Chapter 5 Passive and Active Current Mirrors

MOSFET Current Mirror Current Sources

Basic Concepts

Let us study the most basic Current Mirror circuit, consisting of two matching MOSFET transistors connected back-to-back, such that both have the same Gate-to-Source voltage:

<u>Given:</u>

(*) The two enhancement-type NMOS transistors have matching features, as follows: $V_{TH,1} = V_{TH,2}$, $k_{n,1}' = k_{n,2}'$, $\lambda_1 = \lambda_2 = 0$

(*) "By structure" we have that $V_{GS,1} = V_{GS,2}$

(*) Typically the supply $V_{\text{DD}},$ resistor R and a desired reference current I_{ref} are all given.

(*) The ratio $(W/L)_1$ is not necessarily equal to the ratio $(W/L)_2$

(*) "By structure" we have that $V_{GD,1} = 0$, and because the transistor is an enhancement-type, this guarantees that transistor 1 is always in Saturation Mode

<u>Need:</u> Using the transistors geometries $(W/L)_1$ and $(W/L)_2$ as design parameters, we want to create a DC current I_o, as long as transistor Q₂ is in Saturation Mode The Drain of transistor Q_2 is connected to a load circuit, not necessarily a resistor. The load circuit typically involves one or more additional MOSFET transistors. Depending on the load, transistor Q_2 may be in any of three modes: Saturation, Triode or Cutoff. Of course, only when it is in Saturation it will work as originally planned (a DC current source)

The current I_o always goes away from the load circuit and into Q_2 . Such a DC current source is said to be a <u>sink</u>.

Design of a Current Mirror DC Sink

We shall look first at Q₁:

$$I_{D,1} = I_{ref} = \frac{1}{2} k_{n,1} \left(\frac{W}{L} \right)_1 \left(V_{GS,1} - V_{TH,1} \right)^2$$
$$= \frac{V_{DD} - V_{GS,1}}{R}$$

So, indeed if I_{ref} is specified and V_{DD} and R are given, then by the righthand term the needed voltage $V_{GS,1}$ is specified. Then, using the middle term, need to solve for (W/L)₁.

Let V_{DD} = 5V, $V_{TH,1}$ = 1V, $k_{n,1}$ ' = 20µA/V² and R = 1KΩ. What should be (W/L)₁ needed for creating I_{ref} = 1mA?

Solution of Example 1:

$$I_{ref} = 1mA = \frac{V_{DD} - V_{GS,1}}{R} = \frac{5 - V_{GS,1}}{1} \Rightarrow V_{GS,1} = 4V$$

$$\Rightarrow I_{ref} = 1mA = \frac{1}{2}k_{n,1}'(\frac{W}{L})_1(V_{GS,1} - V_{TH,1})^2 = \frac{1}{2} \cdot 20 \cdot 10^{-3}(\frac{W}{L})_1(4-1)^2 \Rightarrow$$

$$\Rightarrow (\frac{W}{L})_1 = 11.11$$

Let us now focus our attention on the "mirror" transistor Q_2 :

$$I_{D,2} = I_o = \frac{1}{2} k_{n,2} ' \left(\frac{W}{L}\right)_2 \left(V_{GS,2} - V_{TH,2}\right)^2$$

$$I_{D,1} = I_{ref} = \frac{1}{2} k_{n,1} ' \left(\frac{W}{L}\right)_1 \left(V_{GS,1} - V_{TH,1}\right)^2$$

We now divide the two equations and use all the given matching parameters of the two transistors.

VDD

$$\frac{I_o}{I_{ref}} = \frac{0.5k_{n,2}'(\frac{W}{L})_2(V_{GS,2} - V_{TH,2})^2}{0.5k_{n,1}'(\frac{W}{L})_1(V_{GS,1} - V_{TH,1})^2}$$

Obviously, many terms cancel out and we are left with the following simple design formula:

$$\frac{I_o}{I_{ref}} = \frac{\left(\frac{W}{L}\right)_2}{\left(\frac{W}{L}\right)_1}$$

Example 2 (Follow-up to Example 1)

I ref

Question:

What do we do if we want to create a <u>source</u> DC current source, rather than a <u>sink</u>?

[A "source" is when the current goes from the current source into the load circuit]

Answer:

If we build a current mirror current source using PMOS transistors (rather than NMOS) then the output DC current will be "sourced" and not "sunk".

Question: If we need to generate multiple different DC current sources and sinks, what is the total number of resistors needed for the design? Answer: Just one resistor for the entire circuit!

Current Steering

The use of a negative DC supply $-V_{SS}$ does not change the fact that, bystructure, both transistors, in every mirror pair, have the same V_{GS} voltage.

Recalculation of Reference Current

$$I_{D,1} = I_{ref} = \frac{1}{2} k_{n,1} \left(\frac{W}{L} \right)_1 \left(V_{GS,1} - V_{TH,1} \right)^2 = \frac{V_{DD} - \left(-V_{SS} + V_{GS,1} \right)}{R}$$

There is no need for the NMOS and PMOS to be matching: Only all the NMOS transistors must match among themselves, and the PMOS transistors must be mutually matching.

For the PMOS transistors Q₄ and Q₅, the following parameters must match: $V_{TH,4} = V_{TH,5}$, $k_{p,4}' = k_{p,5}'$, $\lambda_4 = \lambda_5$

We can now relate the sourced current ${\sf I}_5$ to the reference current ${\sf I}_{\rm ref}$:

$$\frac{I_{5}}{I_{ref}} = \frac{I_{3}}{I_{ref}} \cdot \frac{I_{4}}{I_{3}} \cdot \frac{I_{5}}{I_{4}} = \frac{(\frac{W}{L})_{3}}{(\frac{W}{L})_{1}} \cdot 1 \cdot \frac{(\frac{W}{L})_{5}}{(\frac{W}{L})_{4}}$$

$$\frac{I_5}{I_{ref}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_1} \cdot \frac{\left(\frac{W}{L}\right)_5}{\left(\frac{W}{L}\right)_4}$$

- 1) We need only one resistor R, no matter how large is the number of DC currents generated.
- 2) By using current steering we can create sourcing currents from sinking currents or vice versa.
- 3) The reference current can reside either in a NMOS current mirror or in a PMOS current mirror.

Example (a follow-up to the previous example)

<u>Given:</u> VDD = 5V, VSS = 0 $V_{TH,1} = V_{TH,2} = V_{TH,3} = 1V$, $k_{n,1}' = k_{n,2}' = k_{n,3}' = 20\mu A/V^2$ and R = 1K Ω . $V_{TH,4} = V_{TH,5} = -1V$, $k_{p,4}' = k_{p,5}' = 30\mu A/V^2$

<u>Need:</u> A reference current of I_{ref} = 1mA, one sink current of 7mA and one source current of 5mA.

Question: Using the diagram scheme just discussed, what should be all (W/L) ratios of all five transistors?

<u>Solution</u>

The beginning of the solution is identical to what has been done in the previous examples.

Let's quote the results:

 $(W/L)_1 = 11.11 \text{ and } (W/L)_2 = 77.77 \text{mA}.$

Current I_2 is then the desired sink current

Now:

$$\frac{I_5}{I_{ref}} = \frac{5mA}{1mA} = \frac{(\frac{W}{L})_3}{(\frac{W}{L})_1} \cdot \frac{(\frac{W}{L})_5}{(\frac{W}{L})_4} = \frac{(\frac{W}{L})_3}{11.11} \cdot \frac{(\frac{W}{L})_5}{(\frac{W}{L})_4}$$

There are infinitely many choices for the geometric dimensions of transistors Q_3 , Q_4 and Q_5 . For instance, we may take $(W/L)_3 = 11.11$, $(W/L)_4 = 10$ and $(W/L)_5 = 50$. Current I_5 is then the required source current.

The channel-length modulation effect may be responsible for errors in the operation of a Current Mirror Current Source.

For instance, depending on the load of Q2 we may get $V_{DS,2} \neq V_{DS,1}$. As a result the value of I_2 will slightly vary, depending on the load. It means that the current source is not ideal - it has a finite output resistance, equal to r_0 of the respective output transistor.

Improved Current-Mirror Current Sources – L20

Cascode Current Mirror

Reference Current

- I_{ref} must be very stable and accurate, not subject to fluctuations in:
- $-V_{DD}$
- Temperature

We do not implement I_{ref} just with a resistor!

- NMOS Current Mirror steering current to a PMOS current Mirror.
- I_{ref} is shown only symbolically. Its circuit is more complicated, often involving BJT transistors (for temperature stabilization)!

λ effect introduces large error in the mirrored current

• $I_{out}=I_{ref}$ only if $\lambda=0$ in both transistors, or we arrange that both transistors have the same V_{DS} , which is impossible, as V_{D2} depends on the circuit that I_{out} is connected to.

λ effect introduces large error in the mirrored current

$$I_{D,1} = I_{ref} = \frac{1}{2} k_{n,1} \left(\frac{W}{L} \right)_1 \left(V_{GS,1} - V_{TH,1} \right)^2 \left(1 + \lambda_1 V_{DS,1} \right)$$

$$I_{D,2} = I_{out} = \frac{1}{2} k_{n,2} \left(\frac{W}{L} \right)_2 \left(V_{GS,2} - V_{TH,2} \right)^2 \left(1 + \lambda_2 V_{DS,2} \right)$$

If W/L, k_n ', V_{TH} and λ are all symmetric then:

$I_{ref} = 1 + \lambda V_I$

How can the Cascode idea help in creating improved current mirrors?

- (a): By choosing a suitable bias voltage V_b we can force V_Y to equal V_X , and then I_{out} will e a perfect mirror image of I_{ref}
- The cascode M₂ and M₃ also provides a larger output resistance.

How do we generate V_b ?

- We need $V_Y = V_X$, therefore:
- $V_b V_{GS3} = V_X \rightarrow V_b = V_{GS3} + V_X$
- We see that we need to add to $V_{\rm X}$ some suitable $V_{\rm GS}$

(b): That's why we stack one more diode-connected M_0 on top of M_1 :

- $V_N = V_{GS0} + V_X$
- Let's match M_0 to M_3 and connect their gates.
- By structure we can create: $V_{GS0} = V_{GS3}$

(c):Implementation of a Cascode Current Mirror

- $V_N = V_{GS0} + V_X = V_{GS3} + V_Y$
- We need to choose $(W/L)_3/(W/L)_0 = (W/L)_2/(W/L)_1$
- Then: $V_{GS0}=V_{GS3}$ and $V_X=V_Y$ with no need to add a supply V_b .

How low can V_X be before "trouble begins"?

We can show that M_3 goes into Triode Mode before M_2 does, and current source still functions

Only when M₂ too enters Triode Mode performance begins to deteriorate rapidly

Accuracy vs. "Headroom" Tradeoff

- "Headroom": The DC range of output voltage for which operation is still ok (in the case of Current Mirror Current Source, we talk about the range of V_X (of previous slide) for which I_{out} still mimics I_{ref})
- A simple current mirror allows for larger headroom, but it is less accurate.
- Cascode has a much narrower headroom, but it is much more accurate.

Actual implementations of the "larger headroom" cascode current mirror

We shall skip the topic – it is not needed anywhere later on.

CMOS Differential Amplifiers

Current Mirror Current Source Load – L21

Typical Amplifier Example

Typical Amplifier Example

NMOS current mirrors to bias a differential amplifier and to bias a set of PMOS current source loads.

Idea: non-inverting "current assist"

- In this simple PMOS current mirror we have I_{out}≈I_{in}
- If I_{in} increases by a small signal ΔI , I_{out} increases by the same amount (if transistors are identical)

Differential Amplifier with current mirror load and single-ended output: Attempt 1

- Since we are interested in a single-ended output we don't need a load on the left branch
- Current symmetry is determined by the GS circuitry.
- What is the single-ended differential gain?

Voltage Gain Computation Approaches

- Cannot use the half-circuit method.
- Method 1: $A_V = G_m R_{out}$
- Method 2: Source Follower \rightarrow CG amp

Generalized G_m and R_{out} approach

G_m computation

- G_m=I_{out}/V_{in} in the shown polarity and for output short-circuited to ground.
- $G_m = (g_{m1}V_{in}/2)/V_{in} = g_{m1}/2$
- Explanation: break V_{in} into positive half and negative half

R_{out} computation

- $R_{out} = [(1+g_{m2}r_{o2})(1/g_{m1})+r_{o2}] || r_{o4} \approx (2r_{o2})||r_{o4}$
- Explanation: M₂ is degenerated by M₁'s output resistance 1/g_{m1}; M₄'s output resistance is r_{o4}

Voltage Gain

• $|A_V| = G_m R_{out} \approx (g_{m1}/2)[(2r_{o2})||r_{o4}]$

Gain computation – $CD \rightarrow CG$ approach

- $A_V = V_{out} / V_{in} = (V_P / V_{in})(V_{out} / V_P)$
- Source follower $M_1: V_P/V_{in} = R_{L,M2}/(R_{L,M2} + (1/g_{m1}))$
- $R_{L,M2} \approx (1/g_{m2}) + (r_{o4}/(g_{m2}r_{o2}))$
- Result: $V_P/V_{in} \approx (1 + (r_{o4}/r_{o2})) / (2 + (r_{o4}/r_{o2}))$

- CG M₂:
- Result: $V_{out}/V_P \approx (1+g_{m2}r_{o2}) / (1+(r_{o2}/r_{o4}))$
- Overall result comes out to be the same as obtained by the other method.

Differential Amplifier with current mirror load and single-ended output: Attempt 1

- Drawback of the circuit: Small-signal gain of M₁ is "wasted"
- Can get a better gain using the "current assist" idea shown earlier.

Active Current Mirror Load

VDD

· Vout

Open Loop Constraints

Small-Signal Single-ended Voltage Gain

Again, can't use half-circuit method (see signals above)

$$I_{D1} = I_{D3} = I_{D4} = g_{m1,2}V_{in}/2$$
 $I_{D2} = -g_{m1,2}V_{in}/2$

$$I_{out} = I_{D2} - I_{D4} = -g_{m1,2}V_{in} \Longrightarrow G_m = g_{m1,2}$$

Note: Active Current Mirror load increased G_m by factor of 2!

Complicated Calculation of Rout

 $R_{out} \approx r_{o2} \| r_{o4} (2r_{o1,2} \gg [1/g_{m3}] \| r_{o3})$

Note: R_{out} of this case is inferior to that of "no assist" case

Small-Signal Gain

Overall gain is somewhat larger than that of the "no assist" case

Common Mode Characteristics

Common Mode Single-ended Gain

Even with perfect symmetry $A_{CM} \neq 0$ if $R_{SS} < \infty$

Common Mode Rejection Ratio for single-ended output

$$CMRR = \frac{|A_{DM}|}{|A_{CM}|}$$

$$=g_{m1,2}(r_{o1,2} || r_{o3,4}) \frac{g_{m3,4}(1+2g_{m1,2}R_{SS})}{g_{m1,2}}$$

$$= g_{m3,4}(r_{o1,2} || r_{o3,4})(1 + 2g_{m1,2}R_{SS})$$