Chapter 6 Frequency Response of Amplifiers

MOSFET Capacitances-L22

Device Capacitances

There is some capacitance between every pair of MOSFET terminals.

Only exception: We neglect the capacitance between Source and Drain.

Gate to Substrate capacitance

C₁ is the oxide capacitance (between Gate and channel)

 $C_1 = WLC_{OX}$

C₂ is the depletion capacitance between channel and Substrate

$$C_2 = WL(q\epsilon_{si}N_{sub}/(4\Phi_F))^{1/2} = C_d$$

 C_3 and C_4 are due to overlap between the gate poly-silicon and the Source and Drain regions.

No simple formulas for C_3 and C_4 : It is incorrect to write $C_3 = C_4 = WL_DC_{OX}$ because of fringing electric field lines.

We denote the overlap capacitance per unit width as $C_{\mbox{\scriptsize ov}}$

Source-Substrate and Drain-Substrate Junction Capacitances

Again, no simple formulas for C_5 and C_6 :

See right figure: Each capacitance should be decomposed into two components:

Bottom-plate capacitance, denoted as C_j , which depends on the junction area.

Side-wall capacitance C_{jsw} which depends on the perimeter of the junction.

Source-Substrate and Drain-Substrate Junction Capacitances

In MOSFET models C_j and C_{jsw} are usually given as capacitance-per-unit-area, and capacitance-per-unit-length, respectively.

 $C_j = C_{j0} / [1+V_R/\Phi_B]^m$ where V_R is the junction's reverse voltage, Φ_B is the junction built-in potential, and m typically ranges from 0.3 to 0.4

Examples (both transistors have the same C_i and C_{isw} parameters)

Calculate C_{DB} and C_{SB} for each structure

Left structure

 $C_{DB}=C_{SB}=WEC_{j}+2(W+E)C_{jsw}$

Layout for Low Capacitance (see folded structure on the right)

Two parallel transistors with one common Drain

Layout for Low Capacitance (see folded structure on the right)

Compare to the left structure:

 $C_{DB}=C_{SB}=WEC_{j}+2(W+E)C_{jsw}$

 C_{SB} slightly larger, C_{DB} a lot smaller. Both transistors have same W/L

C_{GS}, C_{GD} at Cutoff

$$C_{GD} = C_{GS} = C_{ov} W$$

C_{GB} at Cutoff

$$C_1 = WLC_{OX}, C_2 = WL(q\epsilon_{si}N_{sub}/(4\Phi_F))^{1/2} = C_d$$

 $C_{GB} = C_1C_2/(C_1+C_2) = WLC_{OX}C_d/(WLC_{OX}+C_d)$
L is the effective length of the channel.

C_{DB} and C_{SB} at all modes

Both depend on the reverse voltages Drain to Substrate and Source to Substrate Recall $C_i = C_{i0} / [1+V_R/\Phi_B]^m$

C_{GS},C_{GD} at Triode Mode

If V_{DS} is small enough, we can assume $V_{GS} \approx V_{GD} \rightarrow$ Channel uniform \rightarrow Gate-Channel capacitance WLC_{OX} is distributed uniformly

 $C_{GD} = C_{GS} \approx (WLC_{OX})/2 + C_{OV}W$

C_{GS}, C_{GD} at Saturation Mode

 $C_{GD} \approx C_{ov}W$ because there isn't much of a channel near Drain.

(It can be proved): $C_{GS}=2WL_{eff}C_{OX}/3+WC_{ov}$

C_{GB} at Triode and Saturation Modes

 C_{GB} is negligible, because channel acts as a "shield" between Gate and Substrate. That is, if V_{G} varies, change of charge comes from Source and Drain, and not from the Substrate!

MOS Small Signal Model with Capacitance

In "Weak Inversion" C_{GS} is a series combination of C_{OX} -capacitance and C_{dep} capacitance \rightarrow Low capacitance peak near $V_{GS} \approx V_{TH}$

High-Frequency Response of Amplifiers-L23

Basic Concepts

Miller's Theorem

Replacement of a bridging component (typically a capacitor) with equivalent input and output impedances, for the sake of facilitating high-frequency response analysis.

Miller's Theorem Statement

- Let $A_V = V_Y/V_X$ be known.
- Then (a) and (b) above are equivalent if:
- $Z_1 = Z/(1-A_V)$ and $Z_2 = Z/(1-A_V^{-1})$
- Equivalence in V_X, V_Y and currents to Z's.

Proof of Miller's Theorem

- Current equivalence: $(V_X V_Y)/Z = V_X/Z_1$
- That is: $Z_1 = Z/(1 V_Y/V_X)$ etc.
- Similarly: $(V_Y V_X)/Z = V_Y/Z_2 \rightarrow Z_2 = Z/(1 V_X/V_Y)$
- A simple-looking result, but what does it mean?

The most common application

- Mid-band gain of amplifier is known to be –A.
- We want to know (at least approximately) how does the bridging capacitor C_F influence the amplifier's bandwidth.

Exact vs. Approximate Analysis

- For exact analysis, replace C_F with its impedance $Z_C=1/sC_F$ and find transfer function $V_Y(s)/V_X(s)$ of circuit.
- Approximate analysis: Use Miller's theorem to break capacitor into two capacitances, and then study the input circuit's time constant and the output circuit's time constant.

Miller Effect – input capacitance

• Input circuit's added capacitance due to C_F : Since Z_1 is smaller than Z by (1-A_V), and since C_F appears in denominator of Z, it means that input capacitance $C_1=C_F(1-A_V)$. If $|A_V|$ is large, C_1 may become pretty large.

Miller Effect – output capacitance

• Output circuit's added capacitance due to C_F : Since Z_2 is smaller than Z by $(1-A_V^{-1})$, and since C_F appears in denominator of Z, it means that output capacitance $C_2=C_F(1-A_V^{-1})$. If $|A_V|$ is large, C_2 will be almost equal to C_F .

Bridging component restriction

- Both sides of the bridging component must be fully floating, for Miller's theorem to be valid.
- If voltage, on either side, if fixed then there is no Miller effect.
- Later we'll use Miller's theorem to deal with C_{GD} . Therefore in CG and Source Follower amplifiers, in which one side of C_{GD} is ground, there will be no Miller effect.
- Main impact of Miller is on CS amplifiers.

Meaning of "approximated analysis"

- There is little use for the complete highfrequency transfer function (all its poles and zeros).
- We are interested in the amplifier only at mid-band frequencies (at which all MOSFET capacitances are considered open circuit), and may be a little bit beyond, near high-frequency cutoff (-3db) frequency.

Approximate Analysis Meaning

- We calculate input circuit's and output circuit's time constant for the sake of determining the amplifier's bandwidth.
- We use the known mid-band voltage gain in Miller's theorem.

Validity of Miller's analysis at HF

- We use the known mid-band voltage gain in Miller's theorem.
- At high frequencies, much higher than the -3db frequency, gain is much lower → Miller's theorem, using mid-band gain, is not valid!

Bandwidth Calculation

- Typically, the two time constants are rarely of the same order of magnitude.
- The larger time constant determines the amplifier's -3db frequency.
- The smaller time constant (if much smaller than other) should be discarded as invalid.

Poles and Zeros

- A time constant $\tau = 1/RC$ means that the transfer function has a pole at s=-1/ τ .
- Typically, every capacitor contributes one pole to the transfer function.

Example below: All poles are real; No zeros

Complicated example

- There are three poles due to the three capacitors. It's hard to determine poles location by inspection (some poles may be complex)
- There may be some zeros.
- Difficult due to V_{in} , V_{out} interaction (via R_3 , C_3)

Example: Feedback capacitor over finite gain

- $V_{out}(s)/V_X(s) = -A$
- $(V_{in}(s)-V_X(s))/R_s=sC_F(V_X(s)-V_{out}(s))$
- Exact Result: $V_{out}(s)/V_{in}(s) = -A/[1+sR_SC_F(1+A)]$
Example: CG Amplifier

- C_S=C_{GS1}+C_{SB1} Capacitance "seen" from Source to ground.
- $C_D = C_{DG} + C_{DB}$ Capacitance "seen" from Drain to ground.

Example: CG Amplifier

- Need to determine (by inspection) the two poles contributed, one by C_S and another by C_D .
- This is easy to do only if we neglect r_{01} .
- Strategy: Find equivalent resistance "seen" by each capacitor, when sources are nulled.

Example: CG Amplifier

- $\tau_{\rm S} = C_{\rm S} R_{\rm S,eq} = C_{\rm S} \{ R_{\rm S} \| [1/(g_{\rm m1} + g_{\rm mb1})] \}$
- $\tau_D = C_D R_{D,eq} = C_D R_D$
- $A=(g_{m1}+g_{mb1})R_D/(1+(g_{m1}+g_{mb1})R_S)$
- $V_{out}(s)/V_{in}(s) = A/[(1+s\tau_S)(1+s\tau_D)]$

High-Frequency Response-L24

Common-Source Amplifier

High Frequency Model of CS Amplifier

- C_{GD} creates a Miller Effect.
- It is essential to assume a nonzero signal source resistance $R_{\rm S}$, otherwise signal voltage changes appear directly across $C_{\rm GS}$

C_{GD} Miller Effect on input

- Let A_V be the low frequencies voltage gain of the CS amplifier, such as A_V≈-g_mR_D.
- Capacitance added to C_{GS} is $C_{GD}(1-A_V)$.
- $\tau_{in} = R_S [C_{GS} + C_{GD} (1 A_V)]$

C_{GD} Miller Effect on output

- Capacitance added to C_{DB} is $C_{GD}(1-A_V^{-1}) \approx C_{GD}$.
- $\tau_{out} = R_D(C_{GD} + C_{DB})$
- If τ_{in} and τ_{out} are much different, then the largest one is valid and the smaller one is invalid.

Common Source (must be in Saturation Mode)

Neglecting input/output interaction,

$$f_{p,in} = \frac{1}{2\pi R_{S} \left[C_{GS} + (1 + g_{m} R_{D}) C_{GD} \right]}$$

$$f_{p,out} = \frac{1}{2\pi \left[\left(C_{GD} + C_{DB} \right) R_D \right]}$$

CS Amplifier's Bandwidth if R_S large

- $\tau_{out} = R_D(C_{GD} + C_{DB}); \tau_{in} = R_S[C_{GS} + C_{GD}(1 A_V)]; A_V = -g_m R_D$
- If all transistor capacitances are of the same order of magnitude, and if R_S is of the same order of magnitude of R_D (or larger) then $A_V(s) \approx -g_m R_D / (1+s\tau_{in})$: Input capacitance dominates. $BW=f_h=1/2\pi\tau_{in}$

CS Amplifier's Bandwidth if V_{in} is almost a perfect voltage source

- $\tau_{out} = R_D(C_{GD} + C_{DB}); \tau_{in} = R_S[C_{GS} + C_{GD}(1 A_V)]; A_V = -g_m R_D$
- If all transistor capacitances are of the same order of magnitude, and if R_S is very small : $A_V(s) \approx -g_m R_D / (1+s\tau_{out})$: Output capacitance dominates. $BW=f_h=1/2\pi\tau_{out}$

High Frequency Response of CS Amplifier – "Exact" Analysis

- Use small-signal diagram, and replace every capacitor by its impedance 1/sC; Neglect r_o
- Result: Only two poles, and one zero in V_{out}(s)/V_{in}(s)!

CS Exact Analysis (cont.) $f_{p,out} = \frac{R_s(1 + g_m R_D)C_{GD} + R_s C_{GS} + R_D (C_{GD} + C_{DB})}{2\pi R_s R_D (C_{GS} C_{GD} + C_{GS} C_{DB} + C_{GD} C_{DB})}$

$$f_{p,out} \approx \frac{1}{2\pi R_D (C_{GD} + C_{DB})}$$
, for large C_{GS}

$$f_{p,out} \approx \frac{g_m R_S R_D C_{GD}}{2\pi R_S R_D (C_{GS} C_{GD} + C_{GS} C_{DB} + C_{GD} C_{DB})}$$
$$\approx \frac{g_m}{2\pi (C_{GS} + C_{DB})}, \text{ for large } C_{GD}$$

CS Amplifier RHP Zero

Right half plane zero, from the numerator of $V_{out}(s)/V_{in}(s)$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{(sC_{GD} - g_m)R_D}{s^2 R_S R_D (C_{GS} C_{GD} + C_{GS} C_{SB} + C_{GD} C_{DB}) + s [R_S (1 + g_m R_D) C_{GD} + R_S C_{GS} + R_D (C_{GD} + C_{DB})] + 1}$$

$$\frac{sC_{GD} - g_m}{\dots} \rightarrow f_z = \frac{+g_m}{2\pi C_{GD}}$$

Zero Creation

- A Zero indicates a frequency at which output becomes zero.
- The two paths from input to output may create signals that perfectly cancel one another at one specific frequency.

Zero Calculation

- At frequency at which output is zero (s=s_z), the currents through C_{GD} and M_1 are equal and opposite. Can assume that at this frequency (only) output node is shorted to ground.
- $V_1/(1/s_z C_{GD}) = g_m V_1 \rightarrow Zero expression results.$

RHP Zero Effect on the Frequency Response

- RHP Zero (like LHP zero) contributes positively to the slope of magnitude frequency response curve → reduces the roll-off slope.
- RHP Zero (contrary to LHP zero) adds NEGATIVE phase shift.

RHP Zero Impact

- It is often negligible, as it happens in very high frequencies.
- It becomes important if CS amplifier is part of multi-stage amplifiers creating a very large open-loop gain. It may affect stabilization compensation.

Input Impedance of CS stage

High-Frequency Response-L25

Source Follower

High-Frequency Response of Source Follower – No Miller

- No Miller Effect C_{GD} is not a bridge capacitor (as Drain side is grounded).
- C_L is a combination of several capacitances: C_{SB1} , $C_{DB,SS}$, $C_{GD,SS}$ and C_{in} of next stage.

High-Frequency Response of Source Follower – No solution "by inspection"

- Because of C_{GS} that ties input to output, it is impossible to find various time constants, one capacitor at a time – combined effects of C_{GS} and C_{L} .

Source Follower HF Response Derivation Assumptions

- Use small-signal diagram and 1/sC terms.
- Simplifying assumptions: We neglect effects of r_{o} and γ (body effect).

Source Follower HF Response Derivation

- Sum currents at output node (all functions of s):
- $V_1C_{GS}s+g_mV_1=V_{out}C_Ls$, yielding:
- $V_1 = [C_L s/(g_m + C_{GS} s)]V_{out}$
- KVL: $V_{in} = R_S[V_1C_{GS}s + (V_1 + V_{out})C_{GD}s] + V_1 + V_{out}$

Source Follower Transfer Function

Idea for detecting "dominant pole":

$$\frac{1}{(1+s\tau_1)(1+s\tau_2)} = \frac{1}{\tau_1\tau_2s^2 + (\tau_1+\tau_2)s + 1} \approx \frac{1}{\tau_1\tau_2s^2 + \tau_1s + 1}$$

If $\tau_1 >> \tau_2 \rightarrow$ Can find τ_1 by inspection of the s coefficient

Source Follower Dominant Pole (if it exists...)

Source Follower Dominant Pole (if R_s is very small)

 $\frac{V_{out}(s)}{V_{in}(s)} = \frac{g_m + sC_{GS}}{s^2 R_S (C_{GS} C_L + C_{GS} C_{GD} + C_{GD} C_L) + s (g_m R_S C_{GD} + C_{GD} + C_{GS}) + g_m}$

$$f_{p1} \approx \frac{g_m}{2\pi (C_L + C_{GS})} = \frac{1}{2\pi \left(\frac{C_L + C_{GS}}{g_m}\right)}$$

Source Follower Input Impedance

- At low frequencies we take R_{in} of CS, Source Follower, Cascode and Differential amplifiers to be practically infinite.
- At higher frequencies, we need to study the Input Impedance of the various amplifiers.
- Specifically for a Source Follower: Is Z_{in} purely capacitive?

Source Follower Input Impedance Derivation

Laying C_{GD} aside, as it appears in parallel to the remaining part of Z_{in} :

$$V_X \approx \frac{I_X}{sC_{GS}} + \left(I_X + \frac{g_m I_X}{sC_{GS}}\right) \left(\frac{1}{g_{mb}} \| \frac{1}{C_L s}\right)$$

$$Z_{in} \approx \frac{1}{sC_{GS}} \left(1 + (g_m / g_{mb}) \right) + 1 / g_{mb}$$

$$\therefore C_{in} = C_{GS} g_{mb} / (g_m + g_{mb}) + C_{GD} \quad (same \ as \ Miller$$

"Miller Effect" of C_{GS}

Low frequency gain is $g_m/(g_m+g_{mb})$

$$C_{G,Miller} = C_{GS}(1 - A_V)$$

At low frequencies, $g_{mb} \gg |sC_L|$

$$Z_{in} \approx \frac{1}{sC_{GS}} (1 + (g_m / g_{mb})) + 1 / g_{mb}$$

 $\therefore C_{in} = C_{GS} g_{mb} / (g_m + g_{mb}) + C_{GD} \text{ (same as Miller)}$

Effect not important: Only a fraction of C_{GS} is added to C_{in}

Source Follower HF Z_{in}

At high frequencies, $g_{mb} \ll |sC_L|$

$$Z_{in} \approx \frac{1}{sC_{GS}} + \frac{1}{sC_L} + \frac{g_m}{s^2 C_{GS} C_L}$$

At a particular frequency, input impedance includes C_{GD} in parallel with series combination of C_{GS} and C_{L} and a *negative* resistance equal to $-g_m/(C_{GS}C_L\omega^2)$.

Source Follower Output Impedance Derivation Assumptions

Body effect and C_{SB} contribute an impedance which is a parallel portion of Z_{out} – we'll keep it in mind. We also neglect C_{GD} .

$$Z_{OUT} = V_X / I_X = ?$$

Source Follower Output Impedance Derivation

$$Z_{OUT} = V_X / I_X$$
$$= \frac{sR_SC_{GS} + 1}{g_m + sC_{GS}}$$

We already know that at low frequencies $Z_{out} \approx 1/g_m$

At high frequencies, C_{GS} short-circuits the Gate-Source, and that's why Z_{out} depends on the Source Follower's driving signal source.
Source Follower Output Impedance - Discussion

Source Follower Output Impedance - Discussion

Typically $R_S > 1/g_m$

Therefore $|Z_{out}(\omega)|$ is increasing with ω .

Source Follower Output Impedance - Discussion

If $|Z_{out}(\omega)|$ is increasing with ω , then it must have an INDUCTIVE component!

Source Follower Output Impedance – Passive Network Modeling?

Can we find values for R_1 , R_2 and L such that $Z_1=Z_{out}$ of the Source Follower?

Source Follower Output Impedance – Passive Network Modeling Construction

Clues:

At $\omega=0$ $Z_{out}=1/g_m$; At $\omega=\infty$ $Z_{out}=R_S$ At $\omega=0$ $Z_1=R_2$; At $\omega=\infty$ $Z_1=R_1+R_2$ Let $R_2=1/g_m$ and $R_1=R_S-1/g_m$ (here is where we assume $R_S>1/g_m$!)

Source Follower Output Impedance – Passive Network Modeling Final Result

Output impedance inductance dependent on source impedance, R_S (if R_S large) !

Source Follower Ringing $\begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ &$

Output ringing due to tuned circuit formed with C_{L} and inductive component of output impedance. It happens especially if load capacitance is large.

High Frequency Response-L26

Common Gate Amplifier

CG Amplifier neglecting r_o

- C_S=C_{GS1}+C_{SB1} Capacitance "seen" from Source to ground.
- $C_D = C_{DG} + C_{DB}$ Capacitance "seen" from Drain to ground.

CG Amplifier if r_o negligible

- Can determine (by inspection) the two poles contributed, one by C_S and another by C_D .
- This is easy to do only if we neglect r_{01} .
- Strategy: Find equivalent resistance "seen" by each capacitor, when sources are nulled.

CG Amplifier Transfer Function if r_o is negligible

- $\tau_{S} = C_{S}R_{S,eq} = C_{S}\{R_{S} || [1/(g_{m1} + g_{mb1})]$
- $\tau_D = C_D R_{D,eq} = C_D R_D$
- $A=(g_{m1}+g_{mb1})R_D/(1+(g_{m1}+g_{mb1})R_S)$
- $V_{out}(s)/V_{in}(s) = A/[(1+s\tau_S)(1+s\tau_D)]$

CG Bandwidth taking r_o into account

Can we use Miller's theorem for the bridging r_o resistor?

CG Bandwidth taking r_o into account

Can we use Miller's theorem for the bridging r_o resistor? Well, no.

Effect of r_o at input: Parallel resistance $r_o/(1-A_V)$. Recall: A_V is large and positive \rightarrow Negative resistance! \rightarrow How to compute time constants?

CG Bandwidth taking r_o into account

Need to solve exactly, using impedances 1/sC, and Kirchhoff's laws.

Example: r_o effect if R_D is replaced with a current source load

- Current from V_{in} through R_S is: $V_{out}C_Ls+(-V_1)C_{in}s$
- Adding voltages: $(-V_{out}C_Ls+V_1C_{in}s)R_S+V_{in}=-V_1$
- $V_1 = -[-V_{out}C_L sR_S + V_{in}]/(1 + C_{in}R_S s)$
- Also: $r_o(-V_{out}C_Ls-g_mV_1)-V_1=V_{out}$

Example: r_o effect if R_D is replaced with a current source load – final result

 $V_{out}(s)/V_{in}(s)=(1+g_m r_o)/D(s)$, where: $D(s)=r_oC_LC_{in}R_Ss^2+[r_oC_L+C_{in}R_S+(1+g_m r_o)C_LR_S]s+1$ The effect of g_{mb} can now be added simply by replacing g_m by g_m+g_{mb} .

CG with R_D load Input Impedance

Recall the exact R_{in} formula at low frequencies: $R_{in}=[R_D/((g_m+g_{mb})r_o)]+[1/(g_m+g_{mb})].$ Simply replace R_{in} by Z_{in} and R_D with $Z_L=R_D||(1/sC_D)$

CG with current source load Input Impedance

Recall the exact R_{in} formula at low frequencies: $R_{in}=[R_D/((g_m+g_{mb})r_o)]+[1/(g_m+g_{mb})].$ Here replace R_{in} by Z_{in} and R_D with $Z_L=1/sC_L$

CG with current source load Input Impedance - Discussion

$$\begin{split} &Z_{in} = [1/sC_{L}/((g_{m} + g_{mb})r_{o})] + [1/(g_{m} + g_{mb})]. \\ &At high frequencies, or if C_{L} is large, the effect of C_{L} at input becomes negligible compared to the effect of C_{in} (as <math>Z_{in} \rightarrow 1/(g_{m} + g_{mb})) \end{split}$$

CG and CS Bandwidth Comparison

- If R_S is large enough, bandwidth is determined by the input time constant
- CG: $\tau_{in} = (C_{GS} + C_{SB})[R_S || (1/(g_m + g_{mb}))]$
- CS: $\tau_{in} = [C_{GS} + (1 + g_m R_D) C_{GD}]R_S$
- Typically -3db frequency of CG amplifier is by an order of magnitude larger than that of a CS amplifier.
- If R_s is small, τ_{out} dominates. It is the same in both amplifiers.

High Frequency Response-L27

Cascode Amplifier

Key Ideas:

- Cascode amplifier has the same input resistance and voltage gain as those of a CS amplifier.
- Cascode amplifier has a much larger bandwidth than CS amplifier.
- Cascode = CS→CG. CS has a much reduced Miller Effect because CS gain is low (near -1).

Cascode Amplifier Capacitances

C_{GD1} Insignificant Miller Effect

- M₁ is CS with a load of 1/(g_{m2}+g_{mb2}) (the input resistance of the CG stage).
- $A_V = -g_{m1}/(g_{m2}+g_{mb2})$ which is a fraction.
- Effect of C_{GD1} at input is at most 2C_{GD1}

Cascode Input Pole (if dominant)

Cascode Mid-section Pole (if dominant)

Total resistance seen at Node X is M_2 input resistance.

By Miller: C_{GD1} contribution is at most C_{GD1}

$$f_{p,X} \approx \frac{g_{m2} + g_{mb2}}{2\pi (C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2})}$$

Cascode Output Pole (if dominant)

Which of the Cascode's three poles is dominant?

$$f_{p,A} = \frac{1}{2\pi R_s \left[C_{GS1} + C_{GD1} \left(1 + \frac{g_{m1}}{g_{m2} + g_{mb2}} \right) \right]}$$

$$f_{p,X} = \frac{g_{m2} + g_{mb2}}{2\pi (C_{GD1} + C_{DB1} + C_{SB2} + C_{GS2})}$$

Either $f_{p,A}$ or $f_{p,Y}$ dominates. $f_{p,X}$ is typically a higher frequency.

$$f_{p,Y} = \frac{1}{2\pi R_D (C_{DB2} + C_L + C_{GD2})}$$

Cascode with current source load

- This is done whenever we want larger voltage gains.
- However we pay by having a lower bandwidth:

Lower Bandwidth of Cascode with current source load

- Key problem: If a CG amplifier feeds a current source load, its R_{in} may be quite large.
- It causes an aggravation of Miller effect at input.
- Also: The impact of C_X (mid-section capacitance) may no longer be negligible.

(b)

High Frequency Response-L28

Differential Amplifiers

Do separate Differential-Mode and Common-Mode high-frequency response analysis

Differential-Mode – Half-Circuit Analysis

Differential-Mode HF response identical to that of a CS amplifier.

Differential-Mode HF response Analysis

Relatively low A_{DM} bandwidth due to C_{GD} Miller effect.

Remedy: Cascode Differential Amplifier.

Common-Mode HF Response Analysis

 $C_{\rm P}$ depends on $C_{GD3},\,C_{DB3},\,C_{SB1}$ and C_{SB2} How large is it? Can be substantial if (W/L)'s large

Common-Mode HF response if M₁ and M₂ mismatch (solution approach)

$$A_{V,CM-DM} = \frac{V_X - V_Y}{V_{in,CM}} = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1}R_D$$

Replace: R_{SS} with $r_{o3}||(1/C_Ps)$, R_D with $R_D||(1/C_Ls)$

Common-Mode HF response if M₁ and M₂
mismatch - Result

$$A_{V,CM-DM}(s) = \frac{V_X - V_Y}{V_{in,CM}} = -\frac{(g_{m1} - g_{m2})[R_D \| \frac{1}{C_L s}]}{(g_{m1} + g_{m2})[r_{o3} \| \frac{1}{C_P s}] + 1} = -\frac{(g_{m1} - g_{m2})R_D}{(g_{m1} + g_{m2})r_{o3} + 1} \cdot \frac{(1 + sr_{o3}C_P)}{(1 + sR_DC_L)(1 + s\frac{r_{o3}C_P}{(g_{m1} + g_{m2})r_{o3} + 1})}$$

Zero dominates! $A_{V,CM-DM}$ begins to rise at $f_z=1/(2\pi r_{o3}C_P)$

Overall Differential Amplifier's Bandwidth

- At a certain high frequency $f=f_{P,DM}$ differential gain A_{DM} begins to fall.
- At another high-frequency f=f_{Z,CM} common-mode gain A_{CM} begins to rise.
- Whichever of the above 3db frequencies is lower determines the amplifier's bandwidth – we are really interested in the frequency at which the amplifier's CMRR begins to fall.

CMRR vs Bandwidth Tradeoff

- In order to reduce the voltage drop I_DR_D and still obtain a large enough A_{DM} we typically want gate widths to be relatively large (for W/L to be large enough)
- The larger W's the smaller is bandwidth.
- Issue is more severe the smaller V_{DD} gets.

Frequency Response of Differential Pairs With High-Impedance Load

Differential output

Here C_{L} include C_{GD} and C_{DB} of PMOS loads

Differential Mode Analysis: G Node

- For differential outputs, C_{GD3} and C_{GD4} conduct equal and opposite currents to node G.
- Therefore node G is ground for small-signal analysis.
- In practice: We hook up by-pass capacitor between G and ground.

Differential Mode Half Circuit Analysis

Above (obtained earlier) "exact" transfer function applies, if we replace R_D by $r_{o1}||r_{o3}$

Differential Mode Half Circuit Analysis – final result

- Here, because C_L is quiet large and because the output time constant involves r_{o1}||r_{o3} which is large, it is the output time constant that dominates.
- $f_h \approx 1/2\pi C_L(r_{o1}||r_{o3})$

Common-Mode HF Analysis

Result identical to that of a differential amplifier with R_D load.

Recall dominant zero due to C_P (source)

own transfer function.

Overall transfer function is the sum of the two paths' transfer functions

 C_E arises from $C_{GS3}, C_{GS4}, C_{DB3}, C_{DB1}$ and Miller effect of C_{GD1} and $C_{GD4}.$ Pole is at s=- g_{m3}/C_E

Simplified diagram showing only the largest capacitances:

Solution approach: Replace V_{in} , M_1 and M_2 by a Thevenin equivalent

Thevenin equivalent of bottom circuit (for diff. mode analysis)

- We can show that:
- $V_X = g_{m1} r_{o1} V_{in} = g_{mN} r_{oN} V_{in}$

•
$$R_X = 2r_{o1} = 2r_{oN}$$

Differential Mode analysis

- We assume that $1/g_{mP} < < r_{oP}$
- $V_E = (V_{out} V_X)[(1/(C_E s + g_{mP}))] / [R_X + (1/(C_E s + g_{mP})]$ voltage division

Differential Mode analysis (cont'd)

- Current of M_4 is $g_{m4}V_E$
- $-g_{m4}V_{E}-I_{X}=V_{out}(C_{L}s+r_{oP}^{-1})$

Differential Mode Analysis - Result

Differential Mode Analysis – Result Interpretation

$$\frac{V_{out}}{V_{in}} = \frac{g_{mN}r_{oN}(2g_{mP} + C_E s)}{2r_{oP}r_{oN}C_E C_L s^2 + as + 2g_{mP}(r_{oN} + r_{oP})}$$
$$a = (2r_{oN} + r_{oP})C_E + r_{oP}(1 + 2g_{mP}r_{oN})C_L$$

This type of circuits typically produce a "dominant pole", as the output pole often dominates the mirror pole.

In such a case we can use "a" (above) to estimate the dominant pole location.

Differential Mode Analysis – Dominant and Secondary Poles

$$f_{h} \approx \frac{2g_{mP}(r_{oN} + r_{oP})}{(2r_{oN} + r_{oP})C_{E} + r_{oP}(1 + 2g_{mP}r_{oN})C_{L}} \approx \frac{2g_{mP}(r_{oN} + r_{oP})}{r_{oP}(1 + 2g_{mP}r_{oN})C_{L}} \approx \frac{2g_{mP}(r_{oN} + r_{oP})}{2r_{oP}g_{mP}r_{oN}C_{L}} = \frac{1}{(r_{oP} \parallel r_{oN})C_{L}}$$

By substituting f_h into the exact transfer function we can find the higher frequency pole: $f_{p2}=g_{mP}/C_E$

Single-ended differential amplifier summary of results

$$f_{p1} \approx \frac{1}{2\pi (r_{oN} \parallel r_{oP})C_L}$$

$$f_{p2} = \frac{g_{mP}}{2\pi C_E}$$

$$f_{Z} = 2f_{p2} = \frac{2g_{mP}}{2\pi C_{E}}$$

In summary

Differential amplifiers with current mirror load and differential output have a superior high frequency response over differential amplifiers with current mirror load and single-ended output.