Appearance of Quantum Mechanics

Wave-particle duality

Schrödinger equation

Born interpretation: normalization, quantization

Reading: Atkins, Ch. 8 (p. 249-260)

Wave-particle duality

electromagnetic radiation $\underline{C.M.}$ $\underline{Exp.}$ electron"wave" \rightarrow also "particle" characteristics"particle" \rightarrow also "wave" characteristics

(1) Particle characteristics of electromagnetic radiation

- spectrum: electromagnetic radiation of frequency v possesses the energies of 0, hv, $2hv \rightarrow 0$, 1, 2 particles, each particle having hv energy: "**Photon**"

e.g., yellow light (560 nm) of 100 W lamp in 0.1 s (efficiency 100 %) \rightarrow number of photons: N = E/hv = Pt/h(c/ λ) = 2.8 x 10²⁰ (40 min \rightarrow 1 mol photons)

- photoelectric effect: light energy = $nh\nu \rightarrow particle$ -like collisions of light

(2) Wave characteristics of particles

- electron diffraction (Davisson & Germer Exp. (1925)): a characteristic property of waves

 \rightarrow waves interfere constructively and destructively in different directions: wave-like property of electron, molecular hydrogen

de Broglie relation

- particle \rightarrow wave-like wave \rightarrow particle-like \Rightarrow "wave-particle duality"

- 1924, Louis de Broglie (France) suggested that any particle travelling with a linear momentum p (=mv) should have a wavelength of

 $\lambda = h/p$: de Broglie relation

- particle with high momentum \rightarrow short wavelength Macroscopic body: high momentum \rightarrow wavelength are undetectably small: wave-like properties can not be observed

e.g., golf ball, 45 g, velocity 30 m/s $\rightarrow \lambda = 4.9 \text{ x } 10^{-22} \text{ pm}$ (no wave-like)

- wave-particle duality & quantized energy \Rightarrow **new mechanics** needed (cf. Classical mechanics treated particles and waves as entirely separate entities)

- wave in new mechanics replaces classical concept of trajectory: rather than travelling along a definite path, a particle is distributed through space like a wave \Rightarrow "wavefunction" (Ψ , psi)

 $2 \pi r = n\lambda = n(h/p) = n(h/mv)$

 $mvr = n(h/2 \pi) = n \hbar$

Momentum is quantized \rightarrow Bohr interpretation

If wave does not match \rightarrow disappear!!

Schrödinger equation

- Schrödinger equation (1926): Austrian physicist

- He proposed an equation for finding the wavefunction of any system
- time-independent Schrödinger equation particle mass <u>m</u> moving in 1-dimensional with energy E

V(x): potential energy of the particle at point x E: total energy \hbar (h-cross or h-bar) = $h/2\pi = 1.05457 \times 10^{-34} \text{ Js}$

3-D

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\Psi + V\Psi = E\Psi \qquad \nabla :del$$

$$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$
or in spherical symmetry

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\Lambda^{2} \qquad \Lambda : |ambda|$$

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\Lambda^{2} \qquad \Lambda : |ambda|$$

$$\frac{1}{r} = \frac{1}{sin^{2}\theta}\frac{\partial^{2}}{\partial q^{2}} + \frac{1}{sin\theta}\frac{\partial}{\partial \theta}(sin\theta, \frac{\partial}{\partial \theta})$$

$$\frac{x}{\sqrt{r}} = \frac{1}{r}sin\theta sin\varphi$$

In general case, Schrödinger equation

 $\mathbf{H}\boldsymbol{\Psi}=\mathbf{E}\boldsymbol{\Psi}$

H: hamiltonian operator

Time-dependent Schrödinger equation

cf) Derive Schrödinger equation
plane wave:
$$f = A \sin \frac{2\pi}{\lambda} (x - \upsilon t) = A \sin 2\pi (\frac{\pi}{\lambda} - \upsilon t)$$

general differential equation of wave motion in (-D
 $\frac{\partial^2 f}{\partial \chi^2} = -\frac{4\pi^2}{\lambda^2} f$, $\frac{\partial^2 f}{\partial t^2} = -4\pi^2 \upsilon^2 f$
partial differential equation of some simplified by the separation of
variables technique (to separate χ and t term)
 $\frac{\partial^2 f}{\partial \chi^2} = \frac{1}{\lambda^2} \frac{\partial^2 f}{\partial t^2} = \frac{1}{\sqrt{2}} \cdot \frac{\partial^2 f}{\partial t^2}$
 $f = \chi(x)T(t)$
 $\frac{\partial^2 f}{\partial \chi^2} = T(t) \frac{\partial^2 \chi(\chi)}{\partial \chi^2}, \quad \frac{\partial^2 f}{\partial t^2} = \chi(\chi) \cdot \frac{\partial^2 T(t)}{\partial t^2}$
 $T(t) \frac{\partial^2 \chi(\chi)}{\partial \chi^2} = \frac{1}{\sqrt{2}} \frac{\omega^2}{T(t)} \frac{\partial^2 T}{\partial t^2}$
 $\frac{1}{\sqrt{2}} \frac{\partial^2 \chi(\chi)}{\partial \chi^2} = \frac{1}{\sqrt{2}} \frac{\omega^2}{T(t)} \frac{\partial^2 T}{\partial t^2}$

$$\frac{\partial^{2} \chi(x)}{\partial x^{2}} + \frac{w^{2}}{v^{2}} \chi(0) = 0$$

$$w = \lambda \pi U = \lambda \pi \frac{V}{\lambda}, \quad \frac{w^{2}}{v^{2}} = \frac{4\pi^{2}}{v^{2}} \frac{v^{2}}{\lambda^{2}} = \frac{4\pi^{2}}{\lambda^{2}} \quad \leftarrow \text{ apply} \quad \text{de Bnglie relation}$$

$$= \frac{4\pi^{2}}{(h/p)^{2}} = \frac{4\pi^{2}}{h^{2}} \cdot p^{2} \quad \left(\leftarrow E = \frac{p^{2}}{2m} + V, \quad p = \sqrt{2m(E-V)}\right)$$

$$= \frac{4\pi^{2}}{h^{2}} \cdot 2m (E-V)$$

$$\text{time - independent} \qquad \qquad \chi \rightarrow U^{2} \text{ bit}_{x}$$

$$\frac{\partial^{2} \chi}{\partial x^{2}} + \frac{4\pi^{2}}{h^{2}} \cdot 2m (E-V) \chi = 0 \implies \frac{\partial^{2} U}{\partial x^{2}} + \frac{4\pi^{2}}{h^{2}} \cdot 2m (E-V) \Psi = 0$$

$$\therefore \quad \frac{\partial^{2} \Psi}{\partial x^{2}} + \frac{2m}{h^{2}} (E-V) \Psi = 0$$

Born interpretation of the wavefunction

- "wavefunction" contains all the dynamic information about the system

- Max Born: interpretation of the wavefunction in terms of the <u>location of the</u> <u>particle</u>

cf: the wave theory of light: square of amplitude of electromagnetic wave = intensity: probability of finding a photon in the region

1**-**D

- if particle has Ψ at x, the probability of finding the particle between x and x + dx is proportional to $|\Psi|^2 dx$

 $|\Psi|^2 dx = \Psi^* \Psi$ if Ψ is complex: $|\Psi|^2$ "probability density" Ψ : probability amplitude

3-D

 Ψ at r \rightarrow probability of finding the particle in $d\tau = dxdydz \Rightarrow |\Psi|^2 d\tau$

 $- |\Psi|^2 > 0$

(a) Normalization

Schrodinger equation \rightarrow N Ψ : all probability of the particle must be 1 \rightarrow possible to find "normalization constant" N

probability: $(N\Psi^*)(N\Psi)dx$ $\Rightarrow N^2 \int \Psi^* \Psi dx = 1 \Rightarrow N = 1/[\int \Psi^* \Psi dx]^{1/2}$

where the integral is over all the space (from $-\infty$ to $+\infty$)

We can find N and 'normalize' the wavefunction \rightarrow normalized wavefunction: $\int \Psi^* \Psi dx = 1$ or $\int \Psi^* \Psi d\tau = 1$

 $d\tau = dxdydz$

in spherical polar coordinates, r, θ , ϕ x = rsin θ cos ϕ , y = r sin θ sin ϕ , z = rcos θ d τ = r²sin θ drd θ d ϕ , r: 0 $\rightarrow \infty$, θ : 0 $\rightarrow \pi$, ϕ : 0 $\rightarrow 2\pi$

e.g. 8.4. (p.258) (e.g. 11.4)
Hydrogen atom,
$$\Psi \propto e^{-r/a^{\circ}}$$

 $\int \Psi^* \Psi dr = N^2 \int_0^{\infty} r^2 e^{-2r/a_{\circ}} dr \left(\int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\theta \right)$
 $= N^2 \cdot \frac{1}{4} a_0^3 \cdot 2 \cdot 2\pi = \pi a_0^3 N^2 = 1$
 $\therefore N = \left(\frac{1}{\pi a_0^3} \right)^{1/2}$
 $\therefore N = \left(\frac{1}{\pi a_0^3} \right)^{1/2}$
 $\therefore N = \left(\frac{1}{\pi a_0^3} \right)^{1/2}$

(b) Quantization

 $\int \Psi^* \Psi d\tau = 1 \Rightarrow \text{severe restrictions on the acceptability of wavefunctions}$ (i) Ψ must not be infinite anywhere if it were $\Rightarrow N \int \Psi^* \Psi = \infty = 1 \Rightarrow N \infty = 1 \Rightarrow N = 0$ (x)

cf: acceptable: infinite Ψ over infinitesimal since $\int \Psi^* \Psi$ is finite (infinitely high x infinetely narrow = finite area) e.g., a particle at a single, precise point

(ii) $|\Psi|^2 = \Psi^* \Psi$: probability of finding the particle \Rightarrow wavefunction (Ψ) must be single-valued

(iii) Ψ : 2nd-order differential equation \Rightarrow 2nd derivative should exist: Ψ should be continuous

1st derivative (slope) should also be continuous

- $\therefore \Psi$ must be continuous, have a continuous slope, be single-valued, and be finite everywhere, cannot be zero everywhere (particle must be somewhere)
- \Rightarrow the energy of a particle is quantized (acceptable solutions of the Schrödinger equation for these severe restrictions at <u>only certain energies</u>)

Quantum Mechanical Principles

Reading: Atkins, ch. 8 (p. 260-272)

- Information in wavefunction: probability density, eigenfunction &

eigenvalue, operator, expectation value

- The uncertainty principle
- Postulates of quantum mechanics

The information in a wavefunction

mass m particle, free to move parallel to x-axis with zero potential energy

(a) The probability density

if B = 0, $\Psi = Ae^{ikx}$ where is the particle? \rightarrow Probability of finding the particle

 $|\Psi|^{2} = (Ae^{ikx})^{*}(Ae^{ikx}) = (A^{*}e^{-ikx})(Ae^{ikx}) = |A|^{2}$

equal probability of finding the particle \rightarrow cannot predict where we will find the particle

same if A = 0, $|\Psi|^2 = |B|^2$

if A = B, $\Psi = A(e^{-ikx} + e^{ikx}) = 2A\cos kx$ $|\Psi|^2 = 4|A|^2\cos^2 kx$

(b) eigenvalues and eigenfunctions

total energy: $k^2 \hbar^2/2m = E = E_k + V(=0) = E_k = p^2/2m$ $\Rightarrow p = k \hbar = (2\pi/\lambda)(h/2\pi) = h/\lambda$: de Broglie's law k: wave vector (= $2 \pi / \lambda$), independent of A, B

Schrödinger equation

 $H\psi = E\psi$

1-D, H =

H: Hamiltonian operator: carried out a mathematical operation on the function ψ \rightarrow correspondence between hamiltonian operator and energy \rightarrow correspondence of operators and classical mechanical variables are fundamental to the quantum mechanics

cf. 19 century mathematician William Hamilton

Mathematical operation on the function $\boldsymbol{\psi}$

(operator)(function) = (constant factor) x (same function) $\Omega \Psi = \omega \Psi$

Ψ: eigenfunction ω: eigenvalue of the operator Ω

e.g., $H\psi = E\psi$; eigenvalue is the energy, eigenfunction is wavefunction \Rightarrow "solve the Schrodinger equation" = "find the eigenvalues and eigenfunctions of the hamiltonian operator for the system" e.g., show that e^{ax} is an eigenfunction of the operator d/dx, find eigenvalue

(operator) Ψ = (value of observable) x Ψ

observables: energy, momentum, dipole moment

(c) operators Ω : operator (Ω carat)

- · Position operator
- Momentum oper

$$\frac{10n \text{ operator:}}{\text{entum operator:}} \quad \chi = \chi \chi ()$$

$$\frac{1}{\beta_{2}} = \frac{1}{\beta_{2}} \frac{d}{dx} = -i\hbar \frac{d}{dx}$$

$$\hat{\beta_{2}} = \beta_{2} \psi, \quad \frac{1}{\lambda} \frac{d\psi}{dx} = \beta_{2} \psi$$

 \wedge

$$if B=0$$

$$\frac{f_{n}}{f_{n}} \frac{de}{dx} = \frac{f_{n}}{f_{n}} A \times ik e^{ikx} = kf_{n} A e^{ikx} = kf_{n} Q^{ikx}$$

$$P_{x} = +kf_{n} :+x - direction$$

$$if A=0, P_{x} = -kf_{n} : -x - direction$$

$$V = \frac{f_{n}}{f_{n}} \frac{de}{dx} = \frac{f_{n}}{f_{n}} \frac{de}{dx} = \frac{f_{n}}{f_{n}} \frac{de}{dx}$$

$$V = \frac{f_{n}}{f_{n}} \frac{de}{dx} = \frac{f_{n}}{f_{n}} \frac{f_{n}}{f_{n}} \frac{de}{dx} = \frac{f_{n}}{f_{n}} \frac{d^{2}}{dx}$$

Observe Name	ible Symbol	Symbol	Operator Operation
Position		Â R	Multiply by x Multiply by r
Momentum	p _x	₽ _x	$-i\hbar \frac{\partial}{\partial x}$
womentum	P_X	1 x	
	р	Ŷ	$-i\hbar\left(\mathbf{i}\frac{\partial}{\partial x}+\mathbf{j}\frac{\partial}{\partial y}+\mathbf{k}\frac{\partial}{\partial z}\right)$
Kinetic energy	K _x	Ŕ,	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$
	K	Ŕ	$-\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$
Potential energy	$U(x) \\ U(x, y, z)$	$\begin{array}{c} U(\hat{x}) \\ U(\hat{x}, \hat{y}, \hat{z}) \end{array}$	Multiply by $U(x)$ Multiply by $U(x, y, z)$
Total energy	E	Ĥ	$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$
			+ U(x, y, z)
Angular momentum	$l_x = yp_z - zp_y$	L_x	$-i\hbar\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)$
	$l_y = zp_x - xp_z \cdot$. Ē.,	$-i\hbar\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)$
	$l_z = xp_y - yp_x$, Ĺ,	$-i\hbar\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)$

TABLE 4-1 Classical-Mechanical Observables and Their Corresponding Quantum-Mechanical Operators

$$\begin{split} l_{x} &= -(\hbar/i)\{\sin\phi(\partial/\partial\theta) + \cot\theta\cos\phi(\partial/\partial\phi)\}\\ l_{y} &= (\hbar/i)\{\cos\phi(\partial/\partial\theta) - \cot\theta\sin\phi(\partial/\partial\phi)\}\\ l_{z} &= (\hbar/i)(\partial/\partial\phi). \end{split}$$

(d) Superpositions and expectation values

if
$$A=B$$

operate with Px
 $\frac{f}{dx} = \frac{2f}{dx} A \frac{d\cos kx}{dx} = -\frac{2kf}{dx} A \sin kx$
not an eigenvalue equation \rightarrow no definite value
Actually definite value
 \therefore cosine wavefth = linear combination of $e^{\frac{2kx}{dx}}$ and $e^{-\frac{2kx}{dx}}$
 \Rightarrow total wavefth is a sperposition of more than one wavefth !
 $U = V + Ve$ \Rightarrow equal probability
 $The -file = eigenfth$ of an operator

e.g.) Mean kinetic energy of a particle in 1-D

$$\langle E_k \rangle = \int \Psi^* \widehat{F}_k \Psi dz = -\frac{\hbar^*}{2m} \int \Psi^* \frac{d^* \Psi}{dx^2} dz$$

 $\langle r \rangle = \int \Psi^* \widehat{r} \Psi dz$
e.g.) If Ψ is an ergenfth of $\widehat{\Omega}$ with ergenvalue W ,
the expectation value of Ω is
 $\langle \Omega \rangle = \int \Psi^* \widehat{\Omega} \Psi dz = \int \Psi^* W \Psi dz = W \int \Psi^* \Psi dz = W$
If wavefth that is not an eigenfth of the operator \Longrightarrow
can be written linear combination of eigenfths
e.g.) Consider sum of two eigenfths
 $\langle \Omega \rangle = \int (G_1 \widehat{P}_1 + G_2 \widehat{\Psi}_2)^* \widehat{\Omega} (G_1 \widehat{\Psi}_1 + G_2 \widehat{\Psi}_2) dz$
 $= C_1^* C_1 W_1 W_1 dz + C_2^* G_2 W_2 \Psi^* \Psi_2 dz + \prod_{i=1}^{N_1} \prod_{i=1}^{N_2} \prod_{i=1}^$

The uncertainty principle

if $\Psi = Ae^{ikx}$, $p_x = +k\hbar$: travelling to the right, but we cannot predict the position of the particle ($|\Psi|^2 = |A|^2$)

if the momentum is specified precisely, it is impossible to predict the location of the particle

Heisenberg uncertainty principle

"It is impossible to specify simultaneously, with arbitrary precision, both the momentum and the position of a particle"

if we know a definite location, Ψ must be large there and zero everywhere else. To do so, an infinite number of linear combinations of wavefunctions is needed

 \rightarrow perfect localization \rightarrow lost all information about its momentum; completely unpredictable

```
quantitatively,
```

$\Delta p \Delta q \geq {}^{1}\!\!\!/_{2} \hbar$

(and $\Delta t \Delta E \ge \frac{1}{2}\hbar$)

 Δp : uncertainty in position along that axis Δq : uncertainty in the linear momentum parallel to the axis q

if $\Delta q = 0$ (exact position) $\rightarrow \Delta p = \infty$ $\Delta p = 0 \rightarrow \Delta q = \infty$ e.g., 1g particle, speed 1 x 10⁻⁶ m/s, minimum position uncertainty?

Electron in $2a_0$

General uncertainty principle: the Heisenberg uncertainty principle applies to any pair of observables called "**complementary observables**"

e.g., position & momentum

C.M.: position & momentum of a particle could be specified simultaneously with arbitrary precision Q.M.: position and momentum are complementary

The postulates of quantum mechanics (1-D)

- (1) Physical state of a particle at time t is fully described by a wavefunction $\Psi(x,t)$
- (2) $\Psi(x,t)$, $\partial \Psi(x,t)/\partial x$, $\partial^2 \Psi(x,t)/\partial x^2$ must be continuous, finite and single valued for all values of x
- (3) Any quantity that is physically observable can be represented by a Hermitian operator. Hermitian operator is a linear operator F that satisfies

(4)

 Ψ_i : eigenfunction of F with eigenvalue f_i

(5) average or expectation value <F>

(6) Quantum mechanical operator is constructed by the classical expression of x, p_x , t, E and converting the expression to an operator by means of following rules,

(operation) Expression for operator Classical variable Q.M. Operator x X X Pr tox tox Px t to di E E

(7) $\Psi(x,t)$ is a solution of time-dependent Schrödinger equation

$$\hat{H}(x,t) \psi(x,t) = \frac{i\hbar \partial \psi(x,t)}{\partial t}$$
where, $\hat{H} = Hamiltonian operator$

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x,t)$$

Operator: fundamental in Q.M.

(1) commute \rightarrow in Q.M., many operators <u>do not commute</u> cf: uncertainty principle

$$\begin{split} \begin{bmatrix} \widehat{A}, \widehat{B} \end{bmatrix} &= \widehat{A} \cdot \widehat{B} - \widehat{B} \cdot \widehat{A} \\ \text{When } \begin{bmatrix} \widehat{A}, \widehat{B} \end{bmatrix} &= 0 \quad \text{"commute"} \\ e.g.). \quad \widehat{f}(x) = x^2, \quad \text{operator} \quad \frac{d}{dx} \\ \frac{d}{dx} \widehat{f}(x) &= \frac{d}{dx} x^2 = 2x \\ \widehat{dx} \quad \widehat{f}(x) = \frac{d}{dx} x^2 = 2x \\ \widehat{O}_2 = \frac{d}{dx}, \quad \widehat{O}_1 = x, \quad \widehat{f}(x) = x^2 \\ \text{Then } \widehat{O}_1 \cdot \widehat{O}_2 \cdot \widehat{f}(x) = x \cdot \frac{d}{dx} x^2 = 2x \\ \widehat{O}_2 \cdot \widehat{O}_1 \cdot \widehat{f}(x) = x \cdot \frac{d}{dx} x^2 = 3x^2 \quad \text{"do not commute"} \end{split}$$

(2) linear operation \rightarrow Q.M: deal with linear operators

$$\widehat{O}[c_if_i(x) + c_if_2(x)] = c_i\widehat{O}f_i(x) + c_i\widehat{O}f_2(x)$$

$$(\cdot,q)_{i} = \int_{dx} \frac{d}{dx} \left[c_{i}f_{i}(x) + c_{i}f_{i}(x) \right] = c_{i} \frac{df_{i}(y)}{dx} + c_{i} \frac{df_{i}(x)}{dx}$$
"linear"

ii)
$$SQR(square)$$

 $SQR(cifi(x)+cifi(x))=cifi(x)+cifi(x)+2cicifi(x)f_1(x))$
 $\mp cifi(x)+cifi(x))=cifi(x)+cifi(x)+2cicifi(x)f_1(x))$

(3) Hermitian operator: Q.M. operators must be hermitian operators: Operators generally are complex quantities but certainly the eigenvalues must be real quantities (experimental measurement)

if
$$\langle F \rangle$$
 is to be real, $\langle F \rangle = \langle F \rangle^*$
 $\langle F \rangle = \int_{\infty}^{\infty} \psi^* \hat{F} \psi dx = \langle F \rangle^* = \int_{\infty}^{\infty} \psi (\hat{F} \psi)^* dx$
Then \hat{F} : "Hermitian operator"
 $\Rightarrow expectation value is real$
e.g.) $i = \frac{d}{dx}$, $\int_{-\infty}^{\infty} f^* \frac{d}{dx} f dx = fif^* \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f \cdot \frac{df^*}{dx} dx$
 $\Rightarrow \int_{-\infty}^{\infty} f^* \frac{d}{dx} f dx = -\int_{-\infty}^{\infty} f \frac{d}{dx} f^* dx$ "not Hermitian"
 $\hat{\rho}: -i\hbar \frac{d}{dx}$ "Hermitian"

More general definition of a Hermitian operator

$$\int_{-\infty}^{\infty} \Psi^* \hat{F} \Psi_2 dx = \int_{-\infty}^{\infty} \Psi_2 \hat{F}^* \Psi_1^* dx$$

$$\stackrel{\text{ff}}{=} \int e^* \hat{F} \Psi_2 dx = \int g \hat{A}^* g^* dx$$

$$\stackrel{\text{ff}}{=} \int e^* \hat{F} \Psi_2 dx = \int g \hat{A}^* g^* dx$$

$$\stackrel{\text{how let }}{=} \int f \hat{A}^* f^* dx , \int g^* \hat{A} g dx = \int g \hat{A}^* g^* dx$$

$$\stackrel{\text{how let }}{=} \Psi = c_1 f + c_2 g$$

$$\int (c_1^* f^* + c_2^* g^*) \hat{A} (c_1 f + c_2 g) dx = \int (c_1 f + c_2 g) \hat{A}^* (c_1^* f^* + c_2^* g^*) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g dx + C_2^* (f g^* \hat{A} f dx) = C_1 C_2^* \int (f \hat{A}^* g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^*) dx = C_1 C_2^* \int (f \hat{A}^* g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^*) dx = C_1 C_2^* \int (f \hat{A}^* g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^*) dx = C_1 C_2^* \int (f \hat{A}^* g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^* dx = C_1 C_2^* \int (f \hat{A}^* g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A}^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

$$\stackrel{\text{Gif}}{=} \int e^* \hat{A} g - g \hat{A} f^* f^* dx = C_1 C_2^* \int (f \hat{A} g^* - g^* \hat{A} f) dx$$

(4) orthogonal: the eigenfunctions of hermitian operators are orthogonal

$$\int \psi_{i}^{*} \psi_{i} dz = 1 \quad \text{Normalized}$$

$$\int \psi_{i}^{*} \psi_{j} dz = 0 \quad \text{Orthogonal}$$

$$\Rightarrow \int \psi_{i}^{*} \psi_{j} dz = \delta_{ij}, \quad \delta_{ij} = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}$$

$$Knonecker delta$$

- (1) The Schrödinger equation is the equation for the wavefunction of a particle
- (2) The Schrödinger equation can be formulated as an eigenvalue problem
- (3) C.M. quantities are represented by linear operators in Q.M.
- (4) Wavefunctions have a probabilistic interpretation
- (5) Wavefunctions are normalized
- (6) Average value, expectation is given by