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Motivation
SELECT titleSELECT title
FROM papers
WHERE title LIKE ‘%string%’ and      

numOfpages < 13

Given several keywords, estimate y ,
number of documents having all 
keywords 
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Substring Selectivity 
Estimation Methods

Markov-chain Approachpp
KVI Algorithm [krishnan, Vitter, Iyer: SIGMOD’96]

Complete conditional independence (CCI)
MO (Maximal Overlap) Algorithm [Jagadish, Ng, Srivastava:PODS’99]

Conditional dependence of αj on the immediately preceding (maximal 
overlap) substring
Markov Estimator (ME)

QG Estimator
Selectivity of a s can never exceed that of s’ for any substring s’ of sy y g

CRT Algorithm [Chaudhuri, Ganti, Gravano: ICDE’04]
Short Identifying Substring (SIS)

Monte Carlo Approach
Min Hashing Algorithm [Chen, Korn, Koudas, Muthkrishnan: PODS’00]]

Markov-chain Approach

KVI Algorithm & MO Algorithm
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Substring Selectivity Estimation
Problem DefinitionProblem Definition

Given 
A pruned count-suffix tree T  with a prune threshold p
A substring query σ

Estimate the fraction Cσ/N
Cσ: count of substring query σ in the database

N: count associated with the root of T

The Suffix Trees
Suffix TreeSuffix Tree

Stores not only strings but also all suffixes of each 
string

Count-Suffix Tree
Does not store pointers to occurrence of the substrings
Just keeps a count Cα at the node corresponding to α

C t i h dCount in each node
The number of strings in the D  containing α as a 
substring
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An Example of a Suffix Tree
‘banana’, ‘nana’banana , nana

suffix tree ⇒ Cana = 2
N denotes number of strings in D
Cnull = N = 2

b(1) n(2)

N(2)
suffix tree

b(1)
a(1)

n(1)
a(1)

n(1)
a(1)

a(2)

n(2)

a(2)

n(1)

a(1)

n(2)

a(2)

n(2)

a(2)

Pruned Count-Suffix Tree
Pruned count-suffix tree (PST: T )Pruned count suffix tree (PST: T )

Prune away every node that has a Cσ ≤ p, where p is the 
pruned threshold

Completion of a PST
A count-suffix tree is a completion of a PST T if T can be 
obtained by pruning the count-suffix tree
Same PST can be generated by pruning different countSame PST can be generated by pruning different count 
suffix trees
C (T ) : set of all completions of T
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Maximal Overlap
For string β = α1α2For string β  α1α2

α1 is a prefix of β
β-α1 gives the suffix α2

Maximal Overlap 
Given β1 = α1α2 and β2 = α2α3, α2 is maximal
Maximal overlap between a suffix of β1 and a prefix of β2Maximal overlap between a suffix of β1 and a prefix of β2

β1Øβ2 = α2 

β1 - β1Øβ2 = α1 

β2 - β1Øβ2 = α3

Selectivity Estimation Algorithms
Pr(σ) : Selectivity of substring query σ( ) y g q y

case 1: σ is found in the PST T
Pr(σ) = Cσ / N

case 2: σ is not found in the PST T
we must estimate Pr(σ)
This is essence of our substring selectivity estimation problem

Let σ = α1… αw
Pr(σ) = Pr(αw| α1… αw-1) * Pr(α1… αw-1)

Pr(α | α α ) * Pr(α | α α ) * Pr(α α )

Pr(α1… αw)/ Pr(α1… αw-1) *Pr(α1… αw-1)

=Pr(α1… αw)=Pr(σ)

= Pr(αw| α1… αw-1) * Pr(αw-1| α1… αw-2) * Pr(α1… αw-2)
= …
= (                       ) * Pr(α1))α...α|Pr(α 1j

2j
1j −

=
∏
ω

※ Pr(αj| α1… αj-1): the probability of occurrence of αj given that the 
preceding string α1… αj-1 has been observed.

We cannot compute conditional 
probability because some suffixes 
are not in the PST
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KVI Algorithm
Assume complete conditional independence (CCI)Assume complete conditional independence (CCI)

Pr(αj| α1… αj-1) ≒ Pr(αj)

Greedy parsing
Finds a sequence of strings α1…αw for some w such that

(i) σ = α1… αw

(ii) α1 is the longest prefix of σ that can be found in the PST T(ii)   α1 is the longest prefix of σ that can be found in the PST T

(iii)  for all j > 1, αj is the longest prefix of ( σ - α1 - … - αj-1 )

α1 α2 α3

query string PST

KVI Algorithm
KVI Selectiviry: Pr(σ) = Pr(α1) * … * Pr(αw)y ( ) ( 1) ( w)
Example [KVI Estimation], query σ = ‘jones’

Pr(jones) = Pr(‘jon’) * Pr(‘es’|’jon’)      (By greedy parsing)
≒ Pr(‘jon’) * Pr(‘es’)             (By CCI)
= (Cjon/N) * (Ces/N)
= (10/200) * (50/200)
= 1.25 %

α1 = jon

α2 = es
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MO (Maximal Overlap) Alg.
Computes all maximal substring β1, , β of σ that can beComputes all maximal substring β1, …, βu of σ that can be 
found in the PST T

β1, …, βu are selected such that
σ = β1[β2-(β1Øβ2)] … [βu-(βu-1Øβu)]

Assume conditional dependence of αj on the immediately 
preceding (maximal overlap) substring

Pr(α | α α ) ≒ Pr(α | β Øβ )Pr(αj | α1…αj-1) ≒ Pr(αj | βj-1Øβj )
= Pr(βj) / Pr(βj-1Øβj)

βj-1 βj

αj

…

β1

α1 α2

β2

…σ

αw

βj

(βj-1Øβj)αj = βj

αj = βj -(βj-1Øβj)

MO (Maximal Overlap) Alg.
Pr(σ) = Pr(β1) * Pr(β2)/Pr(β1Øβ2) * … * Pr(βw)/Pr(βw-1Øβw) ( ) (β1) (β2)/ (β1 β2) (βw)/ (βw 1 βw)
Example [MO Parsing], query σ = ‘jones’

β1 = ‘jon’, β2 = ‘one’, β3 = ‘nes’
β1Øβ2 = ‘on’ and β2Øβ3  = ‘ne’
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MO (Maximal Overlap) Alg.
Example [MO Estimation], qeury σ =‘ jones’

Pr(αj | α1…αj-1) 

| β β
p [ ], q y j

β1 = ‘jon’, β2 = ‘one’, β3 = ‘nes’
Pr(jones) = Pr(‘jon’) * Pr(‘e’|’jon’) * Pr(‘s’|’jone’)

≒ Pr(‘jon’) * Pr(‘e’|’on’) * Pr(‘s’|’ne’)
= (Pr(‘jon’)) * (Pr(‘one’)/Pr(‘on’)) * (Pr(‘nes’)/Pr(‘ne’))
= (Cjon/N) * (Cone/Con) * (Cnes/Cne)
= 1 %

≒ Pr(αj | βj-1Øβj )

= Pr(βj) / Pr(βj-1Øβj)

= Cβj / Cβj-1Øβj

Pseudo Code of KVI and MO Alg.s
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MO vs. KVI
KVI: Complete conditional independence p p
assumption
MO: partial conditional dependence assumption

It does not guarantee MO is always better than KVI
Short memory property - there exists a length L such 
that  

If the length of preceding subsequences of the 
string > L, the conditional probability does not change 
substantiallysubstantially 

Theorem
Suppose the strings in D exhibit the short memory 
property with length L
Let β1, …, βn be the maximal substrings on σ in T
If ∀i > 1 : βi-1Øβi has length ≥ L, then MO is a better 
estimate than KVI

MO vs. KVI
Experimental ResultExperimental Result 

A real AT&T data about last names of over 100,000 
employees
Positive Query - present in the un-pruned tree, but not in 
the PST T

Use Relative Error
Error = (estimated count – actual count) / actual count

Negative Query - present neither in the un-pruned tree 
nor in the PST Tnor in the PST T

Actual count would be 0
Use Standard error (the square root of mean squared error)
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Markov-chain Approach

GE Estimator

19

Q-grams
Extended Strings ⇒ ext(s)Extended Strings ext(s)

prefixing s with ‘#’ and suffixing it with ‘$’
ex) ext(“seattle”)=“#seattle$”

Predicate Matching
a tuple t is said to satisfy or match a unit 
predicate “R.A like %s%” if s is a substring of t[A]

Frequencyq y
the number of tuples in R that match the unit 
predicate p

Selectivity
f(p) / |R|
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Q-grams
Q-gram Table ⇒ QT (R A)Q gram Table ⇒ QTq(R.A)

q-gram: Any string of length q in ( ∑∪{$, #} )*
A lookup table with the frequency of each n-grams sn where 
1≤n≤q

Q-gram Sequence ⇒ Qq(s)
Ordered sequence of all (overlapping) q-gramsq ( pp g) q g
Q3(‘seattle’ is [‘sea’, ‘eat’, ‘att’, ‘ttl’, ‘tle’]

QG Estimator
Describes an upper bound on the selectivity of a unitDescribes an upper bound on the selectivity of a unit 
predicate
selectivity of a predicate %s% can never exceed that 
of %s’% for any substring s’ of s
QG estimator returns the minimum selectivity of a q-
gram of string s
E Gi b l t bl QG(% l%) i {f( )Ex. Given below table, QG(%novel%) = min{f(nov), 
f(ove), f(vel)} / 5 

= 0.2
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Markov-chain Approach

CRT Algorithm
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Short Identifying Substring 
Hypothesis

Identifying substringIdentifying substring
Consider a unit predicate R.A like %s%. We say that a 
substring s’ of s is an (ε, β) identifying substring, for 
0≤ ε<1 and 0<β<1, if 

(i) the selectivity of R.A like %s’% is no larger than 
(1+ε) times that of R.A like %s% and 
(ii) |s’|≤ β|s|

E “ ” i (0 0 6) id tif i b t iEx. “ove” is a (0, 0.6) identifying substring
Selectivity of %novel% coincides with that of %ove% 
(ε = 0)
length of “ove” is 3 = 0.6 * 5   (β=0.6)
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Finding Minimal Identifying 
Substring

Minimal identifying substringMinimal identifying substring
Does not strictly contain another identifying substring of s

We would like to correctly guess a “minimal”
Once minimal identifying substring is found, we can 
use existing estimators (e.g. the Markov estimator)

Ex. P(‘seattle’) = P(‘eatt’) = P(‘eat’) * P(‘att’|’eat’)

H if l h li i d i iHowever, if we only have limited statistics on 
frequencies of substrings

We cannot find the “minimal”
=>multiple candidate identifying substrings

Short Identifying Substring 
Hypothesis

Short Identifying Substring Hypothesisy g g yp
A query string s usually has a “short” substring s’ such that if 
an attribute value contains s’, then the attribute value almost 
always contain s as well
The selectivity of R.A like %eatt% is almost same as the 
selectivity of R.A like %seattle%
So, we use short identifying substrings to estimate the 
selectivity of query string instead of using full query string

Selectivities of substrings are computed as follows:Selectivities of substrings are computed as follows:
Use Markov Estimator
Selectivities of length m(>q) substrings can be obtained by 
multiplying conditional probabilities of q-grams in the q-gram 
table
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Adjusting Minimal Identifying 
Substring

When only limited statistics are availableWhen only limited statistics are available
We cannot guess the shortest (minimal) identifying 
substring

So, we use another estimator
Guess several candidate identifying substrings for one 
of each possible length between q and |s|
Assign weights to each candidate
Combine their associated selectivities

Weights are determined by a regression tree
Learn the characteristics of data and query workload

Regression Tree Overview
Consider a relation R with numerical attributes X1,…,Xm, Y1, , m,

Attributes X1,…,Xm are the predictor attributes
Y is a dependent attribute
Y = fn(X1, …, Xm)

Given a tuple [x1, …, xm, NULL]
Traverse the regression tree RT starting from its root until 
reach a leaf node n
At m, fn(X1, …, Xm) is the RT predictor
of the Y value for the tuple

Used for modeling dependencies 
between selectivities of a string and 
its substrings
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Multiple Candidate Identifying 
Substrings

Multiple Candidate Identifying SubstringsMultiple Candidate Identifying Substrings
One for each value of substring length between q and |s|
For each length between q and |s|,  find the substring of 
that length most likely to be an identifying substring

Combination Function
Assigns weights to each selectivities of candidate 
id tif i b t iidentifying substrings
Weight

The weight of a substring of Length L depends on the 
probability that the length of the shortest identifying substring 
is equal to L

Choice of Candidate Identifying 
Substrings

Choose one potential candidate identifying substringChoose one potential candidate identifying substring 
for each level
Choice Rule

choose the substring at each level with the smallest 
(estimated) selectivity

The selectivity of a candidate identifying substring is 
guaranteed to be at least as high as that of the query string

Selectivities of candidate identifying substrings
at Level 0 : q-gram table
at Level 1~ : ME selectivity using q-gram table

Level 2 novel W2

Level 1 nove ovel              W1

Level 0    nov           ove vel      W0
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Regression-Tree Combination 
Function

Assigns weights to selectivities of candidate identifying g g y g
substrings at each level

learn the level weights from the data sets and expected query 
workload

Selectivity of R.A like %s%
Weighted geometric mean
x0

w0 * … * xn
wn  =  exp(w0logx0+…+wnlogxn)

Where xm is selectivity of level m candidate identifying substring 
and wn is weights at level m

Ex.  R.A like %novel%
exp(0.4log(ME-Selectivity(%ove%))
+0.3log(ME-Selectivity(%nove%))
+0.05log(ME-Selectivity(%novel%))-0.01)

Monte Carlo Approach

Min Hash Algorithm

32
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Min Hashing Method
Document 1. Peanut butter lover’s club ...

Document 2.  … peanut stock...

Document 3. …butter, the natural choice…

…

Document 100. ... 

How many documents contain substring peanut but not butter?

Boolean queries on substring predicates
Information Retrieval: Bibliographic search 
Web searching: 40 millions per day at AltaVista
RDB queries

33

Motivation
Store all correlationsStore all correlations

Exponential (2m) space to store correlation between substring 
predicates (m as number of substrings)

Not to store correlation?

No! Correlation is important!

The pitfalls in independence assumption

Independence Assumption:

P(peanut ∧ butter)

= P(peanut) * P(butter)

= 2/100 * 2/100 = 0.04%

25 times smaller than true count!

Document 1. Peanut butter lover’s club ...

Document 2.  … peanut stock…

Document 3. …butter, the natural choice…

…

Document 100. ... 
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Derivation from Definition
Definition of Min HashDefinition of Min Hash

for randomly chosen π

For similarity calculation

||
1)|)()(Pr(min
A

AxxA =∈= ππ

y

35

||
1)|)()(Pr(min

BA
BAxxBA

∪
=∪∈=∪ ππ

Signature Generation
Universe = {1,2,3,4,5} Generate signatures with length 3

3
5
2

1
2
3

5
4

{ , , , , }

A={1,2,3},B={2,3,5}
Generate signatures with length 3

Signature of A

1
2

sigA[0]

sigA[1]
2

4
1

4
2
1

5
3

Randomly permute

universe 3 times
1

2
2
1

Signature of B

sigA[2]
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Computation of |A ∩ B|
1 2 1A’s signature S 1 2 1As signature SA

2 2 1
B’s signature SB

Definition r: # of pair-wise matches of SA and SB / length of signature

3
2

|BA|-|B||A|
|BA|

| BA|
| BA|

=
∩+

∩
=

∪
∩

=r

|A∩B| = (r / (1+ r)) * (|A| +|B|)

=  2/3 / (1+2/3) * (3+3) = 2.4

Multiset Min Hashing 
Estimate |A1∩ ∩Ak|Estimate |A1∩…∩Ak|

ρk: # of k-pair wise match / length of signature

Estimate |A1∪…∪Ak|
| AA|
| AA|

k1

k1

∪∪
∩∩

=
L

L
kρ

| AA|
| A|

k1

j

∪∪
=

L
γ

sig (A1∪…∪Ak)[i] = min(sig(A1)[i],…,sig(Ak)[i])
Estimate |A1∩…∩Ak|

γ
ρρ

| A|
| AA|| AA| j

k1k1 kk =∪∪=∩∩ LL
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Quiz
r1 r2 r3 r4 r5

Let A={r1, r3, r5 } and B = {r4, r5 }.
What is Min Hash Signatures for A and B?

∏1 1 5 3 2 4

∏2 3 2 1 4 5

∏3 4 3 5 1 2

∏4 5 4 2 3 1

39

Quiz
r1 r2 r3 r4 r5

Let A={r1, r3, r5 } and B = {r4, r5 }.
What is Min Hash Signatures for A and B?

Sig(A) = (1,1,2,1), sig(B) = (2,4,1,1)

Wh t i th ti t d i f A ∩ B if I k |A ∪ B| 5?

∏1 1 5 3 2 4

∏2 3 2 1 4 5

∏3 4 3 5 1 2

∏4 5 4 2 3 1

What is the estimated size of A ∩ B if I know |A ∪ B| = 5?

40
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Quiz
r1 r2 r3 r4 r5

Let A={r1, r3, r5 } and B = {r4, r5 }.
What is Min Hash Signatures for A and B?

Sig(A) = (1,1,2,1), sig(B) = (2,4,1,1)

Wh t i th ti t d i f A ∩ B if I k |A ∪ B| 5?

∏1 1 5 3 2 4

∏2 3 2 1 4 5

∏3 4 3 5 1 2

∏4 5 4 2 3 1

What is the estimated size of A ∩ B if I know |A ∪ B| = 5?
| A ∩ B | = ρk | A ∪ B| = ¼*5=5/4

What is the estimated size of A ∪ B  if I know |A| = 3 and |B| = 2? 

41

Quiz
r1 r2 r3 r4 r5

Let A={r1, r3, r5 } and B = {r4, r5 }.
What is Min Hash Signatures for A and B?

Sig(A) = (1,1,2,1), sig(B) = (2,4,1,1)

Wh t i th ti t d i f A ∩ B if I k |A ∪ B| 5?

∏1 1 5 3 2 4

∏2 3 2 1 4 5

∏3 4 3 5 1 2

∏4 5 4 2 3 1

What is the estimated size of A ∩ B if I know |A ∪ B| = 5?
| A ∩ B | = ρk | A ∪ B| = ¼*5=5/4

What is the estimated size of A ∪ B  if I know |A| = 3 and |B| = 2? 
| A ∪ B| = | A | / r = 3*(4/3) = 4
Sig(A ∪ B) = (1,1,1,1), r = 3/4
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