
Basic Classical Mechanics

Reading: Atkins, Appendix 3 (pp. 979-984) 

17 C, Isaac Newton 

→ successful at explaining the motion of everyday objects and planets 

→ failed at very small particles (20th century)



1) Trajectory (궤적) is completely determined → deterministic
cf) quantum mechanics: probability

2) Energy can take any non-negative value → allows the translational, rotational,
and vibrational modes of motion to be excited to any energy simply by
controlling the forces

cf) Q. M.: discrete

3) Measurement of dynamic variables can be made as precisely as we wish → no
inherent limitation in accuracy

cf) Q. M.: uncertain

1. Main features



Total energy of a particle :  E = Ek + V(x)

Ek: kinetic energy (from the motion)
V(x): potential energy (from the position)      

Force                                   F = -(dV(x)/dx)

→ The direction of the force is towards decreasing potential energy

2. Total energy



Ek = (1/2)mv2 = p2/2m (since p = mv, linear momentum)

Total energy                        E = p2/2m + V(x)

→ Particle has a definite trajectory, or define position and momentum
at each instant

e.g.) V = 0, v = (dx/dt)

v = (dx/dt) = (2Ek/m)1/2

⇒ x(t) = x(0) + (2Ek/m)1/2t  

p(t) = mv(t) = m(dx/dt) = (2mEk) 1/2

If we know initial position & momentum, we can predict all later positions 
&  momenta exactly



the rate of change of momentum = the force acting on the particle

F = dp/dt = d(mv)/dt = m(d2r/dt2) = ma

r = r(x, y, z)

e.g.) 1-dimension, F = m(d2x/dt2)               (d2x/dt2): acceleration of particle

trajectory: r = r(t, v0, r0), p = p(t, v0)

Ek;  0 → Ek = F2τ2/(2m) by t = 0 → t = τ; any energy value available

3. Newton’s 2nd law of motion



4. Rotational motion

angular momentum J
J = Iω

ω: angular velocity (radians/s), 
I; moment of inertia (I = mr2)

To accelerate a rotation, it is necessary to apply a torque
torque T, a twisting force

T = dJ/dt

Rotation energy
0 → Ek = T2τ2/2I by time 0 → τ

→ arbitrary rotational energy available



5. Harmonic oscillator → vibration

m x = 0

x

F = - k x
k : force constant

(stiffen the spring: k↑)

-: force direction → opposite to displacement



F = -kx k: force constant
m(d2x/dt2) = -kx
d2x/dt2 + ω2x = 0  where ω = √(k/m); angular frequency 

→ ω = 2πν, frequency ν = ω/2π = (1/2π)√(k/m)

x(t) = Asinωt (A: amplitude)
p(t) = mωAcosωt (since p = mv = m(dx/dt))

Ek = p2/2m = 1/2mω2A2cos2ωt = 1/2kA2cos2ωt

F = -kx = -dV/dx

V = 1/2kx2 = 1/2kA2sin2ωt

Total E = Ek + V = 1/2kA2cos2ωt + 1/2kA2sin2ωt = 1/2kA2



→ any vibrational energy available (amplitude (A) governs the energy, 
independent of frequency)

Classical mechanics: agree with everyday experience → does not extend 
to very small particles, such as individual atoms



Electromagnetic Theory of Radiation

Electromagnetic field

- In classical physics, electromagnetic radiation is 
understood in terms of electromagnetic field 
- An oscillating electric and magnetic disturbance (even in vacuum) 
(electric field + magnetic field)
→ travel at constant speed: “speed of light” (c)

wavelength λ (lambda), 
frequency ν (nu, Hz)   λν = c 
wavenumber (     ) (nu tilde, cm-1):

= ν/c = 1/λ



Electromagnetic radiation

Travelling x-direction
Electric field   E(x,t) = E0cos[2πνt – (2π/λ)x + φ]
Magnetic field  B(x,t) = B0cos[2πνt – (2π/λ)x + φ]

E0 & B0: the amplitudes of the fields
φ: phase of the wave (-π to π): two waves φ = 0 → constructive

φ=πor –π→ destructive
E & B: plane polarized



Differentiation
(∂2/∂x2)Ψ(x,t) = -(4π2/λ2)Ψ(x,t),   (∂2/∂t2)Ψ(x,t) = -4π2ν2Ψ(x,t)

Ψ(x,t): either E(x,t) or B(x,t)

Intensity of electromagnetic radiation  ∝ square of the wave amplitide
(energy)                                                    E0

2 or B0
2



The Failures of Classical Mechanics
(Physics)

Reading: Atkins, ch. 8 (p. 244-252)

e.g., black-body radiation

heat capacity of solid

photoelectric effect

atomic spectra  etc



• hot object emit electromagnetic radiation
e.g., iron bar: red → yellow → blue → …; T↑→ wavelength λ↓, 
frequency ν↑

The energy distribution in a 
black-body cavity at several 
temperatures. Note how the 
energy density increases in the 
visible region as the 
temperature is raised, and how 
the peak shifts to shorter 
wavelengths. The total energy 
density (the area under the 
curve) increases as the 
temperature is increased (as 
T4).

1. Black-body radiation



• black-body: ideal emitter, perfect absorber & perfect emitter
many times absorption & emission → thermal equilibrium at temperature T 
→ leaking out through pinhole

T ↑ color shifts toward the blue

An experimental representation of 
a black body is a pinhole in an 
otherwise closed container. The 
radiation is reflected many times 
within the container and comes to 
thermal equilibrium with the walls 
at a temperature T. Radiation 
leaking out through the pinhole is 
characteristic of the radiation 
within the container.



• Wien’s law (Wien’s displacement law, 1893)

Tλmax = const. = 1/5c2, c2 = 1.44 cm⋅K

λmax : maximum distribution wavelength at T

e.g., at 1000 K → λmax ~ 2900 nm

Sunlight peak at ~500 nm → T = 5800 K



• Stefan-Boltzman law (1879)

Total energy density ε, (ε = E/V, radiation energy per unit volume) 

ε = aT4

or 
excitance M, (radiation power per unit surface, the brightness of the emission)

M = σT4

σ(Stefan-Boltzman constant): 5.67 x 10-8 Wm-2K-4

e.g., 1 cm2 surface at 1000 K radiate about 6 W     (cf. W = J/s)



• Rayleigh-Jeans law
19 C, Rayleigh → classical approach: electromagnetic field as a collection of a 
oscillators of all possible frequencies 
→ energy distribution calculation from mean energy <E> = kT for each 
oscillator

The electromagnetic vacuum can be 
regarded as able to support 
oscillations of the electromagnetic 
field. When a high-frequency short-
wavelength oscillator (a) is excited, 
that frequency of radiation is present. 
The presence of low-frequency long-
wavelength radiation (b) signifies 
that an oscillator of the corresponding 
frequency has been excited.





Rayleigh-Jeans law
dε = ρdλ, ρ = (8π<E>/λ4)dλ = (8πkT/λ4)dλ

ε: energy density, ρ: proportionality constant, 
k: Boltzmann constant (1.381 x 10-23 JK-1)

The Rayleigh-Jeans law 
predicts an infinite energy 
density at short 
wavelengths. This 
prediction is called the 
ultraviolet catastrophe.





⇒ quite successful at long λ
⇒ but it fails at lower λ (UV, X-rays…) “Ultraviolet catastrophe”(자외선파탄)

or  λ = c/ν, λν = c → dν = -c(dλ/λ2 ) → dλ = -λ2dν/c
dε = (8πν2kT/c3)dν



• classical mechanics: even cool objects should radiate in the visible and UV 
regions → no darkness even at low T  (?) 

• The Planck distribution
- In 1900, Max Planck propose each oscillator is not continuous →
energy quantization 
(proposing that the energy of each oscillator is limited to discrete values and 
cannot be varied arbitrarily)
cf) classical mechanics: all possible energies are allowed

E = hν, 2hν, 3hν……(integer multiples of hν)
E = nhν, n = 0, 1, 2, 3, ….
h: Planck constant, 6.626 x 10-34 J⋅s

λν = c, λ: wavelength, ν: frequency









The Planck distribution 
accounts very well for the 
experimentally determined 
distribution of radiation. 
Planck's quantization 
hypothesis essentially 
quenches the contributions 
of high-frequency, short-
wavelength oscillators. 
The distribution coincides 
with the Rayleigh-Jeans 
distribution at long 
wavelengths.





2. Heat capacity

• Dulong & Petit’s law (19 C)
monatomic solid: <E> = kT for each direction → 3kT for 3-D
N atoms: molar internal energy Um = 3NAkT = 3RT

constant volume heat capacity
CV,m = (∂Um/∂T)V = 3R (= 24.9 JK-1mol-1) 



Deviation at low temperature: T → 0 ⇒ CV,m → 0 



• Einstein formula (1905)
- all the atoms oscillate with the same frequency → at low T, few 

oscillators possess energy to oscillate; T ↑, enough energy for 
all the oscillators 

- using Planck’s hypothesis (E = nhν)
all 3N atomic oscillators → vibrational energy of crystal: 3N<E>





Experimental low-
temperature molar heat 
capacities and the 
temperature 
dependence predicted 
on the basis of 
Einstein's theory. His 
equation accounts for 
the dependence fairly 
well, but is everywhere 
too low. 

- still poor in experimental data since Einstein assumed all the atoms 
oscillate with the same frequency 



• Debye formula
- consider to oscillate ν → 0 to νD
(in real crystal atoms are coupled by the interatomic forces and do not oscillate  

independently) 

Debye's modification of 
Einstein's calculation gives 
very good agreement with 
experiment. For copper, θD
= 2 corresponds to about 
170 K, so the detection of 
deviations from Dulong and 
Petit's law had to await 
advances in low-temperature 
physics. 

• Quantization must be introduced in order to explain thermal properties of solids





Philipp Lenard (1862-1947): the light ejects electrons from the metal 
(photoelectron)

3. The photoelectric effect

Classical viewpoint would assume that the light waves beat on the metal 
surface like ocean waves and the electrons are distributed like pebbles on 
a beach. More intense illumination (i.e. brighter) would deliver more 
energy to the electrons. However,…..



1902 Lenard: the electron energy were entirely independent of the light 
intensity. Further, there was a certain threshold frequency below which no 
photoelectron were ejected, no matter how bright the light beam.

Albert Einstein (1905) showed that the puzzle of photoelectric effect are 
easily explained once the illuminating radiation is a collection of particles 
(photons): qV (kinetic energy of electron) = hν (energy of the incoming 
photon) – P (work to get out of the metal)



In the photoelectric 
effect, it is found that 
no electrons are ejected 
when the incident 
radiation has a 
frequency below a 
value characteristic of 
the metal and, above 
that value, the kinetic 
energy of the 
photoelectrons varies 
linearly with the 
frequency of the 
incident radiation. 



•Einstein (1905-6)

• ν < ν0 (threshold ν): no emission, even at strong radiation intensity
ν > ν0: electron emission even at very low intensity

• kinetic energy of ejected electron ∝ ν, independent of radiation intensity
if hν > Φ (work function): electron emission

1/2mev2 = hν - Φ
Φ: the energy required to remove an electron from the metal to infinity
→ energy depended on the frequency of the incident light ⇒ nhν



The photoelectric effect can be 
explained if it is supposed that 
the incident radiation is 
composed of photons that have 
energy proportional to the 
frequency of the radiation. (a) 
The energy of the photon is 
insufficient to drive an 
electron out of the metal. (b) 
The energy of the photon is 
more than enough to eject an 
electron, and the excess energy 
is carried away as the kinetic 
energy of the photoelectron 
(the ejected electron). 



4. Atomic & molecular spectra



• spectrum: radiation absorbed or emitted by atoms & molecules

→ radiation is emitted or absorbed at a series of discrete frequencies
→ energy of atoms/molecules is confined to discrete values

A region of the 
spectrum of radiation 
emitted by excited iron 
atoms consists of 
radiation at a series of 
discrete wavelengths 
(or frequencies).



Spectral lines can be 
accounted for if we 
assume that a molecule 
emits a photon as it 
changes between 
discrete energy levels. 
Note that high-
frequency radiation is 
emitted when the 
energy change is large. 



• Balmer (1885): visible spectrum of atomic hydrogen
1/λ = RH(1/22 –1/n2), n = 3, 4,…; emprical expression
RH: Rydberg const (= 1.09678 x 105 cm-1)

Lyman: UV series, 1/λ = RH(1/12 –1/n2),
Paschen: IR, 1/λ = RH(1/32 –1/n2),



• Why lines? ⇒ Bohr (1913): Planck quantum hypothesis + classical 
mechanics

• Bohr’s hypothesis
(1) electron exist s in a discrete set of stable, stationary orbits in the atom

cf) perfect orbit: different from that in quantum mechanics
(2) transition between orbits: ΔE = hν → frequency ν = ΔE/h
(3) dynamical equilibrium between proton and electron

electrostatic attraction force = centrifugal force

(4) angular momentum of orbital: quantized





⇒ Energy is quantized

• Only explain hydrogen (one-electron) spectra
→ 1) fail to explain the spectra of atoms more than one electron

2) incorrect to regard the electrons in atoms as discrete particles with precise 
positions and velocities 


