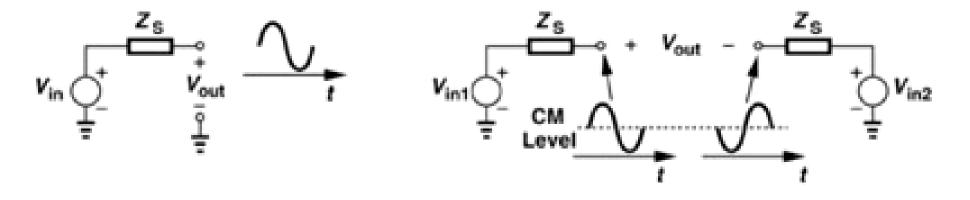
Chapter 4 Differential Amplifiers

CMOS Differential Amplifiers

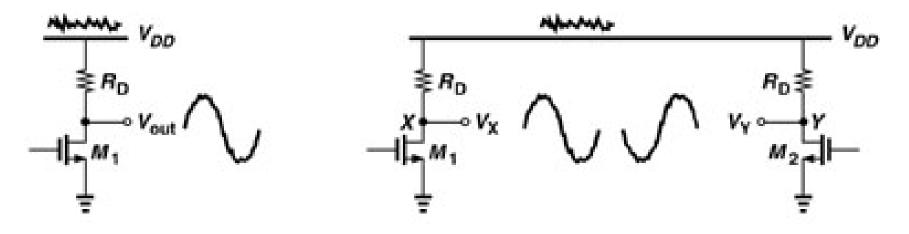
Basic Concepts-L15

Single-ended vs. Differential Signals



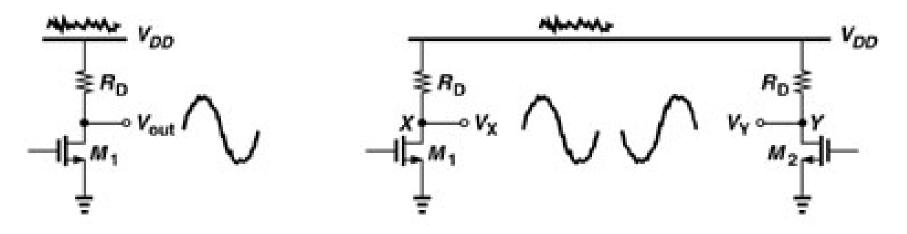
- Single-ended signal: Measured with respect to a fixed potential, typically ground.
- Differential signal: Measured between two symmetric nodes (nodes have equal and opposite signal excursions around a fixed potential, called a "common-mode" level)

Why Differential?

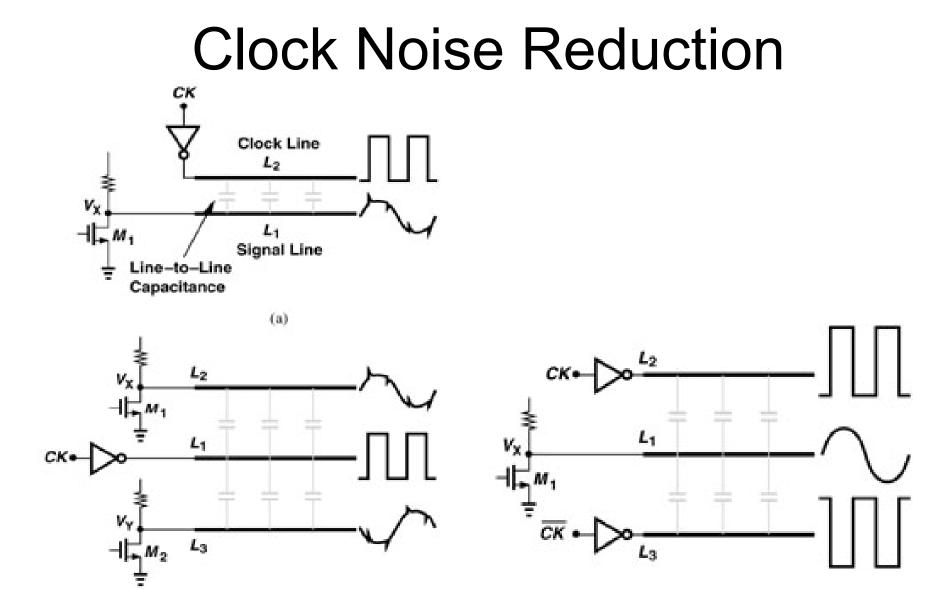


- In a single amplifier V_{DD} fluctuations appear directly on the amplified signal.
- In a differential pair, if we measure V_X V_Y the fluctuations cancel out.

Why Differential?



- In a single CS amplifier, the maximum swing is V_{DD} -(V_{GS} - V_{TH})
- In a differential pair it can be shown that the swing of V_X-V_Y can reach $2[V_{DD}-(V_{GS}-V_{TH})]$.



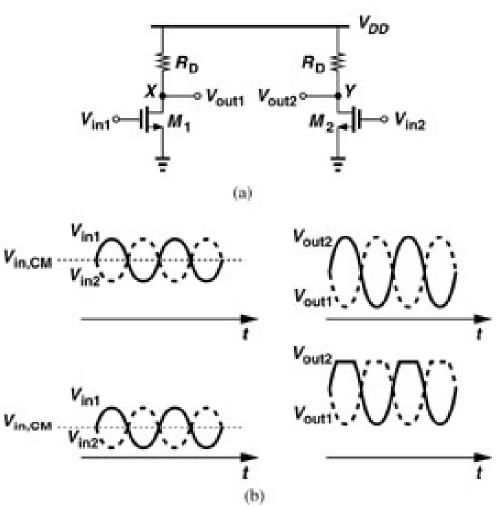
Other advantages of differential amplifying

- Simpler biasing
- Higher linearity

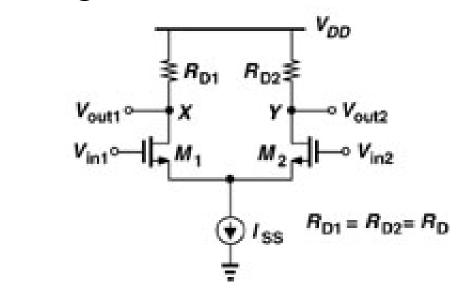
Simple Symmetric Differential Pair won't do!

Good features: Rejection of VDD fluctuations, Larger swing.

Key problem: Input signal commonmode affects bias conditions, and differential amplification.



Solution: Source-coupled ("long-tailed") Pair, biasing with a current source



If $V_{in1}=V_{in2}$ then $I_{D1}=I_{D2}=I_{SS}/2$ Then $V_{out1}=V_{out2}=V_{DD}-R_DI_{SS}/2$

"Current stealing " phenomenon

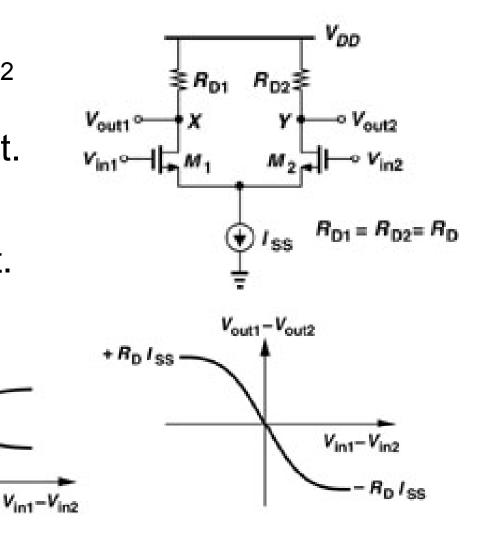
If V_{in1} >> V_{in2} , then M_2 turns off and M_1 steals all the current.

If $V_{in1} << V_{in2}$ then M_2 takes all the current.

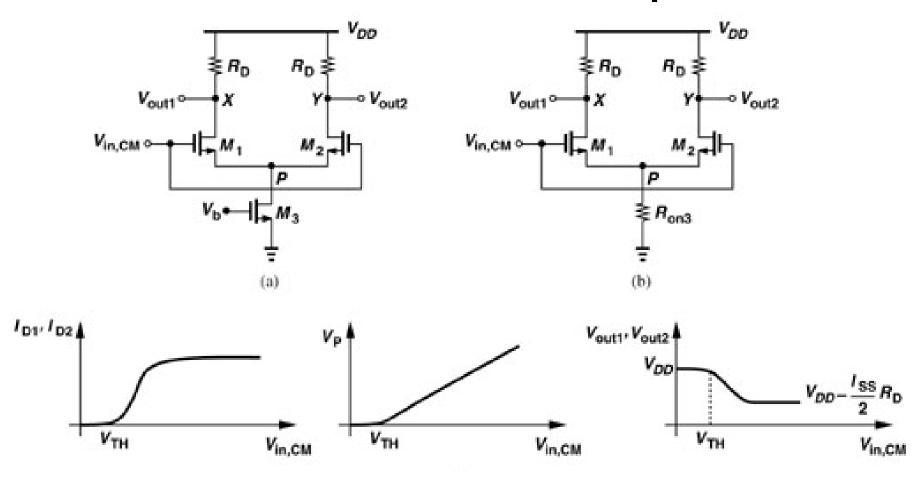
V_{DD} - R_D I_{SS}

V_{out1}

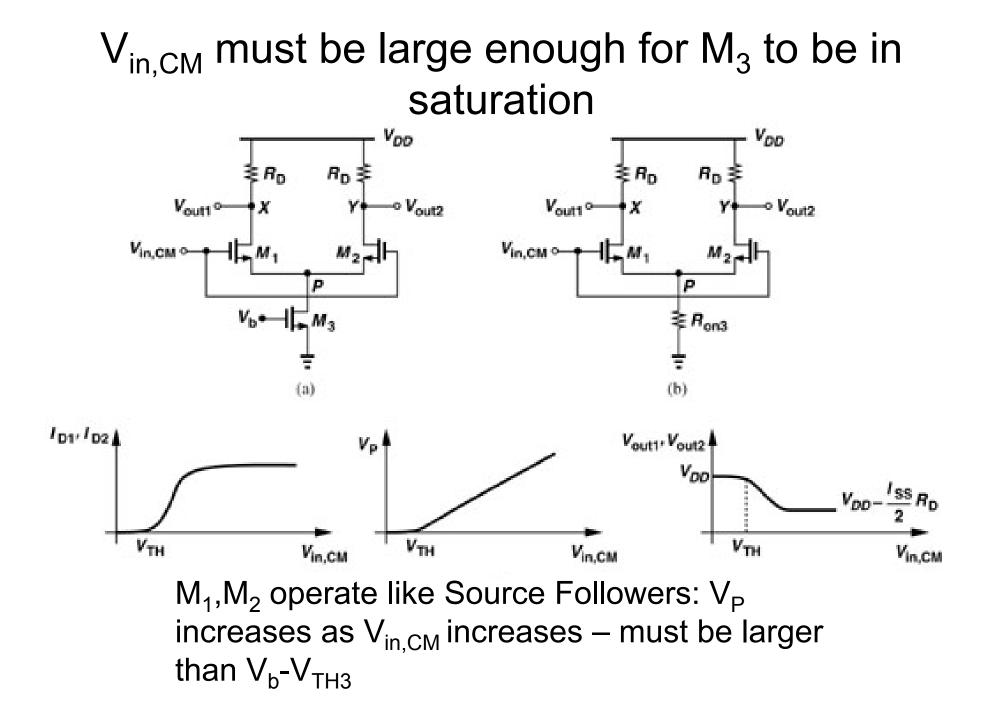
V_{out2}



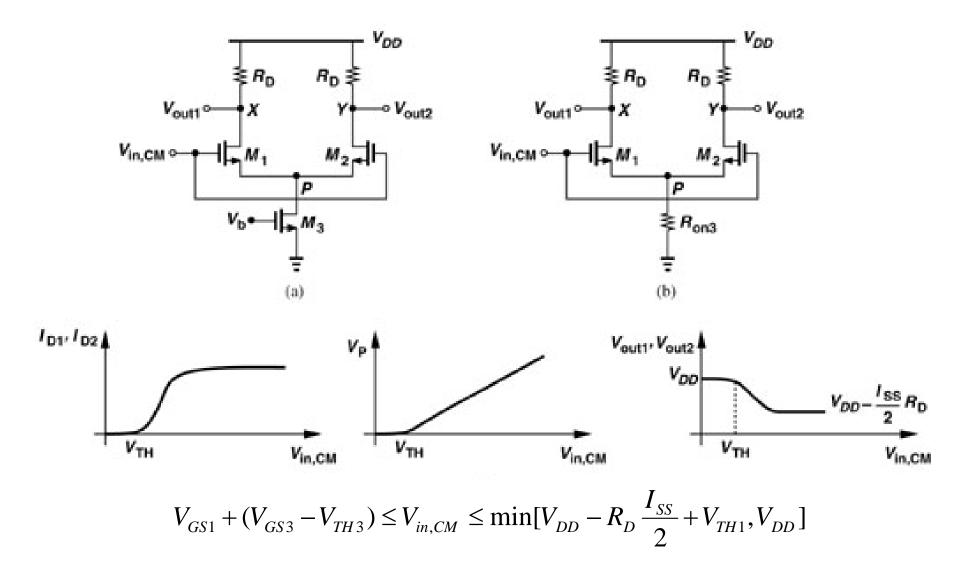
Common-Mode Response

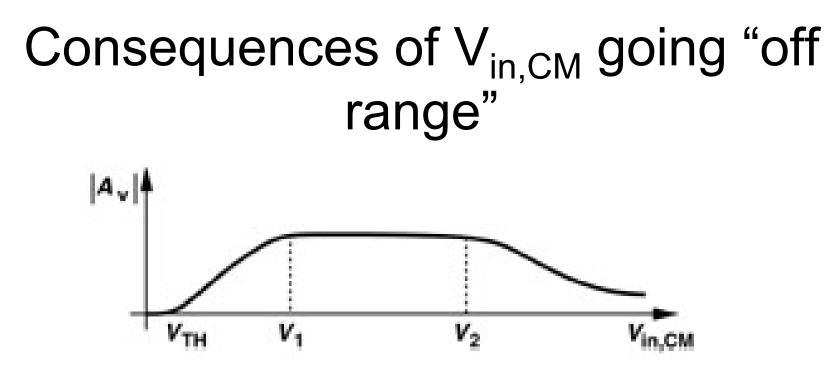


Can $V_{in,CM}$ be arbitrarily large or small?



 $V_{in,CM}$ must not be too large to keep M_1 and M_2 from entering Triode Mode

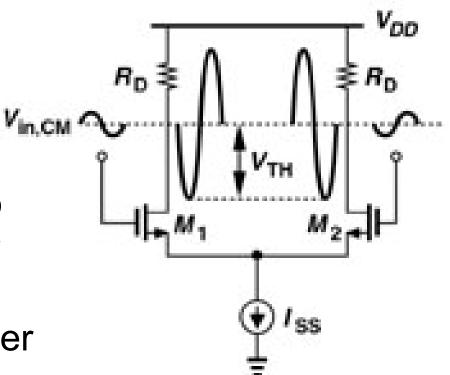




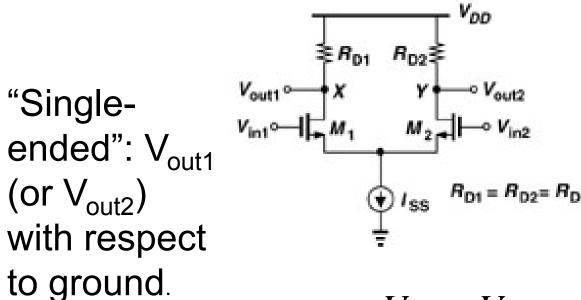
- As long as common mode voltage is within the permitted range, differential gain is almost insensitive to it.
- Once too small or too large gain falls off.

Common-Mode Input vs. Output Swing Tradeoff

Each drain voltage can go as high as V_{DD} and as low as $V_{in,CM}$ - V_{TH} . The larger $V_{in,CM}$ the smaller the swing.

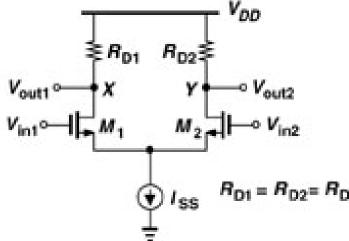


Two types of Differential Gains



$$A_{v}(diff) = \frac{V_{out1} - V_{out2}}{V_{in1} - V_{in2}} = ?$$
$$A_{v}(S.E.) = \frac{V_{out1}}{V_{in1} - V_{in2}} = ?$$

Current Division Mechanism



Calculate I_{D1} and I_{D2} in terms of V_{in1} and V_{in2} , assuming the circuit is symmetric, M_1 and M_2 are saturated, and λ =0.

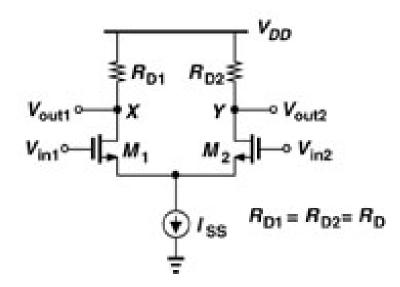
Since the voltage at node P is equal to $V_P = V_{in1} - V_{GS1} = V_{in2} - V_{GS2}$,

$$V_{GS} = \sqrt{\frac{2I_D}{k_n' \frac{W}{L}}} + V_{TH}$$

 $V_{in1}-V_{in2}=V_{GS1}-V_{GS2}$

Current Division Mechanism

Given the inputs and I_{SS}: Solve two equations with two unknowns for the transistor currents:



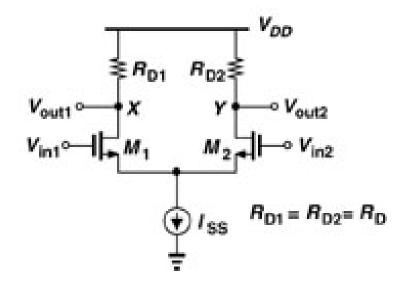
$$V_{in1} - V_{in2} = \sqrt{\frac{2I_{D1}}{k_n'\frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{k_n'\frac{W}{L}}}$$
$$I_{SS} = I_{D1} + I_{D2}$$

CMOS Differential Amplifiers

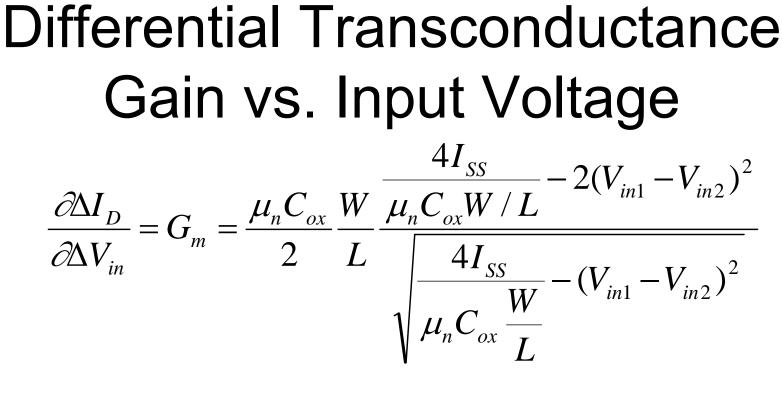
Small-Signal Differential Gain-L16

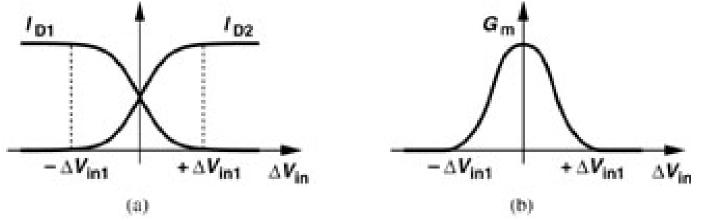
Current Difference Properties

Even though each current is an even function of its respective gatesource voltage, the current difference is an odd function of the input voltage difference



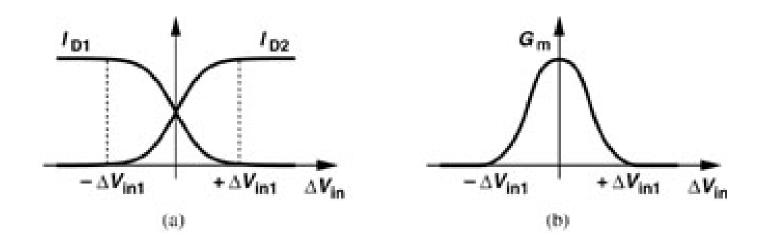
$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{OX} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{OX} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$



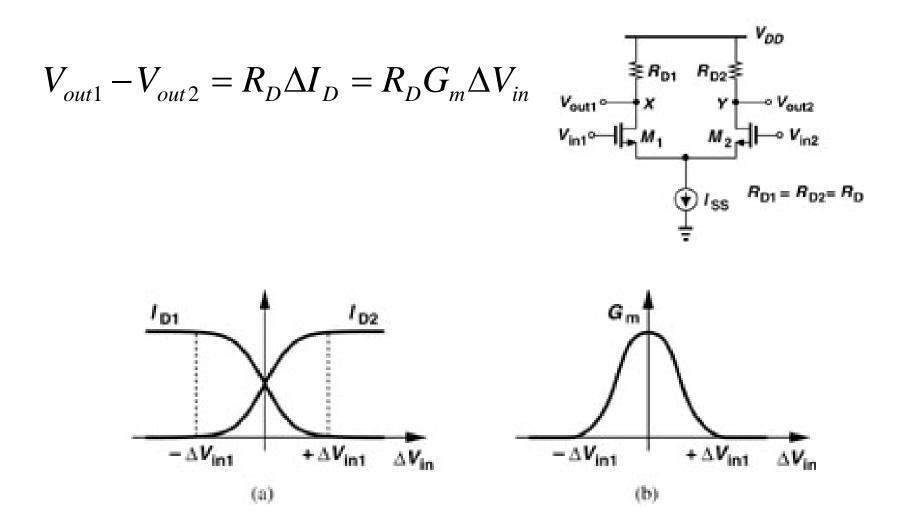


Maximum Differential Transconductance Gain Occurs at $\Delta V_{in}=0$

$$G_{m,\max} = \sqrt{\mu_n C_{ox} \left(\frac{W}{L}\right)} I_{SS}$$

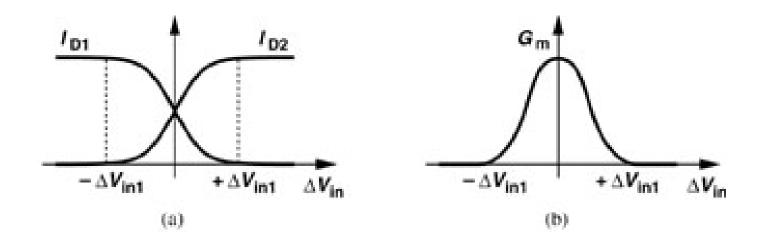


Differential Voltage Gain



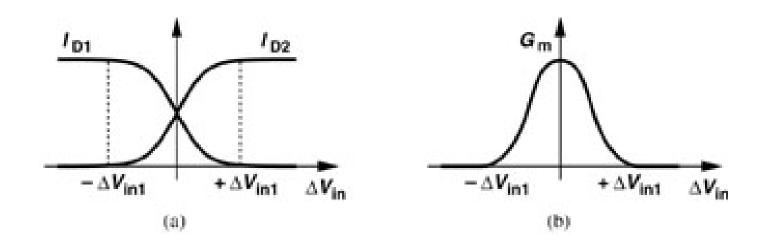
Differential Voltage Gain near $\Delta V_{in} = 0$

$$|A_{V}| = \frac{\Delta V_{out}}{\Delta V_{in}} = G_{m,\max}R_{D} = \sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{SS}R_{D}}$$



Differential Transconductance Gain Falls to Zero at $\Delta V_{in} = \Delta V_{in1}$

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox}} \frac{W}{L}}$$

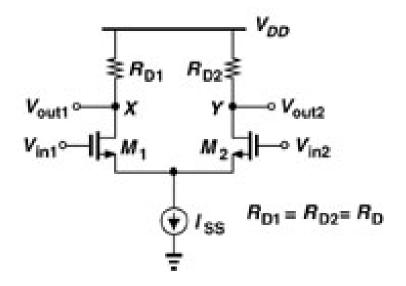


Current Difference Properties

It appears as if ΔI_D also becomes zero at $\Delta V_{in2} = (4I_{SS}/(\mu_n C_{OX}W/L))^{1/2}$

But this is incorrect.

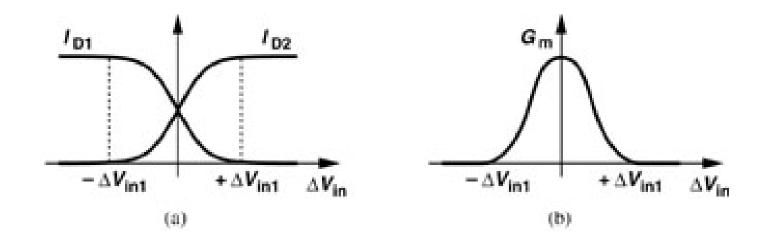
 $\Delta V_{in2} > \Delta V_{in1}$ at which a total current stealing occurs.



$$I_{D1} - I_{D2} = \frac{1}{2} \mu_n C_{OX} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_n C_{OX} \frac{W}{L}} - (V_{in1} - V_{in2})^2}$$

 $\Delta V_{in} = \Delta V_{in1}$ is the maximum differential input that the amplifier can "handle"

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$



Also note that at ΔV_{in} =0 each transistor carries a current of I_{SS} /2 and therefore :

$$(V_{GS} - V_{TH})_{1,2} = \sqrt{\frac{I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$

Compare this equilibrium overdrive to the maximum differential input permitted:

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$$

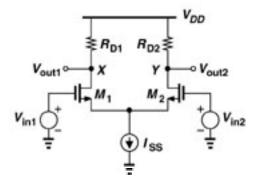
$$(V_{GS} - V_{TH})_{1,2} = \frac{\Delta V_{in1}}{\sqrt{2}}$$

It means that if we try to increase ΔV_{in1} , for a given I_{SS} , we need larger overdrive voltage in each transistor, and this is accomplished by reducing W/L

$$(V_{GS} - V_{TH})_{1,2} = \sqrt{\frac{I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} \qquad (V_{GS} - V_{TH})_{1,2} = \frac{\Delta V_{in1}}{\sqrt{2}}$$

$$\Delta V_{in1} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox}} \frac{W}{L}}$$

Small-Signal Differential Voltage Gain



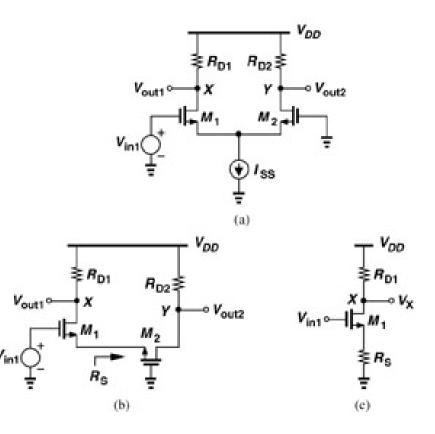
For |ΔV_{in}|≈0 (sufficiently small) we have:

$$|A_{V}| = \frac{\Delta V_{out}}{\Delta V_{in}} = G_{m,\max}R_{D} = \sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{SS}}R_{D} = g_{m}R_{D}$$

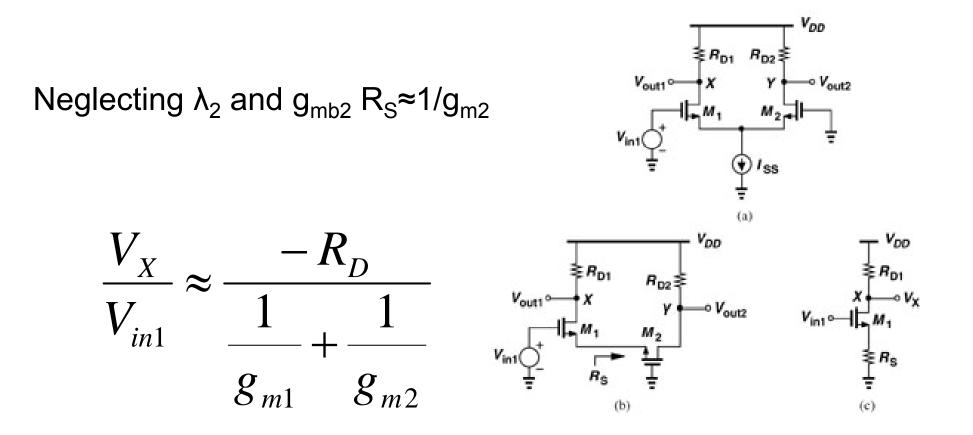
Where g_m is that of a NMOS with a current of $I_{SS}/2$

Differential Gain: What does each input "see"?

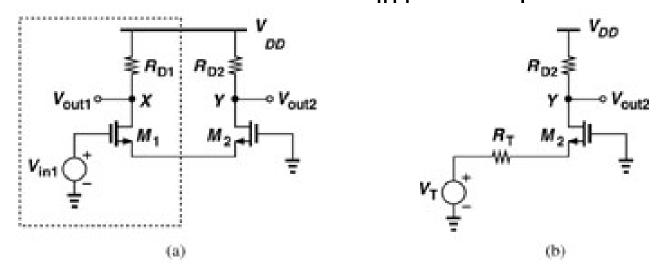
- By superposition let's short V_{in2} to ground and see the effect of V_{in1}:
- The effect of V_{in1} on V_X is the same as that of a CS amplifier (degenerated by the resistance seen looking into the source of M_2) on V_D



Differential Gain: Effect of V_{in1} on V_X



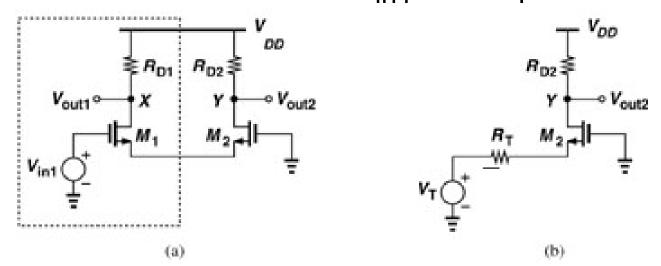
Differential Gain: Effect of V_{in1} on V_Y



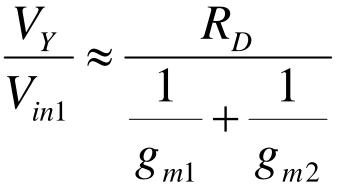
The effect of V_{in1} on V_Y is the same as that of a Source Follower (M₁) amplifier driving a Common-Gate amplifier (M₂) V - V

$$V_T = V_{in1}$$
$$R_T = \frac{1}{g_{m1}}$$

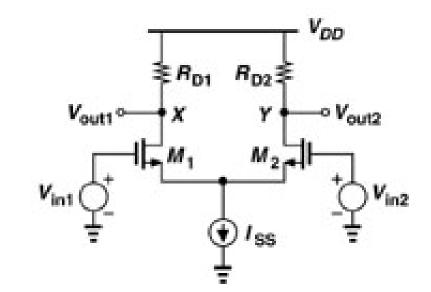
Differential Gain: Effect of V_{in1} on V_Y



The effect of V_{in1} on V_Y is the same as that of a Source Follower (M₁) amplifier driving a Common-Gate amplifier (M₂)



V_X-V_Y as function of V_{in1} if $V_{in2}=0$



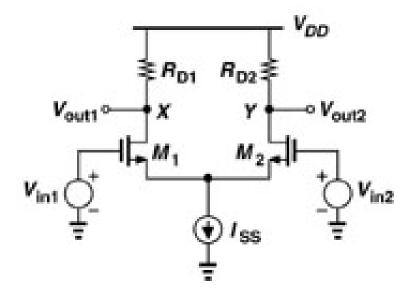
$$(V_X - V_Y)_{due_{to}_{V_{in1}}} = \frac{-2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1} = -g_m R_D V_{in1}$$

Because $g_{m1}=g_{m2}=g_m$

By Symmetry: $V_X - V_Y$ as function of V_{in2} if $V_{in1} = 0$ $V_{out1} \circ V_{out2}$ $v_{out1} \circ V_{out2}$ $v_{in1} = V_{in1} = V_{out2}$ $v_{in1} = V_{in2} = V_{out2}$

$$(V_X - V_Y)_{due_{to_{V_{in2}}}} = \frac{2R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in2} = g_m R_D V_{in2}$$

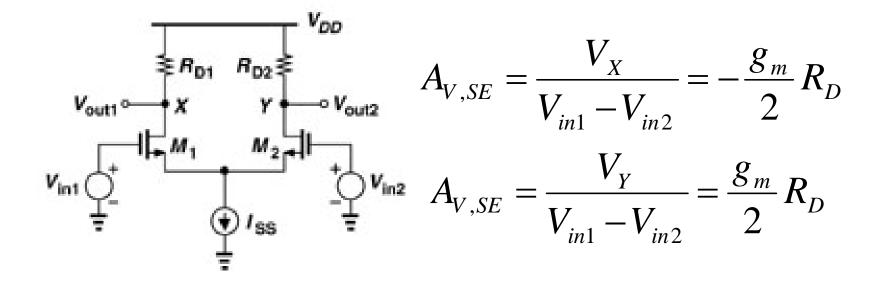
V_X - V_Y as function of V_{in2} and V_{in1}



$$(V_X - V_Y)_{due_to_both} = g_m R_D V_{in2} - g_m R_D V_{in1}$$

yielding the gain $g_m R_D$ regardless where and how the inputs are applied

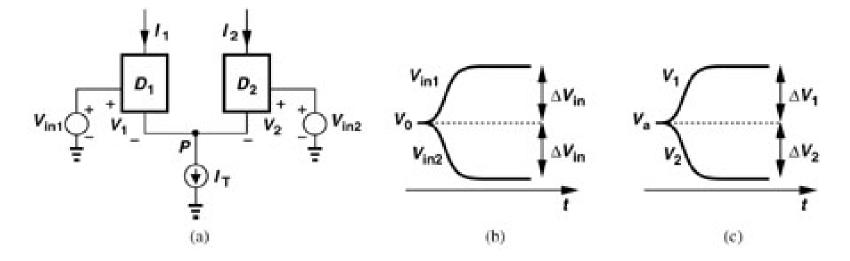
Single-ended Differential Voltage Gain



Comparison: Differential voltage gain of a differential amplifier vs. voltage gain of a CS amplifier

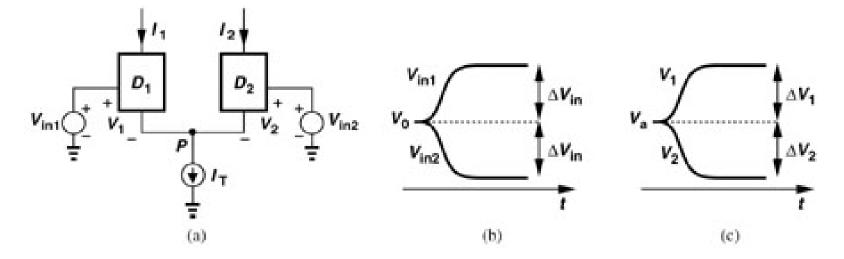
- If the same current source I_{SS} drives the differential amplifier and the CS, each transistor of the differential amplifier has g_m which is $1/\sqrt{2}$ of that of the CS transistor. Differential gain reduces by a factor of $1/\sqrt{2}$.
- If both amplifiers have the same W/L in each transistor and the same load, and we want the gain to be the same, then if we use I_{SS} at CS, we need to use $2I_{SS}$ at the differential amplifier.

The "Virtual Ground" Concept



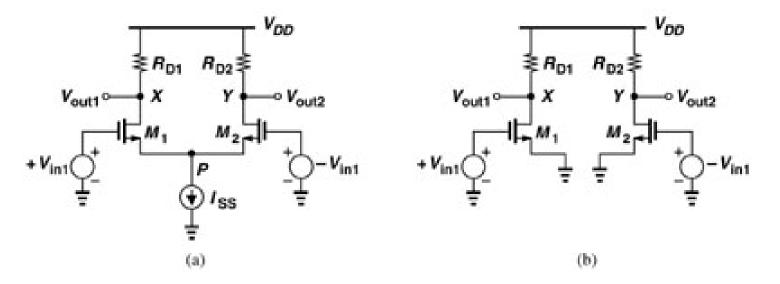
- In a symmetric device (as above), if inputs change antisymmetrically (one goes up by a certain amount, and the other goes down by the same amount), then V_P does not change.
- For small-signal analysis point P becomes "virtual ground".

The "Virtual Ground" Concept



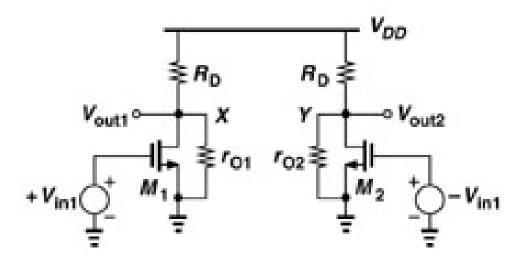
- Explanation: Consider the complete "Kirchhoff path" $V_{in1} \rightarrow D_1 \rightarrow D_2 \rightarrow V_{in2}$.
- By symmetry of the devices, and anti-symmetry of sources, using voltage-division argument, V_P stays constant.
- See book (pp. 114-115) for 2-3 more explanations.

The "Half-Circuit" Concept



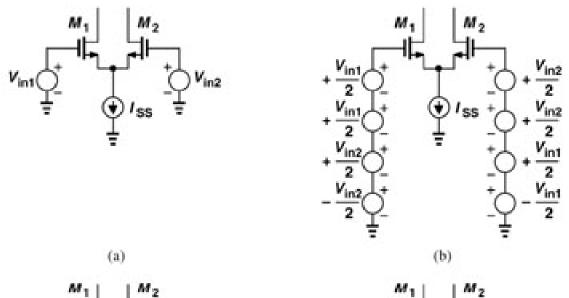
 For small-signal analysis, because point P is "ground" (this is valid only if inputs are antisymmetric and devices are symmetric!), we can analyze each CS "half-circuit" separately.

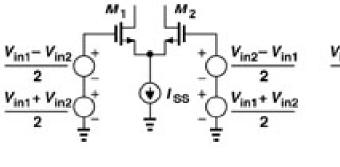
Differential Gain with λ effect

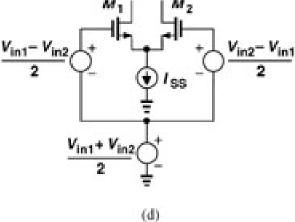


- Based on the half-circuit concept, gain calculation is highly simplified. We get:
- $V_X/V_{in1} = -g_m(R_D||r_o) = V_Y/(-V_{in1})$
- $(V_X V_Y)/2V_{in1} = -g_m(R_D||r_o)$

In general V_{in1} and V_{in2} are arbitrary (not necessarily anti-symmetric): What do we do?







(c)

Analysis of Differential Amplifiers for arbitrary inputs

- As long as circuit operates more or less linearly, we use superposition of two analyses:
- Differential input analysis, using antisymmetric inputs derived from the difference between the inputs.
- Common-mode analysis, where an input equals to the average of both inputs is applied to both transistors.

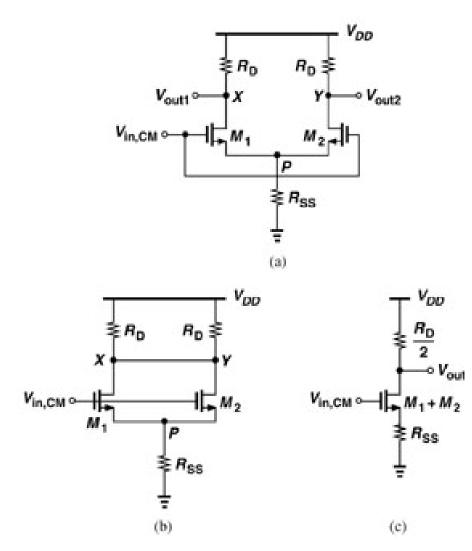
CMOS Differential Amplifiers

Common-Mode Analysis –L17

Goal: No common-mode signal at amplifier's output

- If amplifier is not 100% symmetric, CM signals will not be fully cancelled out.
- If the DC current source (biasing the amplifier) is not ideal (that is, has a finite output resistance) then CM signal appears at each single-ended output.

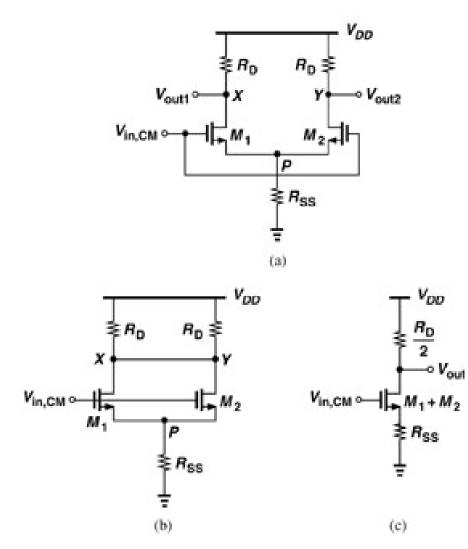
Single-ended Common-Mode Response of a symmetric amplifier



Consider a smallsignal analysis for the common-mode signal.

Current source is represented by its output resistance R_{SS}

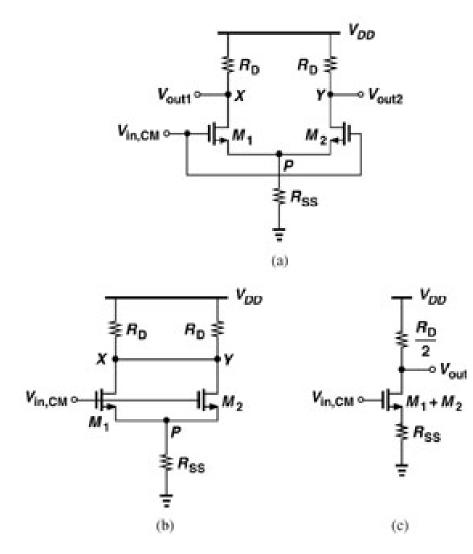
Single-ended Common-Mode Response of a symmetric amplifier



As $V_{in,CM}$ changes so does V_{P} . As a result, I_{D} currents change, and V_{X} and V_{Y} change.

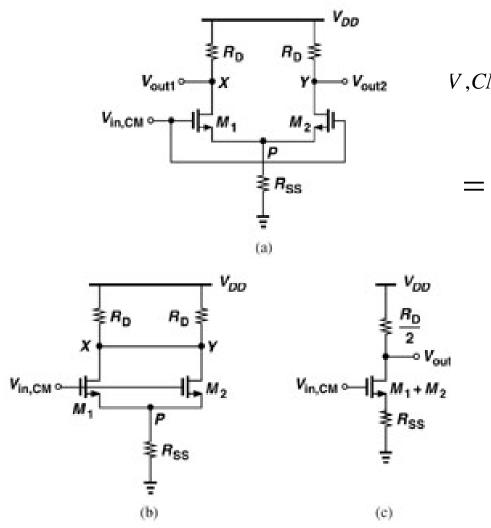
 V_X - V_Y continues to be zero.

Single-ended Common-Mode Response of a symmetric amplifier



To find V_x as function of $V_{in,CM}$ we may do a "half circuit analysis", splitting R_{SS} into two parallel $2R_{SS}$ resistors, or equivalently, connect transistors in parallel (as shown).

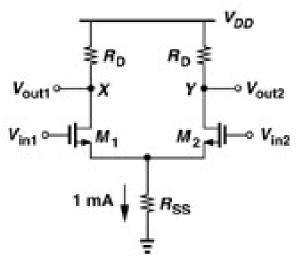
Single-ended Common-Mode Gain of a symmetric amplifier assuming λ =0 and γ =0



$$V_{,CM} = \frac{V_{out}}{V_{in,CM}} = \frac{V_X}{V_{in,CM}} = \frac{V_Y}{V_{in,CM}}$$
$$= -\frac{R_D/2}{1/(2g_m) + R_{SS}}$$
$$M_1 + M_2 \text{ has twice the width and bias current,}$$

therefore g_m is doubled.

Most Primitive Differential Amplifier: Resistor in place of current source

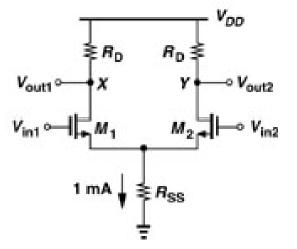


- Example: Let $V_{DD}=3V$, $(W/L)_1=(W/L)_2=25/0.5$
- $\mu_n C_{OX}$ =50 μ A/V², V_{TH}=0.6V, λ =0, γ =0, R_{SS}=500 Ω
- Because $I_{D1}=I_{D2}=0.5$ mA, we have:

$$V_{GS1} = V_{GS2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{OX} \frac{W}{L}}} + V_{TH} = 1.23V$$

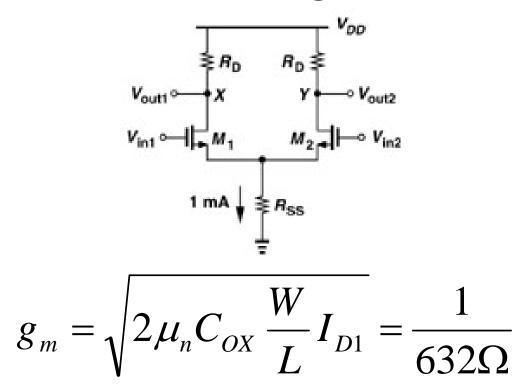
"Resistor current source" example

$$V_{GS1} = V_{GS2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{OX} \frac{W}{L}}} + V_{TH} = 1.23V$$



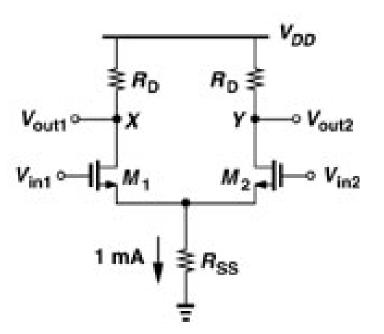
- Also: $V_S = I_{ss}R_{SS} = 0.5V$
- Bias voltage at gates $V_{in,CM} = V_{GS1} + V_S = 1.73V$
- This voltage creates the necessary 0.5mA current in each of the transistors.

"Resistor current source" example – differential gain design



If R_D =3.16K Ω then differential voltage gain = $g_m R_D$ =5

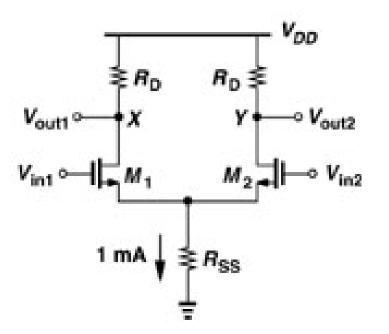
"Resistor current source" example – with such R_D are transistors in Saturation?



$$V_{out1} = V_{out2} = V_{DD} - I_D R_D = 1.42V > V_{in,CM} - V_{TH}$$

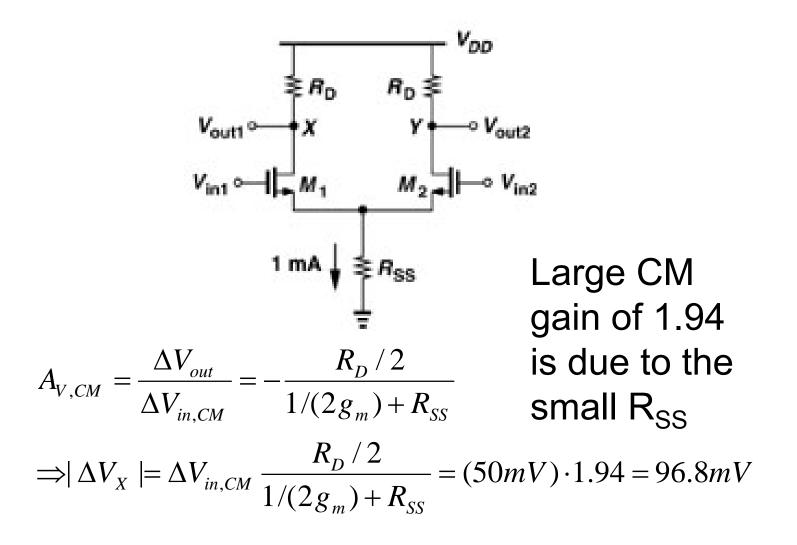
=1.73 - 0.6 = 1.13V by 290mV (the overdrive)

"Resistor current source" example – Common-Mode Response

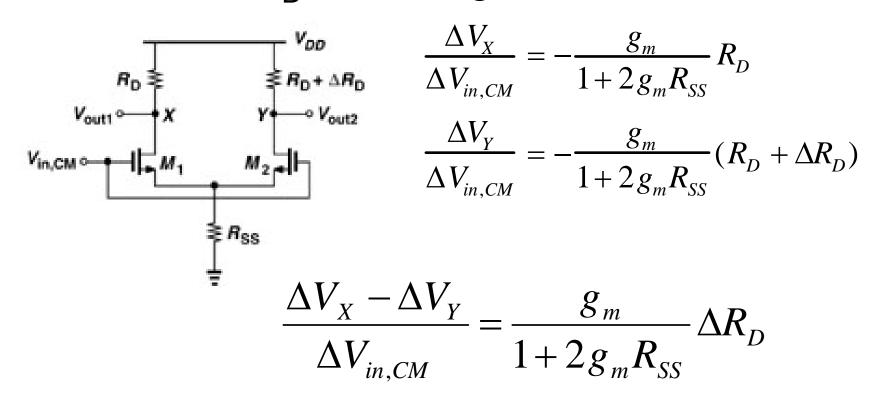


If $V_{in,CM}$ increases by 50mV, what will happen to each output?

"Resistor current source" example – Common-Mode Response

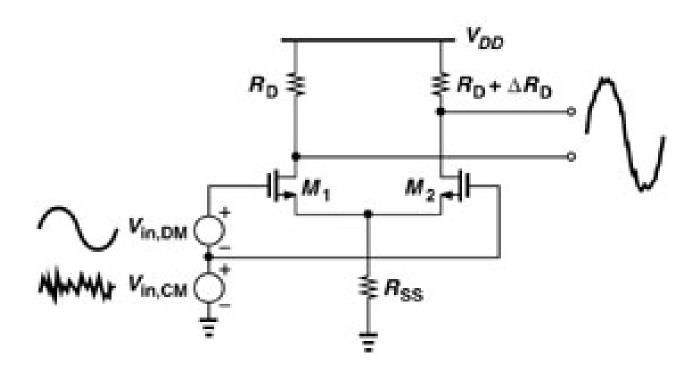


Common-Mode Response with asymmetric R_D assuming $\lambda=0$



 R_{SS} above represents the current source – need large R_{SS}

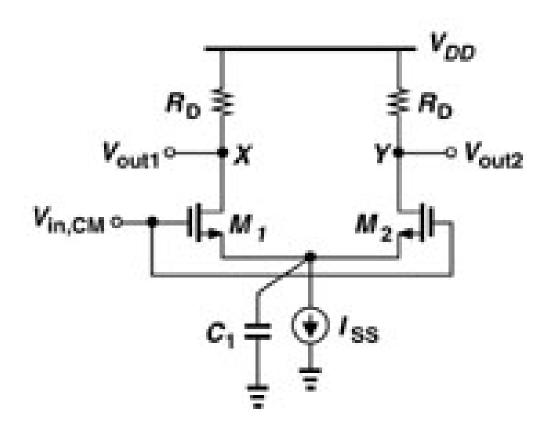
Common-Mode Response with asymmetric R_D



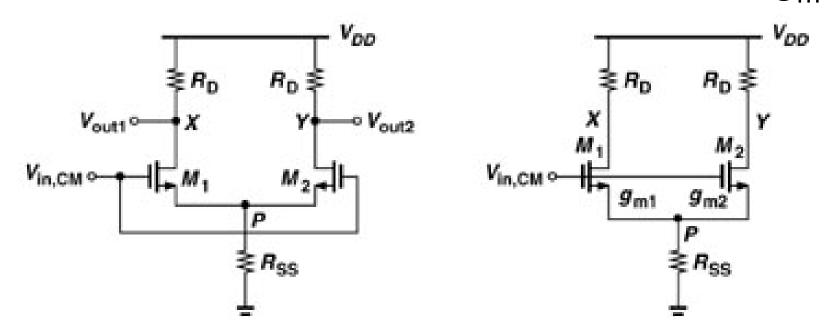
CM input noise corrupts the amplified differential signal, because of the asymmetry

For high-frequency Common-Mode input need to take into account parasitic capacitance effects, even if R_{SS} is large. C_1 is contributed by M_1, M_2 and I_{SS} and contributes to the impedance "seen" by the

CM signal.

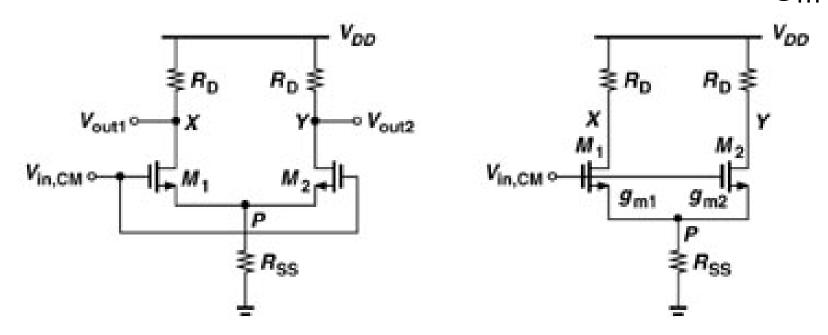


Mismatches in W/L, V_{TH} and other transistor parameters all translate to mismatches in g_m



 $I_{D1} = g_{m1}^{(a)} (V_{in,CM} - V_P)$ $I_{D2} = g_{m2} (V_{in,CM} - V_P)$ analysis $\Rightarrow (g_{m1} + g_{m2}) (V_{in,CM} - V_P) R_{SS} = V_P$

Mismatches in W/L, V_{TH} and other transistor parameters all translate to mismatches in g_m

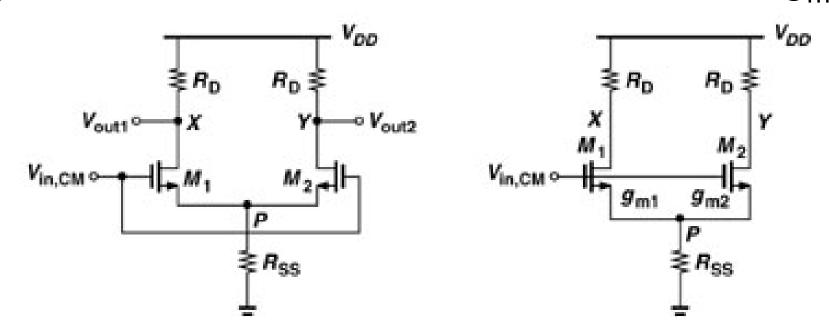


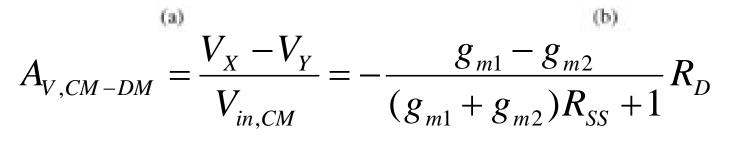
$$(g_{m1} + g_{m2})(V_{in,CM} - V_P)R_{SS} = V_P$$
$$\Rightarrow V_P = \frac{(g_{m1} + g_{m2})R_{SS}}{(g_{m1} + g_{m2})R_{SS} + 1}V_{in,CM}$$

$$V_X = -g_{m1}(V_{in,CM} - V_P)R_D$$

$$V_Y = -g_{m2}(V_{in,CM} - V_P)R_D$$

Mismatches in W/L, V_{TH} and other transistor parameters all translate to mismatches in g_m





Common-Mode Gains

- We have seen two types of commonmode gain:
- A_{V,CM}: Single-ended output due to CM signal.
- A_{V,CM-DM} : Differential output due to CM signal.

$$A_{V,CM} = \frac{V_X}{V_{in,CM}} = \frac{V_Y}{V_{in,CM}}$$

$$A_{V,CM-DM} = \frac{V_X - V_Y}{V_{in,CM}}$$

Common-Mode Rejection Ratio (CMRR) Definitions

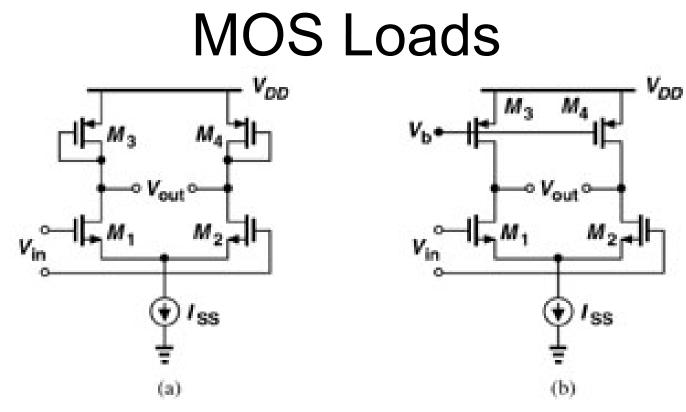
$$CMRR = CMRR_{SE} = \left|\frac{A_{DM}}{A_{CM}}\right|$$

$$CMRR = CMRR_{diff} = \left|\frac{A_{DM}}{A_{CM-DM}}\right|$$

In both cases we want CMRR to be as large as possible, and it translates into small matching errors and R_{SS} as large as possible

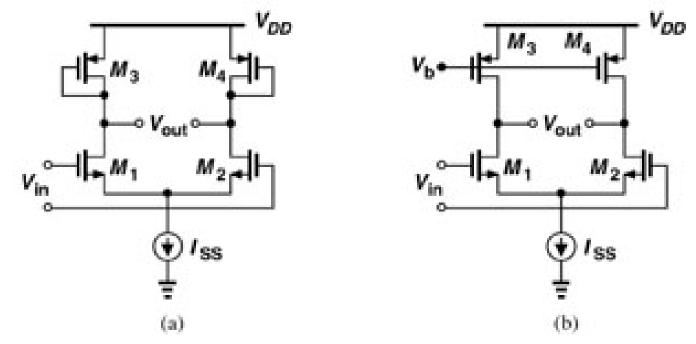
CMOS Differential Amplifiers

MOS Loads – L18



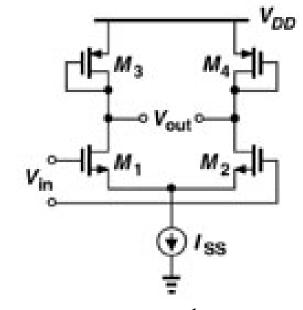
- (a) Diode-connected load
- (b) Current-Source load

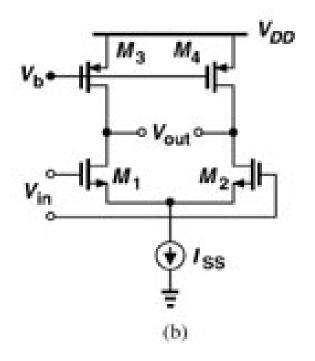
MOS Loads: Analysis Method



- Differential Analysis: Use half-circuit method, with source node at virtual ground.
- Common-Mode Analysis: Again use half-circuit method, with appropriate accommodation for parallel transistors, and for R_{SS.}

MOS Loads: Differential Gain Formulas



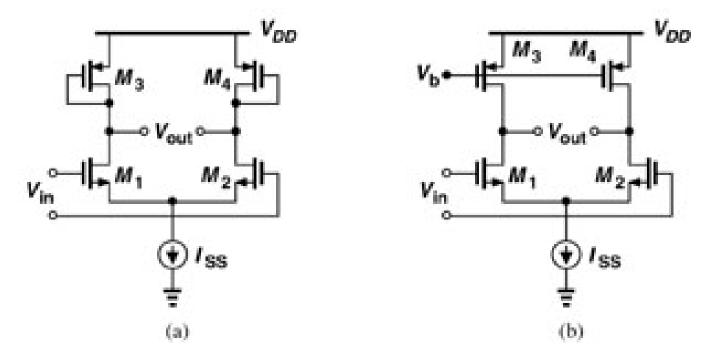


$$A_{V,diff} = -g_{mN} (g_{mP}^{-1} || r_{oN} || r_{oP})$$

$$\approx -\frac{g_{mN}}{g_{mP}} = -\sqrt{\frac{\mu_n (W/L)_N}{\mu_p (W/L)_P}}$$

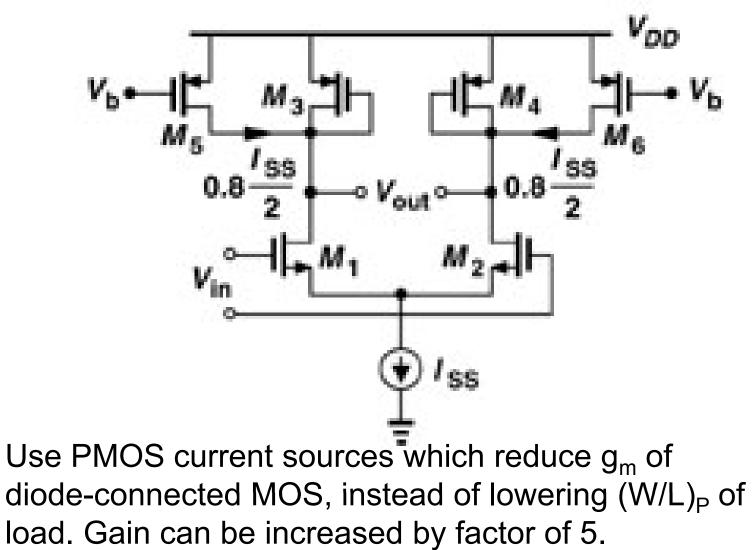
$$A_{V,diff} = -g_{mN}(r_{oN} \parallel r_{oP})$$

Problems with Diode-connected MOS Loads

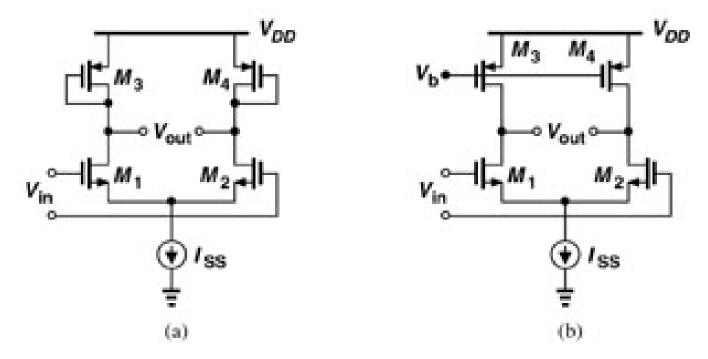


- Tradeoff among output voltage swing, voltage gain and CM input range:
- In order to achieve high gain, (W/L)_P must be decrease, thereby increasing |V_{GSP}-V_{THP}| and lowering the CM level at nodes X and Y.

Overcoming Diode-connected Load swing problem for higher gains:

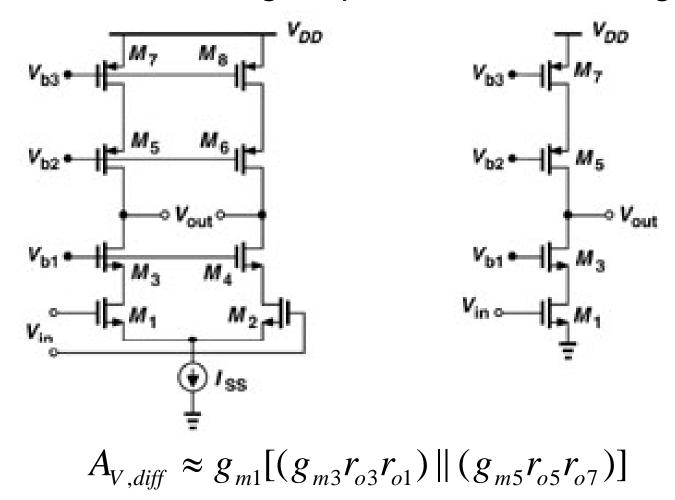


Problems with Current-Source MOS Loads



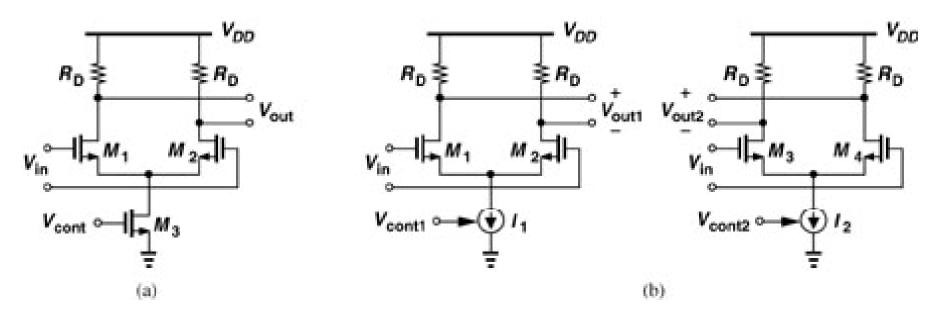
 In sub-micron technologies, it's hard to obtain differential gains higher than 10-20.

Solution to low-gain problem: Cascoding



CMOS Differential Amplifiers

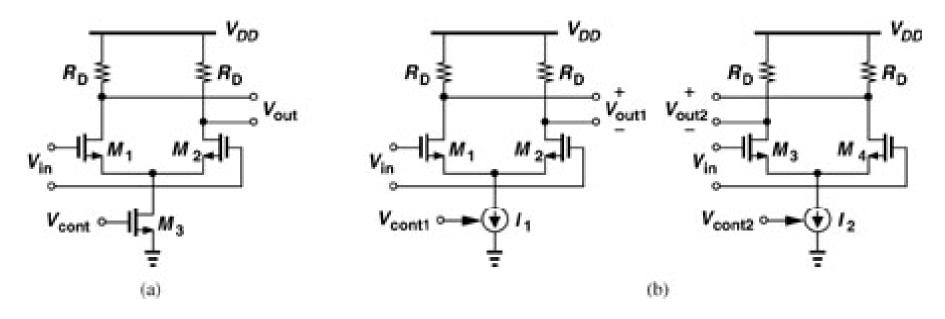
Gilbert Cell-L19



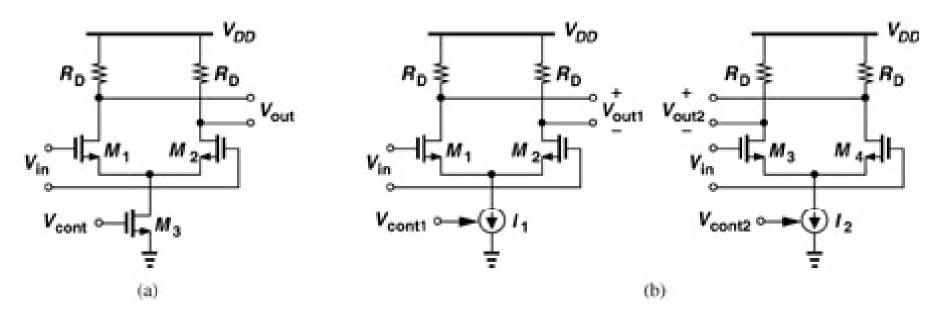
(a)is a VGA (Variable-Gain Amplifier). V_{cont} determines I_{ss}, which determines the differential gain.

Gain may be varied from 0 to some maximum value.

What do we do if we want to vary the gain continuously from some negative value to some positive value?



In circuits (b) the two amplifiers have opposite differential gain simply by interchanging the order of output subtraction)

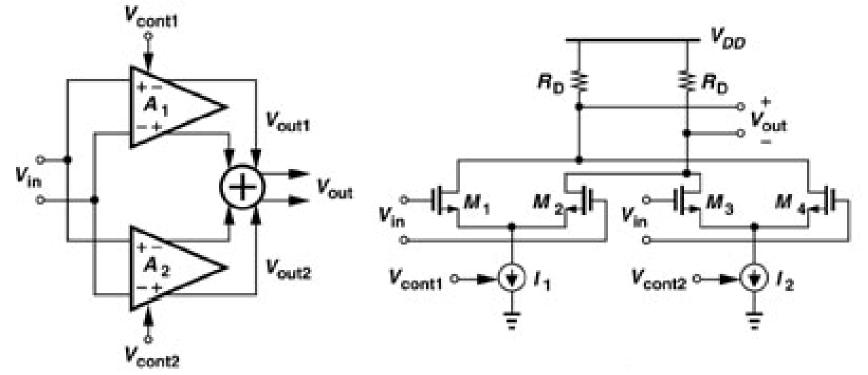


If $I_1 = I_2$ then $V_{out,1}/V_{in} = -g_m R_D = -V_{out,2}/V_{in}$

If we vary I_1 and I_2 in opposite directions, the gains will follow along these directions.

How should we combine the two differential outputs?

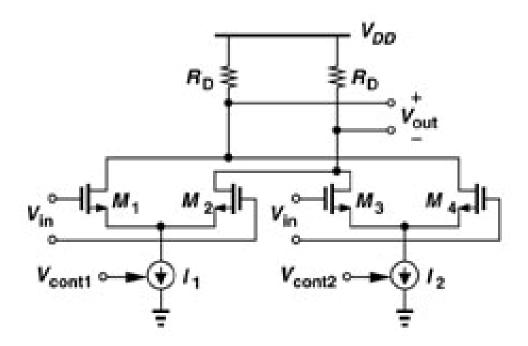
How to combine the differential outputs?



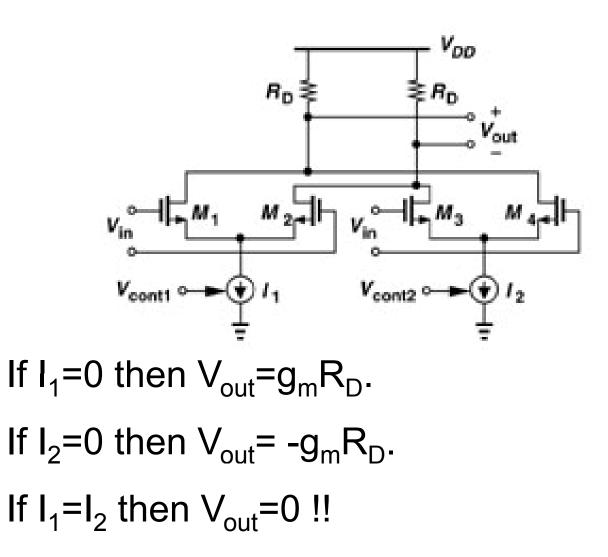
On the left, we conceptually see the two voltages ADDED UP.

Gains A_1 and A_2 are voltage controlled.

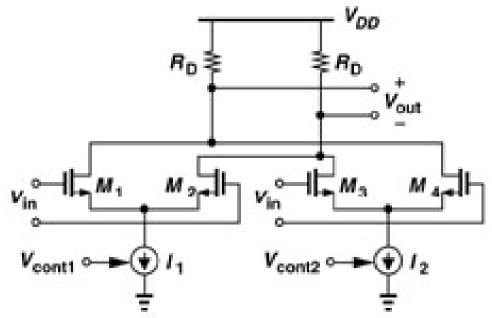
How to combine the differential outputs? Math will show the implementation method.



Does it work as intended? Can gain be varied positively as well as negatively?



Next phase in the conceptual development: Do we really need two separate control signals??



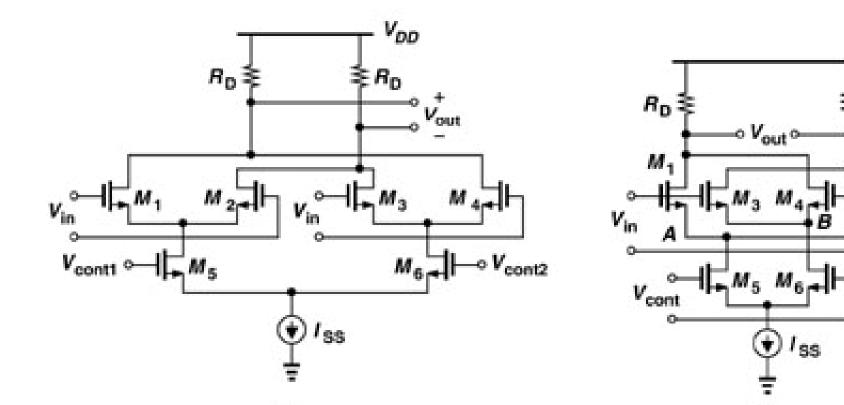
Recall the basic structure of a differential amplifier: The inputs difference cause one of the MOS currents to go up, and at the same time the current of the opposite MOS goes down by the same amount \rightarrow Let I₁, I₂ come from diff. amp.

Gilbert Cell

 V_{DD}

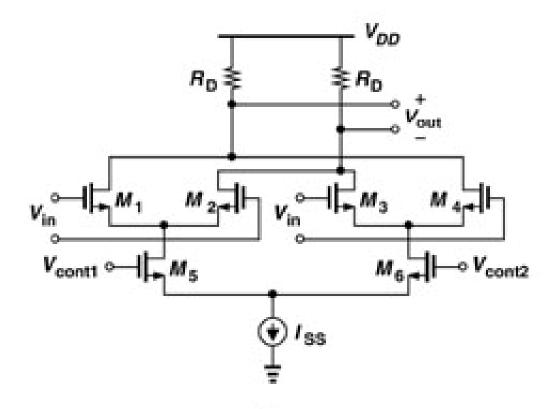
 $R_{\rm D}$

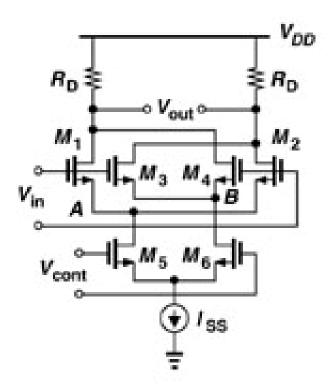
 M_2



Left: If $|V_{cont1} - V_{cont2}|$ is large we have "current stealing", and then gain is either most positive or most negative.

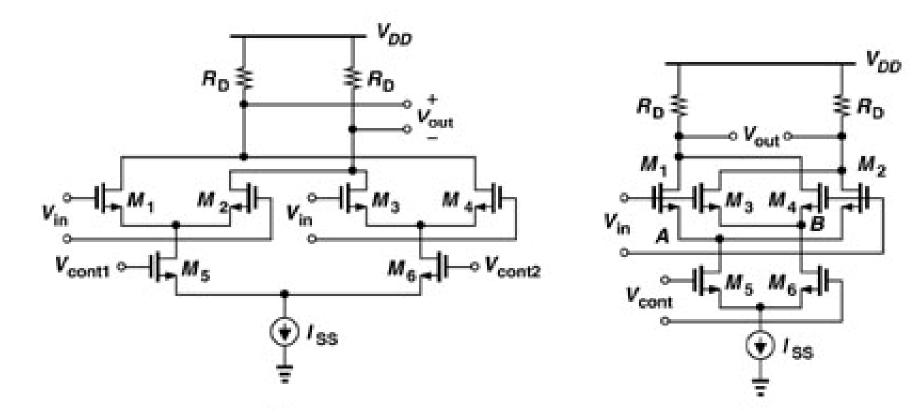
Gilbert Cell





Right: Actual Implementation

Gilbert Cell



 $V_{OUT} = k V_{in} V_{cont}$

Applications of Gilbert Cell

- Analog Multiplier
 - Mixer
 - Phase Detector
 - AM Modulation
- VGA: Variable-gain amplifier
 - AGC (Automatic Gain Control)

It's a versatile general-purpose tool

Can switch input and control signals!

