II. Assembled Nanostructure of Polymers

Chapter 5. The Amorphous State

- 5.1 The Amorphous Polymer State
- 5.2 Experimental Evidence Regarding Amorphous Polymers
- 5.3 Conformation of the Polymer Chain
- 5.4 Macromolecular Dynamics

Chapter 6. The Crystalline State

- 6.1 Crystallinity, Nucleation and Growth
- 6.2 Spherulitic Crystallization of Polymers from the Melt
- 6.3 Induced Crystallization by Pressure and Stress
- 6.4 Extended Chain Crystallization of Flexible Polymer Chains
- 6.5 Extended Chain Crystallization of Rigid Macromolecules

II. Assembled Nanostructure of Polymers

Chapter 7. Polymers in the Liquid Crystalline State

- 7.1 Definition of Liquid Crystal
- 7.2 Liquid Crystalline Mesophases
- 7.3 Liquid Crystal Classification
- 7.4 Thermodynamics and Phase Diagrams

Chapter 8. Polymers in the Hyperstructures

- 8.1 Microstructure Based on Block Copolymers
- 8.2 A Closer Look at Microstructure
- 8.3 Applications of Copolymers

Chapter 5. The Amorphous State

- 5.1. The Amorphous Polymer State
- 5.2. Experimental Evidence Regarding Amorphous Polymers
 - 5.2.1. Short-range interactions in amorphous in polymers
 - 5.2.2. Long-range interactions in amorphous polymers
- 5.3. Conformation of the Polymer Chain
 - 5.3.1. The freely jointed chain
 - 5.3.2. The random coil

Appendix - Various Models for Defining Polymer Chains

- 5.4. Macromolecular Dynamics
 - 5.4.1. The Rouse-Bueche theory
 - 5.4.2. The de Gennes reptation theory
 - 5.4.3. Nonlinear Chains

Chapter 5. The Amorphous State

Introduction – "polymeric glass" and "amorphous"

- Many of the plastics produced on a large scale for consumer applications exist under application conditions, at least partially, in what is commonly called the *glassy state*.
- A polymer glass is a solid that has been described as one marked by a relatively random, or amorphous, arrangement of macromolecular chains.
- All polymers share this definition, but they often have very different properties.
- What then is the influence of the molecular structure of the chains on the macroscopic properties of these materials?
- What degree, or level, of structural information is necessary for the prediction
 of macroscopic properties?

X What is amorphous?

- In general, amorphous species are characterized by the absence of long range order; the arrangement of atomic positions is disordered such as in a liquid.
- What is the difference between an amorphous solid and a liquid, and which of these two states does a polymer fit into?
- The best known theoretical treatment to describe the glassy state are based upon equilibrium thermodynamics.

" each microscopic structural unit of the glass must lie at a position of static equilibrium, the totality of which is randomly distributed. If one such exists there must be a large number of similar random structures of equal energy. Nevertheless, the entropy of each is zero, because all the structures are mutually inaccessible. - Cohen, M. H., Turnbull, D. *Nature*, **203** (1964) 964."

- \rightarrow The glassy state is viewed as a metastable instead of instable state.
- \rightarrow The glass is viewed as a solid which has frozen-in liquid-like disorder.

5.1. The Amorphous Polymer State

5.1.1. Solids and Liquids

crystalline polymer	amorphous polymer
regular or ordered	disordered
1st-order melting	no melting
solid becomes liquid-like above T _m	solid becomes liquid-like above T_{a}

5.1.2. Possible Residual Order in Amorphous Polymers?

The chains appear to lie parallel (i.e. orderly) for short runs because of spacefilling requirements, permitting a higher density. \Rightarrow on debating

Questions of interest to amorphous state

- 1) the design of critical experiments concerning the shape of the polymer chain
- 2 the estimation of type and extent of order or disorder
- 3 the development of models suitable for physical and mechanical applications.

Characterize amorphous polymers

- () in short-range interactions ($\langle 20 \text{ Å} \rangle$
- (> 20 Å) in long-range interactions (> 20 Å)

Methods	Information Obtainable	Principal Findings	Methods	Information Obtainable	Principal Findings
A. Short-Range Interactions			B. Long-Range Interactions		
Stress-optical coefficient	Orientation of segments in isolated chain	Orientation limited to 5–10 Å	Small-angle neutron scattering	Conformation of single chains	Radius of gyration the same in melt as in θ -solvents
Depolarized light-scattering	Segmental orientation correlation	2–3 — CH ₂ — units along chain correlated	Electron microscopy	Surface inhomogeneities	Nodular structures of 50200 Å in diameter
Magnetic birefringence	Segmental orientation correlation	antal orientation Orientation correlations overy small	Electron diffraction and	Amorphous halos	Bundles of radial dimension = 25 Å and
Raman scattering	Trans and gauche populations	Little or no modification in chain conformation initiated by intermolecular forces	wide-angle x-ray diffraction		axial dimension = 50 A, but order may extend to only one or two adjacent chains
NMR	Relaxation times	Small fluctuating		<i>C.</i> (General
Small-angle Density Amorphous polymers X-ray scattering variations highly homogeneous; thermal fluctuations predominate	Enthalpy relaxation	Deviations from equilibrium state	Changes not related to formation of structure		
	Density	Packing of chains	Density in the amorphous state is about 0.9 times the density in the crystalline state		

Table 5.1 Selected studies of the amorphous state

5.2.1. Short-range interactions in amorphous in polymers

- Short-range Interactions
- A. Method that measure the orientation or correlation of mers along the *axial direction* of a chain
- B. Method that measure the order between chains in the radial direction

Fig.5.1 Schematic diagram illustrating the axial and radial correlation direction.

- Some measurement methods of the orientation in the axial direction
 - Kuhn segment length ⁻
 - Persistence length
 - Birefringence

* Birefringence

: If a substance is anisotropic, which means that it has different properties in different directions, it will be doubly refracting or birefringent (when transparent).

: one of the most powerful experimental method of determining the order in the axial direction

in two directions 90° apart.

- For stretching at 450 to the polarization directions, the fraction of light transmitted $T = \sin^2 \left(\frac{\pi d \Delta n}{\lambda_0} \right)$ where d : sample thickness, λ_0 : wavelength of light in vacuum
 - \rightarrow By measuring the transmitted light quantitatively, the birefringence is obtained.
- Relation between the birefringence and the orientation of molecular units such as mers, crystals, or even chemical bonds.

$$\Delta n = \frac{2\pi}{9} \frac{(\bar{n}^2 + 2)^2}{\bar{n}} \sum_i (b_1 - b_2)_i f_i$$

where b_1-b_2 : polarizability along and perpendicular to the axes of such units.

- \overline{n} : average refractive index
 - f_i : an orientation function of such units

$$f_i = \frac{3\cos^2\theta_i - 1}{2}$$

For Fibers and Films $\theta=0^{\circ}$: perfect orientation $\theta=54^{\circ}$: Zero orientation

e.g. Nylons or Rayons $\theta \simeq 5^{\circ}$

where θ_i is the angle that the symmetry avis of the unit makes w, r ,t the stretching direction

Stress-optical coefficient(SOC)

: the retractive stress is directly proportional to the degree of orientation, which in turn is directly proportional to the birefrigence.

: for uniaxial tension, the birefrigence and the retractive stress (σ) are related by the simple equation.

C : the stress optical coefficient.

: depends on the chemical structure and temperature

$$C = \frac{2\pi(\alpha_{\parallel} - \alpha_{\perp})}{45} \frac{(\overline{n}^2 + 2)^2}{\overline{n}kT}$$

 $n_{\parallel} - n_{\perp} = C\sigma$

where $\alpha = \frac{\alpha}{\overline{n}}$ difference in polarizability of a polymer segment : average refractive index (\overline{n} = n of the unoriented polymer)

 \rightarrow The change in birefringence that occurs when an amorphous polymer is deformed yields important information concerning the state of order in the amorphous solid.

Depolarized light-scattering (DPS)

: the intensity of scattered light is measured when the sample is irradiated by visible light : the sample is held between crossed Nicols.

N.B. Nicole prism : A prism made of calcite once widely used for polarizing light and analyzing plane-polarized light.

 \rightarrow Studies on DPS on n-alkane liquids reveals that there is a critical chain length of 8~9 carbons, below which there is no order in the melt.

 For longer chains, only 2~3 -CH₂- units in one chain are correlated with regard to their orientation, indicating an extremely weak orientational correlation.

- Other Methods
- 1) Rayleigh Scattering : elastically light-measure scattering angle.
- 2) Brillouin Scattering : a Doppler effect-yields small shift in freq.
- 3) Raman Scattering : inelastic scattering-shift in wavelength

5.2.2. Long Range Interactions in Amorphous Polymers

5.2.2.1. Small-Angle Neutron Scattering (Remind Ch 2.2)

$$\frac{Hc}{R(\theta) - R(Solvent)} = \frac{1}{M_w P(\theta)} + 2A_2c$$

→ See Eqn. 3.44 and Appendix 2.2-4

where

w: the sample-detector distance

 $R(\theta) = \frac{I_{\theta}w^2}{I_0V_s}$: Rayleigh's ratio

 V_s : the scattering volume

 I_{θ}/I_{0} : the scattering intensity of the solvent or lack initial intensity

(N.B. the scattering intensity of the solvent or background must be subtracted.)

 $P(\theta)$: scattering form factor

=1 for very small particles or molecules.

- A deuterated polymer is dissolved in an ordinary hydrogen-bearing polymer of the same type
- The background to be subtracted originates from the scattering of the protonated species and the coherent scattering originates from the dissolved deuterated species

H : optical const. =
$$\frac{N_a}{M_p^2} \left[a_s \left(\frac{V_p}{V_s} \right) - a_p \right]^2 \rightarrow \text{See Ch 2.2 eqn. 3.54}$$

M_p: 'mer' molecular weight

 a_p , a_s : coherent neutron scattering lengths of the polymer 'mer' and solvent

the coherent intensity in SANS : described by the cross section, dΣ/dΩ → probability that a neutron will be scattered in a solid angle Ω per unit volume of the sample.
 : normally used to express the neutron scattering power of a sample.
 : identical with the quantity R(θ)

$$\frac{C_N}{d\Sigma/d\Omega} = \frac{1}{M_w P(\theta)}$$

$$C_N = \frac{(a_H - a_p)^2 N_p \rho (1 - X) X}{M_p^2}$$

 a_{H} , a_{D} : the scattering length of a normal protonated and deuterated (labeled) structural unit(mer),

: calculated by adding up the scattering lengths of each atom in the mer.

X : the mole fraction of labeled chains

in high dilution-solution, $(1-X)X \simeq 0$

By rearrangement of the equation

$$\left(\frac{d\Sigma}{d\Omega}\right)^{-1} = \frac{1}{C_N M_w} \left(1 + \frac{K^2 R_g^2}{3} + \cdots\right)$$

• From the Zimm plot of $[d\Sigma/d\Omega]^{-1}$ vs. K² ($K = \frac{4\pi}{\lambda} \sin \frac{\theta}{2}$: wave vector)

Table 5.4 Molecular dimensions in bulk polymer samples.

	$\left(R_g^2/M_w\right)^{1/2}\frac{\text{\AA}\cdot\text{mol}^{1/2}}{g^{1/2}}$				
Polymer	State of Bulk	SANS Bulk	Light-Scattering θ -Solvent	SAX	
Polystyrene	Glass	0.275	0.275	0.27 (i)	
Polystyrene	Glass	0.28	0.275	_	
Połyethylene	Melt	0.46	0.45		
Polyethylene	Melt	0.45	0.45	_	
Poly(methyl methacrylate)	Glass	0.31	0.30		
Poly(ethylene oxide)	Melt	0.45	1 	·	
Poly(vinyl chloride)	Glass	0.30	0.37		
Polycarbonate	Glass	0.457		—	

- $\left(\frac{R_g^2}{M_w}\right)^{\frac{1}{2}}$: values in θ -solvent and in the bulk state : are <u>identical within experimental error</u>.

 $L \rightarrow$ theoretically this should be true since under these conditions the polymer chain in the form of random coils is unable to distinguish between a solvent molecule and a polymer segment with which it may be in contact.

 \rightarrow random coils can also exist in the bulk amorphous state.

 $(\theta$ -solvent : the conformation of the chain is unperturbed because the $\Delta G(P-S)$ and the $\Delta G(P-P)$ are all the same.)

 \rightarrow See Ch 2.2.2.5

5.2.2.2. Electron and X-ray Diffraction

 Amorphous materials, including ordinary liquids, gives much more diffuse (or halos) diffraction.

: For low-molecular-weight liquids, the diffuse halos \rightarrow the nearest-neighbor spacings are slightly irregular, and after two or three molecular spacings all sense of order is lost.

: For polymers having long chains, questions to be resolved center about

- ① Whether or not chains lie parallel for some distance,
- 2 If so, to what extent.
- X-ray diffraction studies (wide-angle X-ray scattering, or WAXS)

: The analysis is made by comparing experimental and calculated scattering by means of reduced intensity function, *si*(s), rather than total intensity, since the features are more evenly weighted in the former.

Fig.5.3 WAXS data on polytetrafluorethylene:

(a) experimental data and (b) theory.

Model is based on a disordered helix arranged with fivefold packing in a 24- \mathring{A} diameter cylinder.

• $si(s) = kI(s) - \Sigma f^2(s)$ where s = $4\pi \sin\theta/\lambda$, k : scaling factor to electron units, Σf^2 : independent scattering from a repeat unit \rightarrow Refer to *Faraday Discuss. Chem. Soc.*, 1979, 68, 46

- The 1st scattering maximum
 → chain spacing distance
 - $s = 4\pi \sin\theta/\lambda$
- nλ=2dsinθ (Bragg's law)
- We can obtain the d spacing of polymer chains

- The triangluar nature of the peak at ≈ 3.0 Å⁻¹ is indicative of long segments in a trans-type conformation. → Appendix 5.1
- The semi-empirical energy calculations and evaluation of solution properties predict a chain based on four states (t⁺, t⁻, g⁺, g⁻) which has a weighted average aspect ratio of all-*trans* segments of ≈ 3. [Macromolecules, 1 (1968) 12]
- The packing density of a cylinder to enclose such an all-*trans* disordered segment is ≈ 0.8
- The two dimensional packing fraction of the cylinders of course depends on the " softness " assumed, but a reasonable value, taking the packing density of the melt as ≈ 0.52, would be 0.52/0.8 (= 0.65).
- A comparison of this with values derived from the computer simulations of disc packing, indicates a non-crystalline structure. [J. Colloid Interface Sci., 56 (1976) 483]
- For PE, the two-dimensional packing fraction required is ≈ 0.87, which could only be accounted for by some form of defective crystalline packing.
- In analyzing WAXS data, two different molecular directions must be borne in mind
- (a) Conformational orientation in the axial direction, which is a measure of how ordered or straight a given chain might be
- (b) organization in the radial direction, which is a direct measure of intermolecular order.

5.2.2.3. General Properties

- Two of the most important general properties of the amorphous polymers
- ① Density : approximately 0.85~0.95 that of crystalline phase.
- 2 The excess free ε due to non-attainment of equilibrium.
 - : mostly smooth changes on relaxation and annealing

Table 5.6 Major order-disorder arguments in amorphous polymers

Order	Disorder
Conceptual difficulties in dense packing without order (a, b)	Rubber elasticity of polymer networks (e, f)
Appearance of nodules (b, c)	Absence of anomalous thermodynamic dilution effects (g)
Amorphous halos intensifying on equatorial plane during extension (d)	Radii of gyration the same in bulk as in θ -solvents (h)
Nonzero Mooney–Rivlin C_2 constants (a)	Fit of $P(\theta)$ for random coil model to scattering data (i)
Electron diffraction (1) lateral order to 15–20 Å	Rayleigh–Brillouin scattering, X-ray diffraction (j, k), stress–optical coefficient, etc. studies showing only modest (if any) short-range order (j, k, m, n)

- One of the great classic problem in polymer science has been determination of the conformation of the polymer chain in space
- The resulting models are important in deriving equations for viscosity, diffusion, rubbery elasticity, and mechanical behavior.

5.3.1. The Freely Jointed Chain

♦ Consider a flexible polymer of n+1 backbone atoms A_i (with $0 \le i \le n$)

 The end-to-end vector is the sum of all n bond vectors in the chain

$$\overrightarrow{R_n} = \sum_{i=1}^n \overrightarrow{r_i}$$

The average end-to-end vector

$$\left\langle \overrightarrow{R_n} \right\rangle = 0$$

* The ensemble average <> denotes an average over all possible states of the system

The simplest non-zero average is the mean-square end-to-end distance

$$\left\langle R^{2} \right\rangle \equiv \left\langle \overrightarrow{R_{n}^{2}} \right\rangle = \left\langle \overrightarrow{R_{n}} \cdot \overrightarrow{R_{n}} \right\rangle = \left\langle \left(\sum_{i=1}^{n} \overrightarrow{r_{i}} \right) \cdot \left(\sum_{i=1}^{n} \overrightarrow{r_{i}} \right) \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle \overrightarrow{r_{i}} \cdot \overrightarrow{r_{j}} \right\rangle$$

• If all bond vectors have the same length $l = |\vec{r_i}|$, the scalar product can be represented in terms of the angle Θ_{ij} between bond vector $\vec{r_i}$ and $\vec{r_j}$ $\vec{r_i} \cdot \vec{r_j} = l^2 \cos \theta_{ij}$

The mean-square end-to-end distance becomes a double sum of average cosines

$$\langle R^2 \rangle = \sum_{i=1}^n \sum_{j=1}^n \langle \vec{r_i} \cdot \vec{r_j} \rangle = l^2 \sum_{i=1}^n \sum_{j=1}^n \langle \cos \theta_{ij} \rangle$$

• In the freely jointed chain model, $l = |\vec{r_i}|$ and $\langle \cos \theta_{ij} \rangle = 0$ $\langle R^2 \rangle = nl^2$

 For any bond vector i, the sum over all other bon vector j converges to a finite number, denote by C_i'

$$C'_{i} \equiv \sum_{j=1}^{n} \left\langle \cos \theta_{ij} \right\rangle$$

$$\langle R^2 \rangle = l^2 \sum_{i=1}^n \sum_{j=1}^n \langle \cos \theta_{ij} \rangle = l^2 \sum_{i=1}^n C'_i = C_n n l^2$$

The coefficient C_n, called *Flory's characteristic ratio*, is the average value of the constant C_i' over all main-chain bonds of the polymer

$$C_n = \frac{1}{n} \sum_{i=1}^n C'_i \quad \Rightarrow \text{An infinite chain : } \mathbf{C}_{\infty}$$

 The equivalent freely jointed chain has the same mean-square end-to-end distance <R²> and same maximum end-to-end distance R_{max}, but has N freely jointed effective bonds of length b (called the *Kuhn length*).

Equivalent bonds (Kuhn monomers) of length

$$b = \frac{\langle R^2 \rangle}{R_{\text{max}}} = \frac{C_{\infty}nl^2}{R_{\text{max}}}$$

Example :

Calculate the Kuhn length b of a polyethylene chain with C_{∞} =7.4, main- chain bond length l=1.54 Å, and bond angle Θ =68°.

Substituting the maximum end-to-end distance from $R_{max} = nl \cos \frac{\theta}{2}$ determines the Kuhn length

$$b = \frac{C_{\infty}l^2n}{nl\cos(\theta/2)} = \frac{C_{\infty}nl^2}{\cos(\theta/2)}$$

 $R_0 = \sqrt{\langle R^2 \rangle} = bN^{1/2}$: The root mean-square end-to-end distance

5.3.2. The Random Coil (remember that of Ch.2.2)

: the unperturbed shape of the polymer chain in both dilute solutions and in the bulk amorphous state.

In dilute solutions

: under Flory θ -solvent conditions, the polymer-solvent interactions and the excluded volume terms just cancel each other.

In the bulk amorphous state

: the mers are surrounded entirely by identical mers, and the sum of all the interactions is zero.

- The end-to-end distances for random coils : $r^2 = 6R_g^2$ (See Ch.2.2 Radius of Gyration)
- The most important result is that, for random coils, there is a wall-defined maximum in the frequency of the end-to-end distances → r₀

Various Models for Defining Polymer Chains

Models for Flexible Polymer Chains

Model	<r²></r²>	Comments
Mathematician's Ideal Random Coil	<r²>=n/²</r²>	Freely jointed chain model n bonds each of length /
Chemist's Real Chain θ : fixed	$ \left\langle r^2 \right\rangle = nl^2 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right) \left(\frac{1 + \left\langle \cos \phi \right\rangle}{1 - \left\langle \cos \phi \right\rangle} \right) $ $ \left\langle r^2 \right\rangle_{\theta} = nl^2 C_{\infty} $ $ \left\langle r^2 \right\rangle = nl^2 C_{\infty} \alpha^2 $ $ \alpha^2 = \frac{\left\langle r^2 \right\rangle}{\left\langle r^2 \right\rangle_{\theta}} $	 RIS (Rotational Isomeric State) model Allow preferred bond angles and preferred rotation angles about main chain bonds Characteristic ratio takes into account all local steric interactions Factor α takes into account solvent quality and long range chain self-intersections
Physicist's Universal Chain	<r²>=Nb² N: # of statistical segments, b: statistical segment length, b= /C_∞</r²>	C_{∞} is incorporated into Kuhn length b.

Models for Flexible Polymer Chains

(a) (b) H H trans $\varphi_i = 0^\circ$ gauche₊ $\varphi_i = 120^\circ$ \vec{r}_{i-1} H (d) FJC: Freely Jointed Chain H C_{i-2} ΔE FRC: Freely Rotating Chain **HR: Hindered Rotation** -1200 gauche_ gauche_ trans **RIS: Rotational Isomeric State** φ_i (degrees) FJC **Models** FRC HR **RIS** Fixed Fixed Fixed Fixed Bond length I Fixed Fixed Bond angle θ Free Fixed Torsion angle Φ Free Free Controlled by $V(\Phi)$ t, g+, g-Next Φ Yes Yes Yes No independent? $\left(\frac{1-\cos\theta}{1+\cos\theta}\right)\left(\frac{1+\langle\cos\phi\rangle}{1-\langle\cos\phi\rangle}\right)$ $\left(\frac{1-\cos\theta}{1+\cos\theta}\right)$ $1 - \cos\theta$ C_{∞} 1

FJC (Freely Jointed Chain)

$$\left\langle r^{2} \right\rangle = \left\langle \vec{r}_{1,n} \cdot \vec{r}_{1,n} \right\rangle = \left\langle \sum_{i=1}^{n} l_{i} \cdot \sum_{j=1}^{n} l_{j} \right\rangle$$

$$= \left\langle (l_{1} \cdot (l_{1} + l_{2} + l_{3} \cdots) + l_{2} \cdot (l_{1} + l_{2} + l_{3} + \cdots) + \cdots) \right\rangle$$

$$= \left\langle \left| \begin{array}{ccc} l_{1} \cdot l_{1} & l_{1} \cdot l_{2} & l_{1} \cdot l_{3} & \cdots & l_{1} \cdot l_{n} \\ l_{2} \cdot l_{2} & l_{2} \cdot l_{2} & & \\ & & \ddots & \\ l_{n} \cdot l_{2} & & & l_{n} \cdot l_{n} \\ \end{array} \right| \right\rangle$$

$$= \left\langle \left| \begin{array}{ccc} l^{2} & 0 & 0 & \cdots & 0 \\ 0 & l^{2} & & & \\ 0 & & \ddots & & \\ 0 & & & & l^{2} \\ \end{array} \right| \right\rangle$$

$$= nl^{2}$$

FRC (Freely Rotating Chain)

$$\begin{split} l_i \cdot l_{i+1} &= l^2 (-\cos\theta) \\ l_i \cdot l_{i+2} &= l^2 (-\cos\theta)^2 \\ \vdots \\ l_i \cdot l_{i+m} &= l^2 (-\cos\theta)^m \\ \\ \left\langle r^2 \right\rangle &= l^2 \left\langle \begin{vmatrix} 1 & -\cos\theta & (-\cos\theta)^2 & \cdots & (-\cos\theta)^{n-1} \\ -\cos\theta & 1 & -\cos\theta \\ (-\cos\theta)^2 & -\cos\theta & 1 \\ & & & 1 \end{vmatrix} \right| \\ &= n l^2 \left(\frac{1 - \cos\theta}{1 + \cos\theta} \right) \end{split}$$

bond length I, bond angle θ : fixed

torsion angles rotation is taken to be hindered by a potential $U(\Phi)$

The probability of any value of the torsion angle Φ is taken to be proportional to the Boltzmann factor exp(-U(Φ)/kT)

$$\langle r^2 \rangle = n l^2 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right) \left(\frac{1 + \langle \cos \phi \rangle}{1 - \langle \cos \phi \rangle} \right)$$

$$\left\langle \cos\phi\right\rangle = \frac{\int \cos\phi \exp(-U(\phi)/kT)d\phi}{\int \exp(-U(\phi)/kT)d\phi}$$

RIS (Rotational Isomeric State)

bond length I, bond angle θ : fixed

For relatively high barrier btn *trans* and *gauche* states, the value of the torsion angles Φ are close to the minima. (t, g+, g-)

In RIS model, each molecule is assumed to exist only in discrete torsional states corresponding to the potential energy minima.

RIS (Rotational Isomeric State)

Solvent Quality and Chain Dimensions

$$\alpha^2 = \frac{\langle r^2 \rangle}{\langle r^2 \rangle_{\theta}}$$

Solvent Quality Factor

Physicist's Universal Chain

Coarse grained model of N Kuhn steps

Fewer and larger steps

$$\langle r^2 \rangle = Nb^2$$

5.3.3. Models of Polymer Chains in the Bulk Amorphous State

Fig 5.5 Models of the amorphous state in pictorial form.

(a) P. J. Flory

(c) G. S. Y. Yeh

/ P. Privalko and (d)

(a) Flory's random coil model

- (b) Privalko and Lipatov randomly folded chain conformation
- (c) Yeh's folded-chain fringed micellar model
- (d) Pechhold's meander model

→ For details, see Appendix 5.1 in the text book

(b) V. P. Privalko and Y. S. Lipatov

(d) W. Pechhold

Polymer motion can take two forms :

- (a) the chain can change its overall conformation, as in relaxation after strain, or
 - (b) it can move relative to its neighbors.

 \rightarrow Self-Diffusion = subcase of Brownian motion, being induced by random thermal processes.

* For center-of-mass distance diffused $\propto t^{1/2}$

5.4.1. The Rouse-Bueche Theory

- a polymer chain : a succession of equal submolecules, each long enough to obey the Gaussian distribution function.
- ⇒ submolecules are replaced by a series of beads connected by springs with the proper Hooke's force constant.

For this kind of molecular model, the restoring force f on a chain or chain portion

where riangle x : the displacement

r : the end-to-end distance

the restoring force on the ith bead

$$f_i = \frac{-3kT}{a^2} (x_{i-1} + 2x_i - x_{i+1}) \quad 1 \le i \le z - 1 \quad \Rightarrow \text{Appendix 5.2}$$

- It is assumed that the force is proportional to the velocity of the beads, which is equivalent to assuming that the beads behaves exactly as if it were a macroscopic bead in a continuous medium.
- The viscous force on the *i*th bead is given by

$$f_i = \rho \left(\frac{dx_i}{dt}\right) = \rho X_i$$
 where ρ is the segmental frictional factor

The solution of the above matrix algebra yields the relaxation time τ

 $\tau_{p,i} = \frac{6\eta_0 M_i^2}{\pi^2 cRTM_w p^2} \quad \text{where } \eta_0 : \text{the bulk-melt viscosity} \qquad \rightarrow \text{Appendix 5.3}$ p: a running index c: the polymer concentration CNDL

- Rouse-Bueche theory is highly successful in establishing the idea that chain motion is responsible for creep, relaxation, and viscosity, although quantitative agreement with experiment was generally unsatisfactory.
- Rouse-Bueche theory is useful especially below 1% concentration.
- While it does not speak about the center-of-mass diffusional motions of the polymer chains, the theory is important because it serves as a precursor to the de Gennes reptation theory.

Example:

For polyisobutylene at 25°C, τ_1 is about 10^{2.5} hr. Use above eqns. to estimate the viscosity of this polymer, remembering that M= 1.56x10⁶. As a check on the value obtained, use the Debye viscosity equation (refer to Appendix 5-3), to evaluate M_c, that threshold for entanglements, if it is known that $\rho = 4.47x10^{-8}$ kgs⁻¹ at this temperature. As a semi-empirical correction, multiply ρ by (M/M_c)^{2.4} to account for entanglements.

density : 1.0 gcm⁻³ unperturbed bond length I_0 : 5.9x10⁻¹⁰ m

5.4.2. The Reptation and Chain Motion

Fig. Reptation model for entanglement for (a) a linear molecule and (b) a branched molecule

→ Refer to Appendix 5.4

5.4.2. The Reptation and Chain Motion

5.4.2.1. The de Gennes Reptation Theory

- Rouse-Bueche theory is highly successful in establishing the idea that chain motion is responsible for creep, relaxation, and viscosity, although quantitative agreement with experiment was generally unsatisfactory.
- In 1971, de Gennes introduced the reptation theory of polymer chains that consisted of a single polymeric chain (P), trapped inside a 3-dimensional network (G) such as a polymeric gel. (*J. Chem. Phys.* 55, 572 (1971))

- The chain P is not allowed to cross any of the obstacles O; however, it may move in a snake-like fashion among them.
- The snake-like motion is called "reptation".

- The chain is assumed to have certain defects, each with stored length b.
- These defects migrate along the chain in a type of defect current.
- When the defects move, the chain progresses, as shown in Fig. 5.9
- The velocity of the nth mer is related to the defect current J_n by

$$\frac{d\vec{r_n}}{dt} = bJ_n$$

 It is found that the self-diffusion coefficient, D, of a chain in the gel depends on the molecular weight M as

 $D \propto M^{-2}$

 \rightarrow Appendix 4.1 in Text book

An infinitely long chain P cannot move sideways: It is trapped in a thin tube T.

Fig. 5.9 Successive steps of a chain inside a gel.(a) Initial position: the chain is restructed to a certain tube T(b) First stage: the chain has moved to the right by reptation(c) Second state: the chain has moved to the left

- The de Gennes theory of reptation as a mechanism for diffusion has also seen applications in the dissolution of polymers, termination by combination in free radical polymerizations, and polymer-polymer welding.
- Dr. Pierre de Gennes was awarded the 1991 Novel Prize in Physics for his work in polymers and liquids crystals.

Nobel Prize winners for advances in polymer science and engineering

Scientist	Year	Field	Research and Discovery
Hermann Staudinger	1953	Chemistry	Macromolecular Hypothesis
Karl Ziegler and Giulio Natta	1963	Chemistry	Ziegler-Natta catalysts and resulting stereospecific polymers like isotactic PP
Paul J. Flory	1974	Chemistry	Random coil and organization of polymer chain
Pierre de Gennes	1991	Physics	Reptation in polymers and polymer structures at interface
A.J. Heeger, A.G. MacDiarmid and H. Shirakawa	2000	Chemistry	Discovery and development of conductive polymers

5.4.3. Nonlinear Chains

- : How do branched, star, and cyclic polymers diffuse?
- Two possibilities for translational motion
- 1 One end way move forward, pulling the other end and the branch into the same tube.

 \Rightarrow This process is strongly resisted by the chains as it requires a considerable decrease in entropy to cause a substantial portion of a branch to lie parallel to the main chain in an adjacent tube.

2 Renew its conformation by retracting a branch so that it retraces its path along the confining tube to the position of the center mer. Then, it may extend outward again, adopting a new conformation at random

 \Rightarrow energetically much feasible process

Fig. 5.10 The basic diffusion steps for a branched polymer. Note motion of mer C, which requires a fully retracted branch before it can take a step into a new topological environment.

- The probability P₁ of an arm of n-mers folding lackon itself
 - $P_1 = \exp(-\alpha n/n_c)$ where n_c : the critical No. of mers between physical entanglements α : a constant.
- \Rightarrow diffusion in branched-chain polymers is much lower than in linear chains
- Cyclic polymers are even more sluggish, because the ring is forced to collapse into a quasilinear conformation in order to have center-of-mass motion.
- 5.4.4. Experimental Methods of Determining Diffusion Coefficients
- (a) by measuring the broadening of concentration gradients as a function of time
- (b) by measuring the translation of molecules directly using local probes such as NMR

Keywords in Chapter 6

- The Fringed Micelle Model

- Spherulite Formation

- The Avrami Equation, Keith-Padden Kinetics, Hoffman's theory

- Extended Chain Crstallization

