<Calendar>

1st week : Chap. 1. Introduction

Chap. 2 The Wave-Particle Duality

2nd week : Chap. 3 The Schördinger Equation

Chap. 4 Solution of the Schördinger Equation for Four Specific Problems

- 3rd week : Chap. 5 Energy Bands in Crystals
- 4th week : Chap. 6 Electrons in a Crystal
- 5th week : Chap. 7 Electrical Conduction in Metals and Alloys
- 6th week : Chap. 8 Semiconductors
- 7th week : <Midterm Exam>
- 8th week : Chap. 9 Electrical Properties of Polymers, Ceramics, Dielectrics, and Amorphous Materials
- 9th week : Electromagnetic Theory : Maxwell Equations, Light Waves (Electrons in Solids, 3rd Ed., R. H. Bube)
- 10th week : Chap. 10 The optical constants

Chap. 11 Atomistic Theory of the Optical Properties

- 11th week : Chap. 12 Quantum Mechanical Treatment of the Optical Properties Chap. 13 Applications
- 12th week : Chap. 14. Foundations of Magnetism
 - Chap. 15. Magnetic Phenomena and Their Interpretation- Classical Approach
- 13th week : Chap. 16. Quantum Mechanical Considerations Chap. 17. Applications
 - enap: III Ipplicat
- 14th week : <Final exam>