{DD}^2 C_L$$

$$E_{tot} = V_{DD}Q = V_{DD}C_L\Delta V = \frac{C_LC_{int}}{C_L + C_{int}}V_{DD}^2 = (C_L||C_{int})V_{DD}^2$$

• Gate capacitance

$$C_g = C_{sg} + C_{dg} + C_{bg}$$

- C_{gb} : sum of the gate-to-bulk capacitances
- Overlap capacitance $C_{ov} = C_{dg1} + C_{dg2} + C_{dg3} + C_{dg4} + C_{sg3} + C_{sg4}$ Due to Miller effect: $C_{dg1} = C_{dg2} = 2C_{ox}x + dW$

•
$$C_{dg3} = C_{dg4} = C_{sg3} = C_{sg4} = C_{ox}x + dW$$

- Diffusion capacitance
- Interconnect capacitance

- Reduced swing switching power
 - Rail-to-rail swing: V_{DD} to GND
 - When $V_{OH} < V_{DD}$, swing is V_{OH} to GND
 - Reduced bit-line in memory

- Short-circuit power
 - Transient current from VDD to GND when logic transition occurs

• Short-circuit power

when assuming $V_{thn} = V_{thp} = V_{th}$ device parameter $\beta_n = \beta_p = \mu C_{ox} \frac{W}{L}$ μ : carrier mobility C_{ox} : Oxide capacitance τ : rise and fall time $\mu C_{ox} W_{(V_{therefore})^3 \tau f}$

$$P_{sc} = \frac{\mu C_{ox}}{12} \frac{W}{L} (V_{DD} - 2V_{th})^3 \tau J$$

- DC current
 - Pseudo NMOS logic

- DC current
 - Steady current flow from VDD to GND
 - Either logic value is 0 or 1 depending on the logic structure
 - Mostly when the output is 0

- Leakage current
 - A transistor switch is a resistive-capacitive network between the power supply and GND
 - Non-ideal off-state characteristics (a finite resistance) makes current draw even when the transistor is in the cut-off state

- Long channel (L>1um): negligible leakage
- Short channel (L>180nm, T_{ox}>30Å): subthreshold leakage
- Very short channel (L>90nm, Tox>20Å): subthreshold+gate leakage
- Nano scaled (L<90nm, T_{ox}<20Å): subthreshold+gate+BTBT leakage

- Two key transistor scaling schemes
 - CE (Constant electric field) scaling
 - All the horizontal and vertical dimensions are scaled with the power supply to maintain constant electric fields throughout the device
 - Standard scaling methodology in industry in a 30% reduction (1/S=0.7) of all dimensions per generation
 - Supply and threshold voltages are scaled down by the factor of 1/S
 - Current, gate capacitances, and delay also scaled by 1/S
 - Results in 50% improvement in frequency
 - Improvement gradually degrades due to interconnect dominant delay
 - CV (Constant voltage) scaling
 - Maintains a constant power supply
 - Gradually scales the gate oxide thickness to slow down the growth of fields in the oxide

- CE scaling
 - Switching energy scaled down by 1/S³
 - Dynamic power scaled down by 1/S²
 - Operating frequency scaled up by S
 - Dynamic power for a constant die size is the same
 - Number of switching elements scaled up by S²
 - Leakage power increases exponentially
 - Total effective width of a device scaled up by S
- Example
 - Leakage power is 0.1% in 25um technology
 - Leakage power is 25% in 0.1um technology

- Short-channel effect
 - V_{T} roll-off: charge partitioning model

$$V_T = V_{FB} - 2\phi_F - \frac{Q_B}{C_{ox}}$$

• Long channel

$$Q_B \propto X_d \times L$$

Short channel

$$Q'_B \propto X_d \times \frac{L+L'}{2} < Q_B \rightarrow V_T$$
 decreases

- Alpha-Power model
 - Simple hand calculation model that empirically fits the real data

Measured data
$$I_{DS} = K_S \frac{W}{L} (V_{GS} - V_T)^{\alpha}$$
 Measured data

 α is close to 1 than 2, which is approximately 1.25, and continue to approach to 1 as technology scales

$$I_{ON} = I_0 (S\alpha)^{-\alpha} (V_{GS} - V_T)^{\alpha}$$
$$I_{sub} = I_0 e^- e^{\frac{V_{GS} - V_T}{S}}$$
$$Delay \propto \frac{V_{DD}}{(V_{DD} - V_T)^{\alpha}}$$

• Summary of leakage power components

Dynamic Power Reduction

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

Total Power Management

- Power minimization in both active and standby modes
 - Dynamic power in active mode
 - Subthreshold leakage power in standby mode

Switching Activity

- Activity Factor: α
 - System clock frequency = f
 - Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, $\alpha = 1$
 - If the signal switches once per cycle, $\alpha = \frac{1}{2}$
 - Dynamic gates: switch either 0 or 2 times per cycle, $\alpha = \frac{1}{2}$
 - Static gates: depending on design, but typically $\alpha = 0.1$
- Switching power:

$$P_{sw} = \alpha f V_{DD}^2 C_L$$

Switching Activity

- Abnormal switching activity
 - Glitch power
 - Power dissipated in intermediate transitions during the evaluation of the logic function
 - Unbalanced delay paths are principle cause
 - Usually 8% -25% of dynamic power

Path Balancing

- Equalize the delay of input paths of each gate to reduce the possibility of spurious transitions
 - Spurious transitions are reported to amount to 10~40% of all switching activities
 - Balancing the paths
 - → Increase the possibility of simultaneous transition at the input
 - → Decrease the possibility of hazards at the output

Path Balancing

• Balance the paths by restructuring the logic circuit

• Balance the paths by inserting unit-delay buffers

"Don't-care" Optimization

- Traditionally have been used for area minimization
 - Include appropriate "don't-care" sets in either the ON set or the OFF set
- Exploit the "don't-care" set so as to decrease the output transition probability
 - Include the "don't-care" set in the ON set if $P_{one}(F) > 0.5$
 - Include the "don't-care" set in the OFF set if $P_{one}(F) < 0.5$

* Transition probability of CMOS: $P_{transition}(F) = 2 P_{one}(F) (1 - P_{one}(F))$

→ Maximized when $P_{one}(F) = 0.5$ ($P_{one}(F)$): the probability of F being 1)

Logic Factorization

- Have been commonly used for area optimization
 - Reduce literal count to minimize the number of transistors being used to represent the target logic

 $a \times c + a \times d + b \times c + b \times d \implies (a+b) \times (c+d)$

- Perform the factorization to reduce the switched capacitance
 - The smaller literal count does not guarantee the smaller switched capacitance unlike the case of area optimization
 - Should consider both the transition probability at the input and the load capacitance

Embedded Low-Power

aboratorv

Logic Factorization

- Should select the circuit (a) for area optimization
- Should select the circuit (b) for power optimization

Transition probability of input signals: $p_a = 0.1$, $p_b = 0.5$, $p_c = 0.5$

Switched capacitance = $(2p_a + p_b + p_c + p_1 + p_2 + p_3)C$ = 1.378C

Switched capacitance = $(p_a + p_b + p_c + p_4 + p_5)C$ = 1.551C

Embedded Low-Power

aboratory

Technology Mapping

- The process of binding a set of logic equations to the gates in target cell library
 - Have been originally developed to optimize area and delay
- Hide nodes with high switching activity inside the gates
 - Generally, internal capacitances in gates are much smaller than external load capacitances
- Select the library with same function but different capacitances while meeting the delay constraints
 - Most technology libraries include the same logic element with different sizes

Technology Mapping

- Should select the circuit (a) for area optimization
- Should select the circuit (b) for power optimization

Embedded Low-Power

Laboratorv

State Encoding

- The process of assigning a unique binary code to each state in a FSM (Finite State Machine)
 - Have been studied well for area minimization
- Assign codes with smaller Hamming distance to states with larger state transition probability when focusing on low power
 - Minimize the following cost function

$$f = \sum_{ij} w_{ij} \times H(c_i, c_j)$$

 $\begin{pmatrix} P_{ab}: \text{ the transition probability from state } a \text{ to state } b, \\ c_a: \text{ the codeword of state } a, \\ H(c_a, c_b): \text{ the Hamming distance between } c_a \text{ and } c_b, \\ w_{ij} = P_{ij} + P_{ji} \end{pmatrix}$

State Encoding

• Gray coding example

State	Gray	Binary
S1	0	0
S2	1	1
S3	11	10
S4	10	11
S5	110	100
S6	111	101
S7	101	110
S8	100	111
Total # of transitions	8	14
Max. transitions / cycle	1	3

 Need to consider not only the switching activity in the state registers but also in the combinational logic affected by assigned codewords for further optimization

Retiming

- The process of repositioning registers (FFs) in a pipelined circuit (while maintaining I/O functionality)
 - First proposed to minimize the number of registers or the delay of the critical path (the longest pipeline stage)
- Pipeline the circuit by adding a register
 - Block the glitch propagation to the large load cap. (C_L)
 - Generally, input load cap. of registers are much smaller than C_L

Retiming

- Move registers to nodes with higher switching activity
 - Maintain I/O functionality and (sequential) timing
 - May change the switching activity at one or more nodes
 - Choose the circuit with less switched capacitance

Retiming

- Add a register with different clock phase
 - Maintain I/O functionality and (sequential) timing while placing more registers in the pipeline
 - Replace an existing register with multiple non-overlapping level-clocked latches or registers synchronous to different phase clocks and reposition them over the circuit

- Provide a way to selectively stop the clock
 - Force the circuit to make no switching whenever the computation at the next cycle is unnecessary
 - Should be implemented as follows
 - Construct an idleness-detecting circuit which is small (i.e., consume little power) and accurate (i.e., able to stop the clock whenever idle)
 - Design gated-clock distribution circuit with minimum routing overhead
 - Keeps clock skew under tight control

- One activation function and a latch
 - f_a: activation function

- FSM conversion
 - Transform Mealy FSM to Moore FSM

• Partitioned state diagram

• Partitioned control unit

• Example

Leakage Power Reduction

Seoul National University

Naehyuck Chang Dept. of EECS/CSE Seoul National University <u>naehyuck@snu.ac.kr</u>

Static Power

- Leakage power reduction
 - Lowering V_{DD} (voltage islands, dynamic voltage scaling)
 - Cooling and/or refrigeration
 - SOI technology
 - Dual V_T design
 - Body bias control (static and/or adaptive)
 - Input vector control during sleep mode
 - MTCMOS (sleep transistor)

Leakage Reduction Overview

Idle-mode leakage

High-V_T: slow but low leakage Low-V_T: fast but high leakage

Source : [Johnson, et al., DAC99]

Delay Estimation

- Locate the critical paths
- Example of delay distribution
 - 19% performance increase with only path delay improvement of 15% paths

Leakage Estimation

- Transistor leakage estimation
 - Leakage power components
 - Subthreshold leakage is the focus in leakage current modeling

$$I_{subthreshold} = \frac{\mu W C_{ox}}{L} V_T^2 e^{\frac{|V_{GS}| - |V_t|}{nV_T}} \left(1 - e^{\frac{-|V_{DS}|}{V_T}}\right)$$

Leakage Estimation

- State probability
 - Three-input NAND SPICE leakage simulation

Generalized Multiple VT Problem

- Power minimization problem
 - Given:
 - A random logic network of N static CMOS gates
 - The critical path delay is less than equal to T_{max}
 - The device technology used
 - Activity profiles at each input node
 - Determine:
 - Supply voltage V_{DD}
 - Threshold voltage V_T
 - Channel width (size) W
 - Such that:
 - Static leakage and dynamic power are minimized
 - The area is within the bound
 - Generally subthreshold leakage is minimized
 - Solution:

- Transistor is assigned either a high or low V_T
 - Low-V_T transistor
 - Reduced delay
 - Increased leakage
 - Speed critical path: low-V_T
 - Rest: high-V_T

	Low-V _T : 0.8 V	High-V⊤: 0.8 V	Low-V _T : 1.2 V	High-V _T : 1.2 V
Normalized	1	0.05	1	0.049
leakage				
Normalized	1	1.36	1	1.30
delay				

- Objective
 - Find an implementation between the two extremes of all low VT, all high V_T, trading off leakage power for delay
 - Delay constraint must be met

- Example
 - Dual V_T assignment approach
 - Transistor on critical path: low V_T
 - Non-critical transistor: high V_T

- V_T assignment
 - Greedy approach: backward traversal of circuit
 - Select high V_T gate in critical path
 - Set gate to low V_T
 - Re-compute critical paths

- V_T assignment granularity
 - Gate based assignment
 - Pull up network / Pull down network based assignment
 - Single V_T in P pull up or N pull down trees
 - Stack based assignment
 - Single V_T in series connected transistors
 - Individually assignment within transistor stacks
 - Possible area penalty

Examples

• The idea is based on the transistor stack effect

Least subthreshold leakage

Least gate leakage

Largest gate leakage

Subthreshold leakage and gate leakage currents are dependent on the input vectors

Input vector (X ₀)	Leakage (nA)
0	100.3
1	227.2

Input (X ₀ X ₁)	Leakage (nA)
0	37.84
1	100.30
10	95.17
11	454.50

Cadence spectra simulation, 0.18um technology

- Implementation of IVC
 - Concept
 - IVC During the Sleep Mode
 - Providing the minimum leakage vector (MLV) to the target logics during the sleep (or standby) mode

- Implementation of IVC
 - Modification of a scan-chain registers
- Original MLV is stored in left FFs
 - Sleep mode
 - Sleep = 1
 - Test = 1
 - MLB is applied (right FF's)
 - Operational mode
 - Sleep= 0
 - Test = 0
 - Inputs are directly applied to the target logic

- Modifying the internal logic gates for further leakage reduction
 - Due to logic dependencies of the internal signals, driving a circuit with its MLB does not guarantee
 - Increase controllability in the standby mode

- Basic concept
 - Multi-threshold CMOS: sleep transistor insertion
 - To use both high-V_T and low-V_T cells in a logic block
 - Based on the observation that a circuit's overall performance is often determined by a few critical paths
 - Transistors and gates along the critical paths are set to a low- V_{T}
 - Transistor size is fixed
 - Overall circuit performance can be enhanced significantly
 - Leakage is kept within bounds
 - Operating frequency of a logic block is limited by the maximum path delay

- Sleep transistor
 - Also called guarding, power gating, ground gating, using sleep transistor, etc.
 - Sleep transistor is inserted between the VDD and logic, and logic and GND.

• Active-mode operation

• Idle-mode operation

- The worst case
 - Low- V_T blocks switch at the same time
 - $I=I_1+I_2+I_3$
- The best case
 - Low-V_T blocks switch exclusively (no time overlap)
 - $I=max(I_1, I_2, I_3)$
- In general
 - Partially overlap

- Average current method
 - Estimation of the optimum size of the sleep transistor
 - If average current flow thought the sleep transistor and maximum speed penalty of the MTCMOS block are known, the minimum size of the sleep transistor can be estimated
 - The current consumed in the MTCMOS block is constant, the voltage drop across the sleep transistor is constant

Embedded Low-Power

aboratory

- Samsung's sleep transistor insertion
 - Use of conventional P&R

Embedded Low-Power

Laboratory

MTCMOS: Sleep Transistor Insertion

• Example of the sleep transistor placement

