Molecular Structure

Ch. 11 (7판 Ch. 14)

Techniques of approximation (ch. 9, pp 310-) (7판 ch.12, pp 355-)

Born-Oppenheimer approximation

- **Valence-bond theory**
- **Molecular orbital theory**
- **Molecular orbitals for polyatomic systems**

Approximation Methods

He (Z = 2), $E \propto Z^2$

Table. Ground state energies of He atom by various methods

Method	Energy/au	lonization energy/au
Perturbation calculations		
Complete neglect of the inter- electronic repulsion term	- 4.00	2.00
First-order perturbation theory	- 2.75	0.75
Second-order perturbation theory	- 2.91	0.91
Thirteenth-order perturbation theory ^b	- 2.90372433	0.904
Variational calculations		
$(1s)^2$ with $\zeta = 1.6875$	- 2.8477	0.848
$(ns)^2$ with $\zeta = 1.61162$ n = 0.995	- 2.8542	0.854
Hartree-Fock ^e	-2.8617	0.862
Hylleras, ⁴ 10 parameters	- 2.90363	0.904
Kinoshita," 39 parameters	- 2.9037225	0.904
Pekeris, 1078 parameters	- 2.903724375	0.904

^a These are nonrelativistic, fixed-nucleus-approximation energies. Corrections for nuclear motion and relativistic corrections can be estimated to be about 10^{-4} au. The experimental result for the energy is -2.9033 au.

^bC. W. Scheer and R. E. Knight, Rev. Mod. Phys. 35, 426 (1963).. ...

4 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. Phys. 32, 186 (1960).

4 E. A. Hylleras, Z. Physik 54, 347 (1929).

* T. Kinoshita, Phys. Rev. 105, 1490 (1957).

^f C. L. Pekeris, Phys. Rev. 115, 1216 (1959).

1. Perturbation theory

$$\begin{split} \hat{H}^{(o)} \Psi^{(o)} &= E^{(o)} \Psi^{(o)} : \text{ exactly solved} \\ \rightarrow \hat{H} \Psi = E \Psi , \text{ where } \hat{H} = \hat{H}^{(o)} + \hat{H}^{(1)} \\ \text{assume } \hat{H}^{(1)} \text{ is small} \\ \Psi = \Psi^{(o)} + \Delta \Psi , E = E^{(o)} + \Delta E \Rightarrow \hat{H} \Psi = E \Psi \\ \hat{H}^{(o)} \Psi^{(o)} + \hat{H}^{(i)} \Psi^{(o)} + \hat{H}^{(i)} \Psi = E^{(o)} \Psi^{(o)} + \Delta E \Psi^{(o)} + E^{(o)} \Psi + \Delta E A \Psi \\ \psi = E^{(o)} \Psi^{(o)} + \hat{H}^{(i)} \Psi^{(i)} = E^{(i)} \Psi^{(i)} + \Delta E \Psi^{(i)} + E^{(i)} \Psi + \Delta E A \Psi \\ \hat{H}^{(i)} \Psi + \hat{H}^{(i)} \Psi^{(i)} = E^{(i)} A \Psi + \Delta E \Psi^{(i)} : \text{ ist order perturbation} \\ \text{multiply } \Psi^{(o)*} \text{ and integrate} \\ S \Psi^{(o)*} [\hat{H}^{(o)} - E^{(o)}] \Delta \Psi dz + S \Psi^{(o)} \hat{H}^{(i)} \Psi^{(o)} dz = \Delta E S \Psi^{(i)*} \Psi^{(o)} dz \\ \vdots E = E^{(o)} + S \Psi^{(o)*} \hat{H}^{(i)} \Psi^{(o)} dz + \text{ higher order term} \end{split}$$

e.g., particle-in-a-box

 $\psi^{(o)} = \left(\frac{2}{\alpha}\right)^{k_{2}} \sin \frac{m \epsilon x}{\alpha}, \quad E^{(o)} = \frac{m^{2}h^{2}}{8ma^{2}}$ $\hat{H}^{(1)} = \frac{V}{\alpha} \times$ $\Rightarrow \Delta E = \int_{0}^{a} \psi^{(0)*}\left(\frac{\sqrt{x}}{a}\right) \psi^{(0)} dx = \frac{2V}{a^{2}} \int_{0}^{a} x \sin^{2} \frac{m\pi x}{a} dx$ $= \frac{a^2}{4} \cdot \frac{2V}{a^2} = \frac{V}{2}$: $E = \frac{n^2 h^2}{Rma^2} + \frac{V}{2}$, M = 1, 2, 3...

2. Variation method

ground state :
$$\hat{H}\psi_0 = E_0\psi_0$$

 $E_0 = \frac{5\psi_0^*\hat{H}\psi_0\,dz}{5\psi_0^*\psi_0\,dz}$
arbitramy wavefunction or "trial function"
 $E\varphi = \frac{5\varphi^*\hat{H}\varphi\,dz}{5\varphi^*\wp\,dz}$
 $\Rightarrow E\varphi \ge E_0$
 \therefore minimized $E\varphi = E_0$
 $\stackrel{\longrightarrow}{=} \frac{\partial E\varphi}{\partial c} = 0 \implies c =$

1

.

$$\frac{\partial E}{\partial C_{1}} = 0 \quad (\text{Minimizing})$$

$$(2C_{1}S_{11} + 2C_{2}S_{12}) E + \frac{\partial E}{\partial C_{1}} (C_{1}^{2}S_{11} + 2C_{1}C_{2}S_{12} + C_{2}^{2}S_{22}) = 2C_{1}H_{11} + 2C_{2}H_{12}$$

$$C_{1}(H_{11} - ES_{11}) + C_{2}(H_{12} - ES_{12}) = 0$$

$$\frac{\partial E}{\partial C_{2}} = 0 \implies C_{1}(H_{12} - ES_{12}) + C_{2}(H_{22} - ES_{22}) = 0$$

$$\implies |H_{11} - ES_{11} + H_{12} - ES_{12}| = 0$$

$$F_{12} - ES_{12} + H_{22} - ES_{22}| = 0$$

$$Secular determinant$$

$$\begin{vmatrix} a & b \end{vmatrix} = 0 \Rightarrow ad - bc = 0$$

Greneral

$$\begin{vmatrix}
H_{II}-ES_{II} & \cdots & H_{NI}-ES_{NI} \\
\vdots & \vdots & \vdots \\
H_{IN}-ES_{IN} & \cdots & H_{NN}-ES_{NN}
\end{vmatrix} = 0$$
orthonormal: $S_{i,i} = 1$, $S_{i,j} = 0$

$$\begin{vmatrix}
H_{II}-E & H_{I2} & \cdots & H_{IN} \\
H_{21} & H_{22}-E & \vdots & \vdots \\
\vdots & \ddots & \vdots & \vdots \\
H_{NI} & H_{NN}-E
\end{vmatrix} = 0$$

e.g., particle-in-a-box

$$if a = 1$$

$$\hat{H} = -\frac{\hbar^{2}}{200}\frac{d^{2}}{dx^{2}} + Vx \quad 0 \le x \le 1$$

$$\hat{H} = -\frac{\hbar^{2}}{200}\frac{d^{2}}{dx^{2}} + Vx \quad 0 \le x \le 1$$

$$\Rightarrow M_{11} = \int_{0}^{1} dx \Psi_{1} \hat{H} \Psi_{1} = \frac{\pi^{2}\hbar^{2}}{10} \int_{0}^{1} dx \sin^{2}\pi x + 2V \int_{0}^{1} dx \cdot x \sin^{2}\pi x = \frac{\hbar^{2}}{gm} + \frac{V}{2}$$

$$H_{122} = \frac{\hbar^{2}}{200} + \frac{V}{2}, \quad H_{12} = -\frac{16V}{9\pi^{2}}$$

$$S_{11} = S_{22} = 1, \quad S_{12} = S_{21} = 0$$

$$\Rightarrow \left| \frac{\hbar^{2}}{8m} + \frac{V}{2} - E - \frac{16V}{9\pi^{2}} \right| = 0 \Rightarrow E = \frac{\hbar^{2}}{gm} + \frac{V}{2}$$

Molecular Structure 1

Reading: Atkins, Ch. 14.

- Question: Why molecule forms?

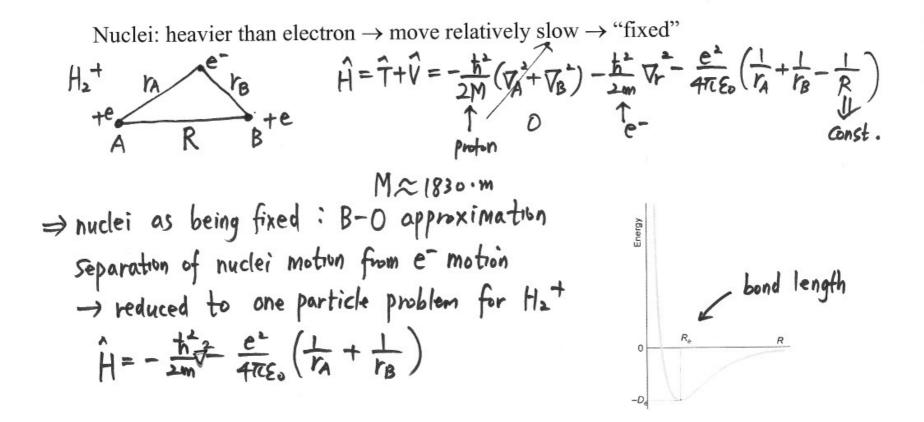
Shape? H_0H 0=c=0Bond strength? N=N 0=0 H-H

- Quantum mechanical theories \rightarrow Molecular electronic structure

(1) **Valence-bond theory**: shared electronic pair $\rightarrow \sigma, \pi$ -bond, promotion, hybridization....

(2) Molecular orbital theory: extended from atomic orbital \rightarrow solid properties, conduction, semiconductor....

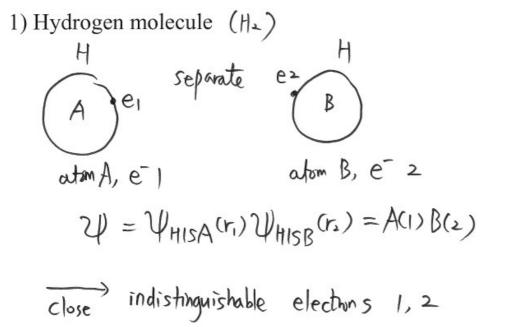
1. Born-Oppenheimer approximation

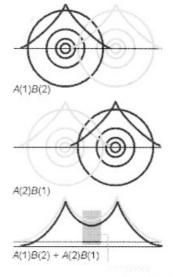


2. Valence-bond theory

- widely used in chemistry, especially organic compound: spin-pair, σ , π -bond, promotion, hybridization

- pairing of the electrons: accumulation of electron density in the internuclear region from pairing





$$\Delta E_{\pm} = \frac{J \pm k}{1 \pm S^{2}}$$

$$S: overlap integral, J: Coulomb integral
J, k: negative
$$\Delta E_{\pm}: stable \text{ chemical bond}$$

$$I_{\pm}: stable \text{ chemical bond}$$

$$(: E \text{ is less than that of two} \text{ iso lated H-atoms}$$

$$\Psi_{\pm} = A(1)B(2) \pm A(2)B(D) \text{ has} \text{ lower } E \text{ than } \Psi_{\pm}$$

$$V_{\pm} = V_{\pm}$$

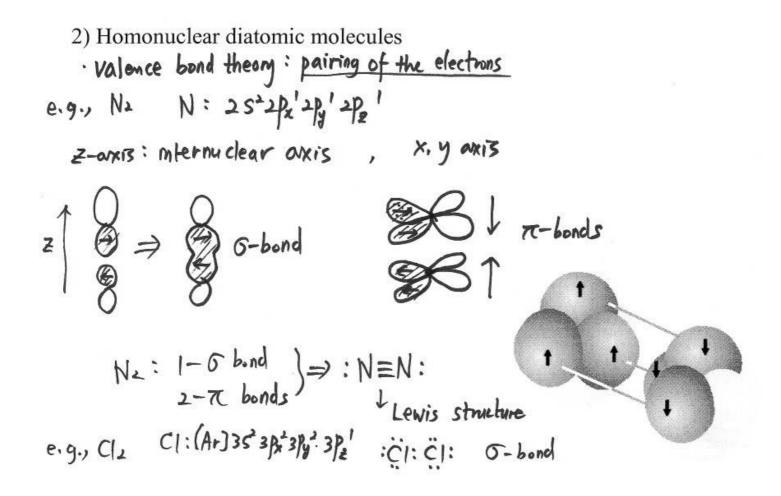
$$V_{\pm} = V_{\pm}$$

$$V_{\pm} = V_{\pm}$$

$$V_{\pm} = V_{\pm}$$

$$V_{\pm} = V_{\pm}$$$$

- the role of electron spin



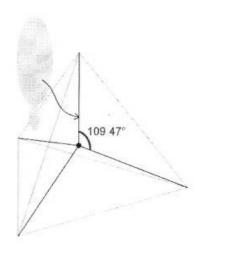
3) Polyatomic molecules

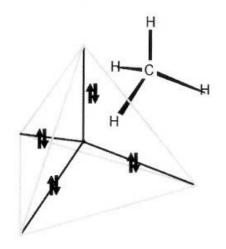
$$-H_2O \quad 0: \underline{2S^2p_x^2 + 2p_y^2 + 2p_z^2} \leftrightarrow 2H |S$$

 $-NH_3 \quad N: \underline{2S^2p_x^2p_y^2 + 2p_z^2} \leftrightarrow 3H |S$
 $-CH_4 \quad C: \underline{2S^2p_x^2p_y^2 \rightarrow 2bonds}, actual 4 bonds?$

- (i) Promotion $C: 2s^2 2p_1^2 2p_1' \rightarrow 2s^2 2p_2' 2p_2' : 4 \text{ unpaired electons } + 4H_{1s} \Rightarrow CH_4$ $35: p \leftrightarrow s, 4H_{1s} \Rightarrow ?$
- (ii) Hybridization: formation of hybrid orbital → equal electron density distribution

 CH_4





Ethene,
$$CH_2 = CH_2$$
, Sp^2 hybrid orbitals
(planar)
 $2S'^2 p'_x 2ly' \begin{pmatrix} h_1 = S + \sqrt{2}p_y \\ h_2 = S + \left(\frac{3}{2}\right)^k p_x - \left(\frac{l}{2}\right)^k p_y \\ h_3 = S - \left(\frac{3}{2}\right)^k p_x - \left(\frac{l}{2}\right)^k p_y \\ 2p_z : unhybridized \rightarrow \pi-bond His$

Table 14.1. Some hybridization schemes

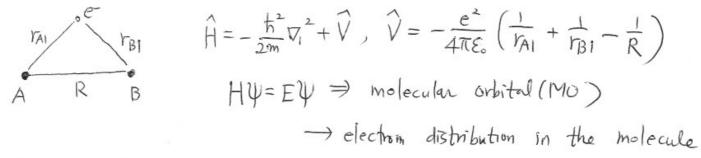
Coordination number	Arrangement	Composition
2	Linear Angular	sp,pd,sd sd
3	Trigonal planar Unsymmetrical planar Trigonal pyramidal	sp ² , p ² d spd pd ²
4	Tetrahedral Irregular tetrahedral Square planar	sp^3, sd^3 spd^2, p^3d, pd^3 p^2d^2, sp^2d
5	Trigonal bipyramidal Tetragonal pyramidal Pentagonal planar	$sp^{3}d, spd^{3}$ $sp^{2}d^{2}, sd^{4}, pd^{4}, p^{3}d^{2}$ $p^{2}d^{3}$
6	Octahedral Trigonal prismatic Trigonal antiprismatic	sp^3d^2 spd^4, pd^5 p^3d^3

*Source: H. Eyring, J. Walter, and G.E. Kimball, Quantum chemistry. Wiley (1944).

3. Molecular orbital theory

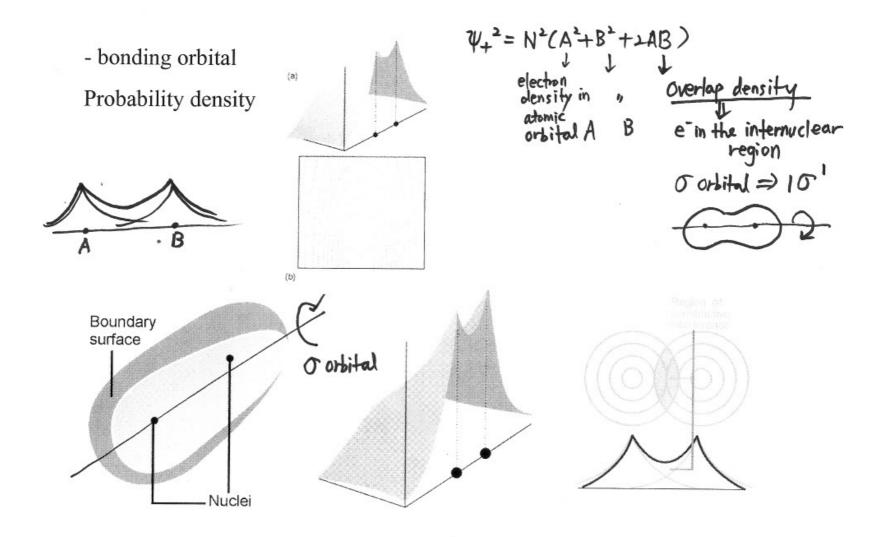
- Electron should not be regarded as belonging to particular bonds but should be treated as spreading throughout the entire molecule.

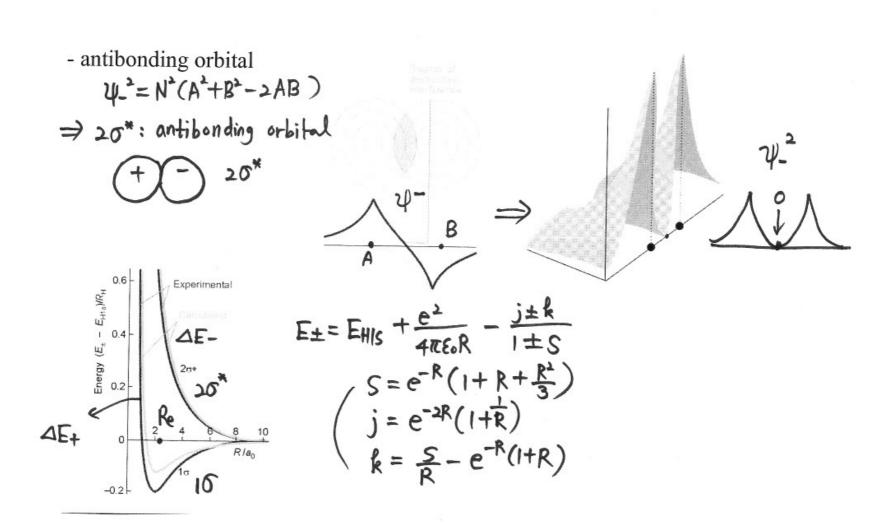
1) Hydrogenic molecule-ion, H_2^+



- linear combinations of atomic orbitals (LCAO)

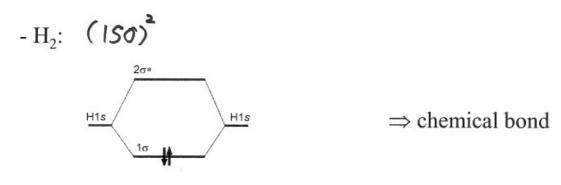
 $\begin{array}{l} \mathcal{Y}_{\pm} = N(A \pm B), \quad A: \mathcal{Y}_{HISA}, \quad B: \mathcal{Y}_{HISB} \quad : LCAO-MO \\ \text{Normalized} \quad \mathcal{Y}_{\pm} : \quad S\mathcal{Y}^*\mathcal{Y}_{\pm} = I = N^2 \left\{ SA^2 dz + SB^2 dz + 2 SAB dz \right\} = N^2 (1 + I + 2S) \\ N = \sqrt{\frac{1}{N^2 (1 + S)}} \quad \text{ where } S = SAB dz \\ \mathcal{Y}_{\pm} : \quad N = \frac{1}{\sqrt{2(1 + S)}} \end{array}$



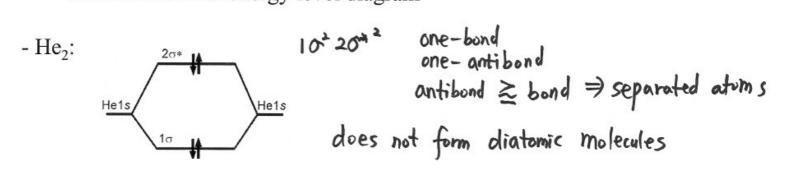


2) Diatomic molecules

 build up many electron molecules using H₂⁺ molecular orbitals "molecular configuration"



molecular orbital energy level diagram



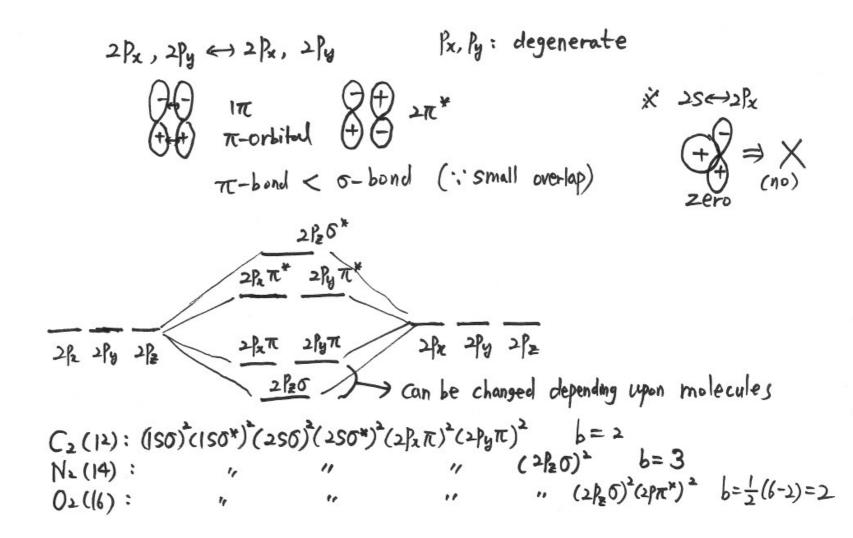
-bond order
$$b = \frac{1}{2}(m-m^*)$$
 $n: \# of electrons in bonding orbitals
 $H_2 \Rightarrow b = 1$
 $H_2 \Rightarrow b = 0$
 $b^{\dagger} \longrightarrow \text{ shorter the bond, greater bond strength}$
Table 14.2° Bond lengths
Table 14.2° Bond lengths$

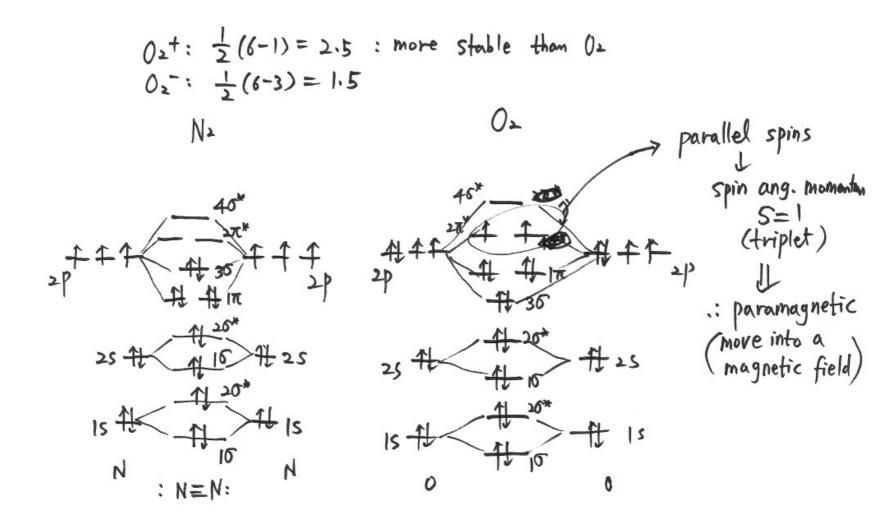
Table 14.2* Bond lengths		Table 14	4.3" Bond dissociation energies			
Bond	Order	R _e /pm		Bond	Order	$D_{\rm e}/({\rm kJmol^{-1}})$
нн	1	74.14		нн	1	432.1
NN	3	109.76		NN	3	941.7
HCI	1	127.45		HCI	1	427.7
CH	1	114		CH	1	435
CC	1	154		CC	1	368
CC	2	134		CC	2	720
cc	3	120		CC	3	962

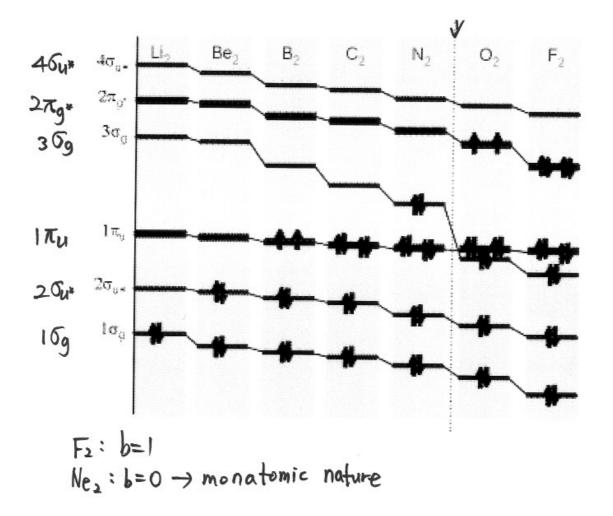
Bond	Order	$D_{\rm e}/({\rm kJmol^{-1}})$

Bond	Order	$D_{\rm e}/({\rm kJmol}$		
нн	1	432.1		
NN	3	941.7		
HCI	1	427.7		
CH	1	435		
CC	1	368		
CC	2	720		
CC	3	962		

25↔25=	10,	20*	:	Y= CA2S YA2S + CB2S YB2S
$2 P_z \leftrightarrow 2 P_z$	Θ	Ŧ9-	Z :	⇒ 35, 40*
. –	298	2/2		Y= CA2P2 UA2P2 + CB2P2 UB2P2







3) Heteronuclear diatomic molecules e.g., CO, HCl

- inbalance electron distribution: polar bond

$$HF: e^{-} pair: close to the F$$

 $\rightarrow partial negative change(S)$
- Polar bonds $2e^{-} polar bond \Psi = C_{A} + C_{B} B$
 $Polar bonds 2e^{-} polar bond (A+B), (A=0, CB=1)$
 $Polar bon$

- Electronegativity (
$$\chi$$
): charge distribution in bonds
(i) Pauling electronegativity (Valence bond argument)
: a measure of the power of an atom to attract electrons when it is
part of a compound
 $|\chi_A - \chi_B| = 0.102 \{ D(A-B) - \frac{1}{2} [D(A-A) + D(B-B)] \}^{1/2}$, D: bond dissociation E
 χ_P 2.2 2.6 3 3.4 4.0 3.1 0.79
 $most$ least
 $\Delta \chi^{\uparrow} \rightarrow greater polan bond$
ex) $HF: \Delta \chi = 1.78$ polan, C-H: 0.51 nonpolar
(ii) Mulliken electronegativity (χ_M)
 $\chi_M = \frac{1}{2} (I + Eea)$ higher unitate $E \rightarrow \chi^{\uparrow}$
 $\chi_P = 1.35 \chi_M^{1/2} - 1.37$

- <u>Variation principle</u>: if an arbitrary wavefunction is used to calculate the energy, the value calculated is never less than the true energy

trial function
$$\Psi = GA + GBB$$

=) secular determinant
 $\begin{vmatrix} d_{A}-E & \beta-ES \\ \beta-ES & d_{B}-E \end{matrix} = 0$
 $\beta-ES & d_{B}-E \end{matrix} = 0$
 $f = H_{12}$
 $S = \int AB dz = S_{1j}$
• Homonyclear diatomic molecule: $d_{A}=dB$
 $\begin{vmatrix} d_{-E} & \beta-ES \\ \beta-ES & d_{-E} \end{vmatrix} = (d-E)^{2} - (\beta-ES)^{2} = 0$
 $\begin{vmatrix} d_{-E} & \beta-ES \\ \beta-ES & d_{-E} \end{vmatrix} = (d-E)^{2} - (\beta-ES)^{2} = 0$
 $\vdots E_{\pm} = \frac{d\pm\beta}{1\pm S}$
 $E_{\pm}: \text{ lower } E: \text{ bonding MO}$
 $E_{\pm}: \text{ upper } E: \text{ antibording MO}$

> bond polarity -> find the coefficients in the linear combination

Normalized
$$\int \Psi^{2} dz = Ca^{2} + CB^{2} + 2CACBS = 1$$
,
 $E_{+} = \frac{d+\beta}{1+S}$, $C_{A} = \frac{1}{\{2(1+S)\}^{1/2}}$, $C_{B} = C_{A}$
 $E_{-} = \frac{d-\beta}{1-S}$, $(A = \frac{1}{\{2(1-S)\}^{1/2}}$, $C_{B} = -C_{A}$
bonding orbital $\Psi_{+} = \frac{A+B}{\{2(1+S)\}^{1/2}}$ and then $L_{J}^{2} = \frac{A-B}{\{2(1-S)\}^{1/2}}$
 $\cdot \frac{heterogeneous}{\beta} \frac{diatomic}{diatomic} \frac{molecule}{but}$, but with $S = 0$
 $\left| \begin{array}{c} d_{A}-E \\ \beta \end{array} \right|_{B} = (d_{A}-E)(d_{B}-E) - \beta^{2} = 0$

$$if \int (zeta) = \frac{1}{2} \arctan \frac{2|\beta|}{dg^2 dA} \qquad (cf. anctan x = tan^{-1}x)$$

$$\Rightarrow E = dA - \beta \cot \beta, \quad \psi = -A \sin \beta + \beta \cos \beta$$

$$E + = dB + \beta \cot \beta, \quad \psi = A \cos \beta + B \sin \beta$$

$$|dA - dB| \quad f \rightarrow \beta \downarrow, \quad \beta <<1 \rightarrow almost pure B, pure A$$

$$\frac{e.g.}{A - B} \qquad e.g. 14.5 \quad S \text{ orbital in } HF, \quad if \quad \beta = -1.0 eV$$

$$HIs: 13.6 eV, \quad F2p: 18.6 eV$$

$$dA = -13.6 eV, \quad dF \cong -18.6 eV$$

$$tan 2\beta = 0.4 \Rightarrow \beta = 10.9^{\circ}$$

$$\Rightarrow E_{-} = -13.4 eV, \quad \psi_{-} = 0.98 \psi_{H} - 0.19 \psi_{F}$$

$$E_{+} = -18.8 eV, \quad \psi_{+} = 0.19 \psi_{H} + 0.98 \psi_{F}$$

4. Molecular orbitals for polyatomic systems

The Hückel approximation

· Butadiene : Y= CA+CBB+CCC+CDD

$$\begin{vmatrix} \alpha - E & \beta_{AB} - ES_{AB} & \beta_{AC} - ES_{AC} & \beta_{AD} - ES_{AD} \\ \beta_{BA} - ES_{BA} & \alpha - E & \beta_{BC} - ES_{BC} & \beta_{BD} - ES_{BD} \\ \beta_{CA} - ES_{CA} & \beta_{CB} - ES_{CB} & \alpha - E & \beta_{CD} - ES_{CD} \\ \beta_{DA} - ES_{DA} & \beta_{DB} - ES_{DB} & \beta_{DC} - ES_{DC} & \alpha - E \end{vmatrix} = 0$$
Complicated?

The Hückel approximation

1. All overlap integrals are set equal to zero : all diagonal elements d-E2. All resonance integrals between non-neighbors \rightarrow zero off-diagonal blum neighborg 3. All remaining resonance integrals $\rightarrow \beta$ (equal) f atoms : β

$$-\frac{\text{Ethene}}{\begin{vmatrix} d-E \\ \beta \\ d-E \end{vmatrix}} = (d-E)^{2} - \beta^{2} = 0 \qquad \text{E}_{\pm} = d^{\pm}\beta \qquad \begin{pmatrix} +: \text{ bonding combination } (\beta < 0) \\ -: \text{ anti-} & \ddots \\ \end{pmatrix}$$

$$\frac{2\pi^{\#}}{\pi} \frac{d^{-}\beta}{d^{+}\beta} \qquad (22p)$$

$$\frac{2\pi^{\#}}{\pi} \frac{d$$

- Butadiene

$$\begin{vmatrix} z - E & \beta & 0 & 0 \\ \beta & z - E & \beta & 0 \\ 0 & \beta & z - E & \beta \\ 0 & 0 & 0 & z - E \end{vmatrix} = 0$$

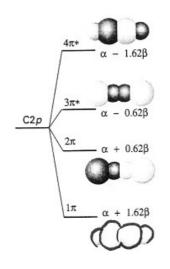
$$= (\alpha - E) \begin{vmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} - \beta \begin{vmatrix} \beta & \beta & 0 \\ 0 & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix}$$
$$= (\alpha - E)^2 \begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} - \beta(\alpha - E) \begin{vmatrix} \beta & \beta \\ 0 & \alpha - E \end{vmatrix}$$
$$- \beta^2 \begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} + \beta^2 \begin{vmatrix} 0 & \beta \\ 0 & \alpha - E \end{vmatrix}$$
$$= (\alpha - E)^4 - (\alpha - E)^2 \beta^2 - (\alpha - E)^2 \beta^2 - (\alpha - E)^2 \beta^2 + \beta^4$$
$$= (\alpha - E)^4 - 3(\alpha - E)^2 \beta^2 + \beta^4 = 0$$

With $x = (\alpha - E)^2 / \beta^2$, the expanded determinant has the form of a quadratic equation $x^2 - 3x + 1 = 0$

The roots are x = 2.62 and 0.38. Therefore, the energies of the four LCAO-MOs are

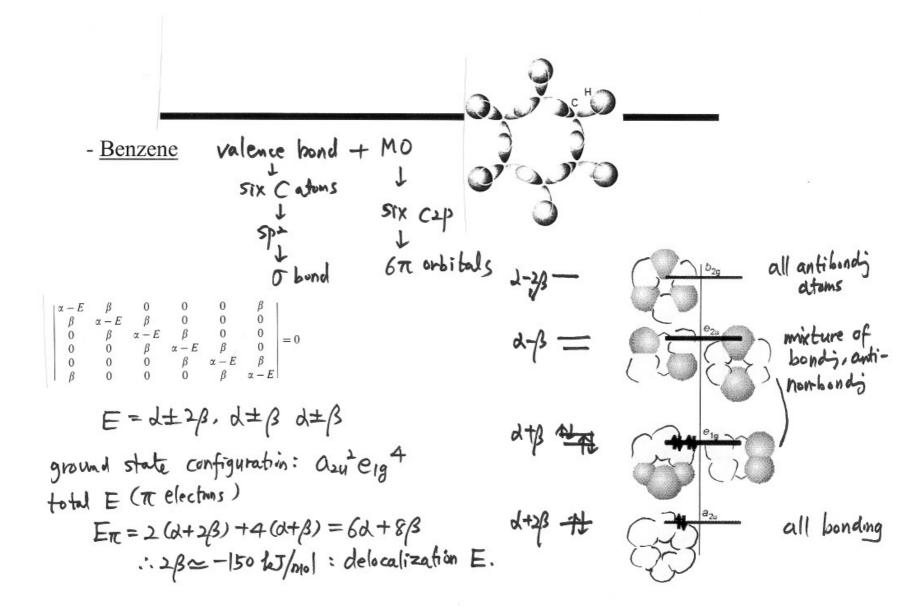
$$E = \alpha \pm 1.62\beta, \qquad \alpha \pm 0.62\beta$$

: E= d± 1.62B, d±0.62B



- Cyclobutadiene

now A-D are neighbors:
not 0, but
$$\beta$$
 when $x = \left(\frac{d-E}{\beta}\right)^2$, $x(x-4) = 0$
 $\begin{vmatrix} x-E \beta & 0 \beta \\ \beta & d-E \beta & 0 \\ 0 & \beta & d-E \beta \end{vmatrix} = 0$
 $E = d+2\beta$, d , d , $d-2\beta$
 $2e^{-} = 2e^{-}$
 e^{-}
 $\beta & 0 \beta & d-E \end{vmatrix}$
 $f = 0$
 $f = 2d+2\beta$, d , d , $d-2\beta$
 $2e^{-} = 2e^{-}$
 $f = 0$
 $f = 0$



Extended Hückel theory (ETH)

1. ETH includes σ and π orbitals: not confined to conjugated hydrocarbons 2. ETH does not ignore overlap: calculate all the overlap integrals \rightarrow matrix S

Diagonal elements of the hamiltonian matrix (α terms of Hückel theory): set equal to the negative of the ionization energy of the atom (H: 13.60 eV)

Off-diagonal elements (β and 0 of Hückel theory): assume to be proportional to the overlap integral

$$H_{ij} = \frac{1}{2}KS_{ij}(H_{ii} + H_{jj})$$

K: constant (= 1.75)

 $S^{-1}HC = CE$ $C^{-1}S^{-1}HC = E$

Population analysis: where is the e⁻ density in a molecule? $\Psi = c_A \Psi_A + c_B \Psi_B \rightarrow \Psi^2 = c_A^2 \Psi_A^2 + c_B^2 \Psi_B^2 + 2c_A c_B \Psi_A \Psi_B \rightarrow 1 = c_A^2 + c_B^2 + 2c_A c_B S_{AB}$ Atomic population: $Q_A = c_A^2$ overlap population: $Q_A = 2c_A c_B^2$

Atomic population: $\rho_i = c_i^2$, overlap population: $\rho_{ij} = 2c_i c_j S_{ij}$

ETH: inability to predict correct 3-D structures

Self-consistent field calculations (SFC)

(a) Hartree-Fock equations Many-electron wavefunction which satisfy the Pauli principle

(b) semi-empirical and *ab initio* methods

The integrals estimated by experimental data The *ab initio* methods: calculate all the integrals → complete neglect of differential overlap (CNDO) Gaussian type orbital (GTO) (c) Density functional theory (DFT)

To focus the electron density (ρ), rather than waveftn Ψ \rightarrow energy of molecule is ftn of ρ (E(ρ)) & ρ is ftn f position (ρ (r))

(d) Graphical output

Isodensity surface