
ARM Microprocessors 3ARM Microprocessors 3

1

h h bThe Thumb Instruction Set

16-bit Instructions (vs. 32-bit ARM instructions)
Used to improve the code density Used to improve the code density

About 30% reduction over ARM for the same code
Each Thumb instruction mapped to the equivalent Each Thumb instruction mapped to the equivalent
ARM instruction:

ADD r0, #3 ADDS r0, r0, #3

Not conditionally executed except for ‘B’
Separate instructions for the barrel shift operationsp p

2

d h bCode Size: ARM vs. Thumb
C-code
if (x>=0) return x;
else return -x;;

ARM assembly version
iabs CMP r0,#0 ;Compare r0 to zero

RSBLT r0 r0 #0 ;If r0<0 (less than=LT) then do r0= 0-r0
2 x 4 = 8 bytes

RSBLT r0,r0,#0 ;If r0<0 (less than LT) then do r0 0 r0
MOV pc,lr ;Move Link Register to PC (Return)

Thumb assembly version
CODE16 ;Directive specifying 16 bitCODE16 ;Directive specifying 16-bit

(Thumb)
;instructions

i b CMP 0 #0 C 0 t
4 x 3 = 12 bytes

iabs CMP r0,#0 ;Compare r0 to zero
BGE return ;Jump to Return if greater or equal to zero
NEG r0,r0 ;If not, negate r0

3

return MOV pc,lr ;Move Link register to PC (Return)

h b ffThumb-ARM Differences

Most Thumb instructions executed
unconditionallyunconditionally

All the ARM instructions executed conditionally
M Th b d i i i Many Thumb data processing instructions
use a 2-address format (destination reg ==

 f)one of source reg)
Less regular instruction formats over ARM
(for the code density)

4

h bThumb instruction set
19 instruction
formats

5

h bThumb Register Usage

r0 ~ r7: fully accessible
r8 ~ r12: only accessible w/ MOV, ADD, CMP
r13 r14 r15: limited accessibilityr13, r14, r15: limited accessibility
cpsr/spsr: no direct access

Must switch to ARM state to access
cpsr/spsr
No coprocessor instructions

6

ARM Thumb
Instruction Opcodes

7

Thumb Instruction Decoder Organization
B operand bus

data in immediate ٛ elds

B operand bus

ARM instruction
decoder

Th b

muxselect ARM or
Thumb stream

mux

Thumb
decompressor

select high or
low half-word

instruction
pipeline

data in from memory

8

data in from memory

Thumb to ARM Instruction Mapping

9

Thumb: r0 – r7 only

kARM-THUMB Interworking

To call a THUMB routine from an ARM
routine the core should switch to ‘THUMB’routine, the core should switch to THUMB
mode:
T fl i CPSR i di t th t dT flag in CPSR indicates the current mode.
BX and BLX instructions are used to switch
ARM/THUMB modes.

10

BX & BLX Instructions

BX Rm ; branch exchange
 R & 0 fffffffpc = Rm & 0xfffffffe

T = Rm[0]
BLX Rm | label ; branch exchange w/link
lr = inst addr after BLX + Tlr = inst. addr after BLX + T
pc = label, T = label[0]
pc = Rm & 0xfffffffe, T = Rm[0]

11

BLX Example (ARM -> Thumb)

CODE32
LDR 0 h bC d 1LDR r0, =thumbCode + 1
BLX r0

CODE16CODE16
thumbCode

ADD 1 #1ADD r1, #1
BX lr

12

BLX Example (Thumb ARM)

CODE16
LDR 0 ARMC d LDR r0, =ARMCode
BLX r0

CODE32CODE32
ARMCode

ADD 1 #1ADD r1, #1
BX lr ; lr[0] was already set to 1.

13

h b dThumb Advantages
Space: About 70% of ARM code
of Instructions: About 140% of ARM code# of Instructions: About 140% of ARM code
Exec. Time:

With a 32 bit memory ARM code is about 40% With a 32-bit memory, ARM code is about 40%
faster over Thumb code
With a 16-bit memory Thumb code is about 45% With a 16-bit memory, Thumb code is about 45%
faster over ARM code

Thumb code consumes about 30% less Thumb code consumes about 30% less
memory power.

14

