
Appearance of Quantum Mechanics

Wave-particle duality

Schrödinger equation 

Born interpretation: normalization, quantization

Reading: Atkins, Ch. 8 (p. 249-260)



C.M. Exp.
electromagnetic radiation    “wave” → also “particle” characteristics
electron                              “particle” → also “wave” characteristics

(1) Particle characteristics of electromagnetic radiation
- spectrum: electromagnetic radiation of frequency ν possesses the energies of 

0, hν, 2hν → 0, 1, 2 particles, each particle having hν energy: “Photon”

e.g., yellow light (560 nm) of 100 W lamp in 0.1 s (efficiency 100 %)
→ number of photons: N = E/hν = Pt/h(c/λ) = 2.8 x 1020

(40 min → 1 mol photons)

- photoelectric effect: light energy = nhν → particle-like collisions of light

Wave-particle duality



(2) Wave characteristics of particles
- electron diffraction (Davisson & Germer Exp. (1925)): a characteristic 
property of waves

→ waves interfere constructively and destructively in different directions: 
wave-like property of electron, molecular hydrogen



- particle → wave-like
wave   → particle-like  ⇒ “wave-particle duality”

- 1924, Louis de Broglie (France) suggested that any particle travelling with a 
linear momentum p (=mv) should have a wavelength of

λ = h/p: de Broglie relation

- particle with high momentum → short wavelength
Macroscopic body: high momentum → wavelength are undetectably small: 
wave-like properties can not be observed

e.g., golf ball, 45 g, velocity 30 m/s → λ = 4.9 x 10-22 pm (no wave-like)

- wave-particle duality & quantized energy ⇒ new mechanics needed
(cf. Classical mechanics treated particles and waves as entirely separate entities)

de Broglie relation



- wave in new mechanics replaces classical concept of trajectory: rather than 
travelling along a definite path, a particle is distributed through space like a wave 
⇒ “wavefunction” (Ψ, psi) 

2πr = nλ = n(h/p) = n(h/mv)

mvr = n(h/2π) = n ħ

Momentum is quantized → Bohr interpretation

If wave does not match → disappear!!



- Schrödinger equation (1926): Austrian physicist

- He proposed an equation for finding the wavefunction of any system
- time-independent Schrödinger equation

particle mass m moving in 1-dimensional with energy E

V(x): potential energy of the particle at point x
E: total energy
ħ (h-cross or h-bar) = h/2π = 1.05457 x 10-34 Js

Schrödinger equation 





In general case, Schrödinger equation

HΨ = EΨ

H: hamiltonian operator

Time-dependent Schrödinger equation







- “wavefunction” contains all the dynamic information about the system
- Max Born: interpretation of the wavefunction in terms of the location of the 
particle
cf: the wave theory of light: square of amplitude of electromagnetic wave = 
intensity: probability of finding a photon in the region

1-D
- if particle has Ψ at x, the probability of finding the particle between x and x 
+ dx is proportional to ⎢Ψ⎢2dx

⎢Ψ⎢2dx = Ψ*Ψ if Ψ is complex: ⎢Ψ⎢2 “probability density”
Ψ: probability amplitude

3-D
Ψ at r → probability of finding the particle in dτ = dxdydz ⇒ ⎢Ψ⎢2dτ

Born interpretation of the wavefunction



- ⎢Ψ⎢2 > 0



(a) Normalization

Schrodinger equation → NΨ: all probability of the particle must be 1
→ possible to find “normalization constant” N

probability: (NΨ*)(NΨ)dx
⇒ N2∫Ψ*Ψdx = 1 ⇒ N = 1/[∫Ψ*Ψdx]1/2

where the integral is over all the space (from -∞ to +∞)

We can find N and ‘normalize’ the wavefunction
→ normalized wavefunction: ∫Ψ*Ψdx = 1 or ∫Ψ*Ψdτ = 1

dτ = dxdydz



in spherical polar coordinates, r, θ, φ
x = rsinθcosφ, y = r sinθsinφ, z = rcosθ
dτ = r2sinθdrdθdφ, r: 0 →∞, θ: 0 → π, φ: 0 → 2π





(b) Quantization

∫Ψ*Ψdτ = 1 ⇒ severe restrictions on the acceptability of wavefunctions
(i) Ψ must not be infinite anywhere
if it were ⇒ N∫Ψ*Ψ = ∞ = 1 ⇒ N∞ = 1 ⇒ N = 0 (x)

cf: acceptable: infinite Ψ over infinitesimal since ∫Ψ*Ψ is finite 
(infinitely high x infinetely narrow = finite area) e.g., a particle at a 
single, precise point



(ii) ⎢Ψ⎪2 = Ψ*Ψ: probability of finding the particle ⇒ wavefunction (Ψ) 
must be single-valued 

(iii) Ψ: 2nd-order differential equation ⇒ 2nd derivative should exist: Ψ
should be continuous 



1st derivative (slope) should also be continuous

-----------------------------------------
∴Ψ must be continuous, have a continuous slope, be single-valued, and be 

finite everywhere, cannot be zero everywhere (particle must be 
somewhere)

⇒ the energy of a particle is quantized (acceptable solutions of the 
Schrödinger equation for these severe restrictions at only certain energies)



Quantum Mechanical Principles 

Reading: Atkins, ch. 8 (p. 260-272)

- Information in wavefunction: probability density, eigenfunction &  

eigenvalue, operator, expectation value

- The uncertainty principle 

- Postulates of quantum mechanics



mass m particle, free to move parallel to x-axis with zero potential energy

The information in a wavefunction



(a) The probability density

if B = 0, Ψ = Aeikx

where is the particle? → Probability of finding the particle

⎪Ψ⎢2 = (Aeikx)*(Aeikx) = (A*e-ikx)(Aeikx) = ⎢A⎢2

equal probability of finding the particle 
→ cannot predict where we will find the particle

same if A = 0, ⎪Ψ⎢2 = ⎢B⎢2



if A = B, Ψ = A(e-ikx + eikx) = 2Acoskx
⎪Ψ⎢2 = 4⎢A⎢2cos2kx



(b) eigenvalues and eigenfunctions
total energy: k2 ħ2/2m = E = Ek + V(= 0) = Ek = p2/2m
⇒ p = k ħ = (2π/λ)(h/2π) = h/λ: de Broglie’s law
k: wave vector (= 2π/λ), independent of A, B

Schrödinger equation 

Hψ = Eψ

1-D,    H = 

H: Hamiltonian operator: carried out a mathematical operation on the function ψ
→ correspondence between hamiltonian operator and energy
→correspondence of operators and classical mechanical variables are 
fundamental to the quantum mechanics 

cf. 19 century mathematician William Hamilton



Mathematical operation on the function ψ

(operator)(function) = (constant factor) x (same function)
ΩΨ = ωΨ

Ψ: eigenfunction
ω: eigenvalue of the operator Ω

e.g., Hψ = Eψ; eigenvalue is the energy, eigenfunction is wavefunction
⇒ “solve the Schrodinger equation” = “find the eigenvalues and 
eigenfunctions of the hamiltonian operator for the system”



e.g., show that eax is an eigenfunction of the operator d/dx, find    
eigenvalue

eax2 ?

----------------------------
(operator)Ψ = (value of observable) x Ψ

observables: energy, momentum, dipole moment 

















if Ψ = Aeikx, px = +kħ : travelling to the right, but we cannot predict the 
position of the particle (⎢Ψ⎢2 = ⎢A⎢2)

if the momentum is specified precisely, it is impossible to predict the location 
of the particle

Heisenberg uncertainty principle
“It is impossible to specify simultaneously, with arbitrary precision, both the 

momentum and the position of a particle”

if we know a definite location, Ψ must be large there and zero everywhere 
else. To do so, an infinite number of linear combinations of wavefunctions
is needed 

The uncertainty principle 



→ perfect localization → lost all information about its momentum; 
completely unpredictable 



quantitatively, 
ΔpΔq ≥ ½ħ

( and ΔtΔE ≥ ½ħ) 

Δp: uncertainty in position along that axis
Δq: uncertainty in the linear momentum parallel to the axis q 

if Δq = 0 (exact position) → Δp = ∞
Δp = 0 → Δq = ∞



e.g., 1g particle, speed 1 x 10-6 m/s, minimum position uncertainty?

Electron in 2a0



General uncertainty principle: the Heisenberg uncertainty principle 
applies to any pair of observables called “complementary 
observables”

e.g., position & momentum

C.M.: position & momentum of a particle could be specified 
simultaneously with arbitrary precision
Q.M.: position and momentum are complementary



(1) Physical state of a particle at time t is fully described by a wavefunction
Ψ(x,t)

(2) Ψ(x,t), ∂Ψ(x,t)/∂x, ∂2Ψ(x,t)/∂x2 must be continuous, finite and single 
valued for all values of x

(3) Any quantity that is physically observable can be represented by a 
Hermitian operator. Hermitian operator is a linear operator F that satisfies

(4) 
Ψi: eigenfunction of F with eigenvalue fi

(5) average or expectation value <F>

The postulates of quantum mechanics (1-D) 

















(1) The Schrödinger equation is the equation for the wavefunction of a particle
(2) The Schrödinger equation can be formulated as an eigenvalue problem
(3) C.M. quantities are represented by linear operators in Q.M.
(4) Wavefunctions have a probabilistic interpretation
(5) Wavefunctions are normalized
(6) Average value, expectation is given by 

Summary 


