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Three approaches to understand electronic
properties of materials

- Continuum theory : consider only macroscopic quantities,
Interrelate experimental data
ex) Ohm’s law, Maxwell equations, Newton’s law,
and Hagen-Rubens equation

- Classical electron theory : postulate that free electrons in metals drift
as a response to an external force and interact with
certain lattice atoms
ex) Drude equations

- Quantum theory : explain important experimental observations
which could not be readily interpreted by classical means
ex) Schrodinger Equation



, 1. Introduction
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» Basic equations
Newton's law : F =ma
Kinetic energy : E,. =%mu2 %
Momentum: p =mo Shin = 2m

Speed of light:c=vA4

Velocity of wave:v=vA Angular frequency:w =27zv

Einstein's mass - energy equivalence : E = mc*



» Light : electromagnetic wave

light quantum (called a photon)

Energy E == owh

h
Planck constant h=——
27T

1924 yr de Broglie Ap=h
“Wave nature of electrons” “Matter wave”
For a general wave U=vA

“Wave number” k=— — L=—



2. The Wave-Particle DUa'ltY NN NN

» Description of electron wave

- The simplest waveform : harmonic wave
- A wave function (time- and space-dependent)

Y =sin(kx — wt)

Electron wave : a combination of several wave trains
Assuming two waves,

Y, =sin[kx — at]
WV, =sin[(k + Ak)X — (@ + Aw)t]



»* 2. The Wave-Particle Duality . o . .

» Description of electron wave

Supposition of two waves:

A AK Aw
P+, = = 2005(7wt—7x) S|n[(k+—)x (0+= )]
\_ ~ N — /
Modulated amplitude sine wave

Modulated Amplitude ("beats")

“Wave Packet”

- WQave pockei —-7

Figure 2.1. Combination of two waves of slightly different frequencies. AX is the
distance over which the particle can be found.



»* 2. The Wave-Particle Duallty PUPAPAP

The extreme conditions

(a) No variation in angular frequency and wave number :
monochromatic wave

D
D
\

Figure 2.2. Monochromatic matter wave (Aw and Ak = 0). The wave has constant
amplitude. The matter wave travels with the phase velocity, v.
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The extreme conditions

(b) Very large variation in angular frequency and wave
number

' Phase velocity :

velocity of a matter wave

\MM\ X o+Aol2 o

t k+Ak/2 Kk

60 80
5 T @ T | ] _I s I I 1 I o
Group velocity:
100 | = )
w00 [N M v velocity of a pulse wave
0 M A
"T\ (i.e., a moving particle)
-8
0 210 410 610 810 j e Oh 210 4I0 610 8I0 i X A a) d a)
Figure 2.3. Superposition of ‘P-waves. The number of W-waves is given in the Ug o ? T Ak T dk
graphs. (See also Fig. 2.1 and Problem 2.8.)



w»~ 2 The Wave-Particle Duallty ¢ CC

The extreme conditions

(b) Very large variation in angular frequency and wave
number

g

Awlarge

P
X

Figure 2.4. Particle (pulse wave) moving with a group velocity v, (Aw is large).

Heisenberg’s Uncertainty principle Ap .AX>h

Probability of finding a particle

PY dxdydz = P¥ dr

at a certain location
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Plank constant 4 = 6.63 X 1034 J-sec
Traveling wave p(x, ¢) = sin 2 ﬂ(% —vt)
Y = sin(kx — wrt)
Phase velocity versus Group velocity
U:£:w+Aa)/2:a)' szzACO/z:d&)
t k+Ak/2 Kk ot A2 dk

Prove v, = v (velocity of particle)?
E=hv = hw and k=p/h — dw=dE/h and dk = dp/h
v,= dw/dk = dE/dp
Since £ = mv?/2 and p = mv, dE/dp = v

Relativistic expressions: E = mc?, E= hv and p = mo

D, = dw/dk = dw/dv/dk/ /dv = v
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- Why 1s the wave nature of matter not more apparent to us in our daily
observation?

- Can the de Bloglie wavelength of a particle be smaller than a linear
dimension of the particle? Larger? Is there necessarily any relation between
such quantities?

- Is the frequency of a de Broglie wave given by E/A? Is the velocity given by
0? Is the velocity equal to ¢? Explain
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Mathematical description of traveling waves

Consider a string stretched along the x axis whose vibrations are in the y direction
Assuming simple harmonic motion,

Att=0, y=Asin21vt
where A4 1s the amplitude of the vibrations

. X
If ¢ 1s replaced by ——¢ , then y = Asin2av( Xy ) : Wave Formula
) V

where 0 1s the wave speed

Since the wave speed is given by © = vA, we have y = Asin 27[(% —Vt)



fﬁ“ N QN

s

Part | Fundamenfcals

Electron Theory : Matteéar Waves
Chap. 1 Introductioné
Chap. 2 The Wave—PaélrticIe Duality
Chap. 3 The Schc'jrdinfger Equation
R p S s fthe e mge 2 Equ Ty Tk T e
Four Specific,é Problems
Chap. 5 Energy Bandés in Crystals
Chap. 6 Electrons in élCrystaI

Electromagnetic Theoréy . Maxwell Equations

Chap. 4 Light Wavesé
(Electrons in Solids, 3" Ed., R. H. Bube)



I+ 3. The Schrodinger Equation
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3.1 The Time-Independent Schrodinger Equation

- Time-independent Schrodinger equation: a vibration equation

2m o’y 0w Oy
Viy +—(E-V)y =0 Viy=—2+—+
v E-TY PPN R

where, m = the (rest) mass of the electron,
E = the total energy of the system, E=E_ +V
E,;, = Kinetic energy,
V' = the potential energy (or potential barrier)

- Applicable to the calculation of the properties of atomic systems in
stationary conditions



»»3. The Schrodinger Equation
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3.2 The Time-Dependent Schroédinger Equation

Time-dependent Schrodinger equation: a wave equation

2m2V\P_ 2mi 0¥ 0
h h ot

Vi —

Since  W(x,y,z,t)=w(x,y,z2) e
oY

. iot .
—=yiwe"” =Yiw —
ot

and E=vh=owh —

2
Then Vi +H(E-V)y=0 . viy_ 2sz g 2mioY

h h h ot
Applying differential operators to the wave function g _ _z; ﬁ P =—hiV
(Hamiltonian operators) Ot

2 2.2
oY R
Epy=Eum+E,, =LV — —niZ— =" vy ipy

2m ot 2m



3. The Schrodinger Equation
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3.3 Special Properties of Vibrational Problems

- When boundary conditions are imposed, only certain vibrational
forms are possible. ex) a vibrating string

- Vibration problems determined by boundary conditions :
Boundary (or eigenvalue) problems

A pecularity of these problems : not all frequency values are
possible and therefore, not all values for the energy are allowed
because of E =i

The allowed values : eigenvalues

The function belonging to the eigenvalues as a solution of the
vibration equation : eigenfunctions

The normalized eigenfunction: J‘Wy*df _ “w‘zdf 1



e 4. Solution of Schrodinger Equation
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4.1 Free Electrons

Suppose electrons propagating freely (i.e., in a potential-free space) to the
positive x-direction.

Then 7 = 0 and thus

2m
VZW‘F?(E_V)W:O —

The solution for the above differential equation for an undamped vibration with
spatial periodicity, (see Appendix 1)

w(x) = Ae™
/2
h h h A A
Thus LIJ(.X) _ Aeiax .eia)t
2 2
E:h_az  — E‘:h—](2
2m m

“energy continuum?

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).



e 4. Solution of Schrodinger Equation
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4.2 Electron in a Potential Well (Bound Electron)

Consider an electron bound to its atomic nucleus.
Suppose the electron can move freely between two infinitely high potential barriers

vt

©
X

o nucleus ©

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high
potential barriers.

At first, treat 1-dim propagation along the x-axis inside the potential well

dv 2m
+—FEy =0
dx®  h° v
, iox —iox 2m
The solution 1/ = Ae' ™ + Be where a=.,—F



= 4. Solution of Schrodinger Equation
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4.2 Electron in a Potential Well (Bound Electron)
Applying boundary conditions,
x=0, v =0 —

X=a l//:O —

- - . 1 . J
With Euler equation, SIn p = — (e’p — e_lp)
l

Al —e ] =24i-sinaa =0
aa=nr, n=012.3,.... “energy levels”

2 2 2
h , h'm° ,

Finally, E =2—a = L "
m Zma Es=25C - —_— n=5
n :1’2’3""' E.=16C { ————— n=4
Es=9C {4 ——— n=3
“energy quantization” B = ——— 1

Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus.
E is the excitation energy in the present case. C = h°n*/2ma*, see (4.18). (E) is the
zero-point energy.)



e 4. Solution of Schrodinger Equation

4.2 Electron in a Potential Well (Bound Electron)

Now discuss the wave function

w=2A4i-Sinax v =2A4i-sinax

2
wy =4A4°sin® ox IO wy dr = 4/12]0 sin®(oox)dx = 4;4 [—%sin axcoswc+%]g =1
A= |
2a

b

| e &‘ ' rzgn

L a -—! L a J
(a) (b) (c)

Figure 4.4. (a) ¢ function and (b) probability function Yy " for an electron in a
potential well for different n-values. (c) Allowed electron orbit of an atom.

N N RN RN
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4.2 Electron in a Potential Well (Bound Electron)

4
For a hydrogen atom, me 1 1
yarogen at E = - =-13.6-—(eV)
Coulombic potential 2(4re,h)” n n
2 A ]
e 1o n=co
V — n= 3
Are,r n=2
-13.6eV .
(lonization energy)
Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.
2 2
i . hr 2 2 2
In 3-dim potential E = ~(n, " +n,"+n
y Z
2ma

The same energy but different quantum numbers: “degenerate” states



1= 4. Solution of Schrodinger Equation
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4 3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential
barrier VV, (> total energy of electron, E)

- Region (1) x<0 Vv
d* 2 Vo
T Ey =0 °
dx h I
- Region (I1) x>0
0
d’ l/2/ 2m " (E—V,)y =0 0 X
dx e . . :
Figure 4.6. Finite potential barrier.
The solutions (see Appendix 1)
. _; 2m
w]:Aew“-l—Be “ o= h—ZE

W, = Ce'™ + De ,6’=\/h—2(E—VO)



;4. Solution of Schrodinger Equation
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4.3 Finite Potential Barrier (Tunnel Effect)

Since £ -V, is negative, = \/i—’? (E—V,) becomesimaginary.
To prevent this, define a new parameter, y =if3

2 ifpx —1px
Thus, y:\/h—T(VO—E) cand v, = Ce”™ + De™™*

Determinationof Cor Dby B.C. Forx —> o Y, = C-0+D-0

Since ¥ ¥* can never be lager than 1, ¥, — oo is no solution, and thus C -0 |,
which reveals ¥-function decreases in Region 11

w, =De™
Using (A.27) + (4.39) in textbook, the damped wave becomes

Y = De .t h)



e 4. Solution of Schrodinger Equation
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4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by
electron wave : Tunneling

* For the complete solution,

(1) Atx=0 y, =, : continuity of the function

d
(2) Atx=0 cz’”l = 21”” : continuity of the slope of the function
X X

Aiqe'™ — Bioe™™ = —yDe ™

withx=0 Aia—Bia =—-yD

Consequently, A = D (a+i 1)
. 2 o

B=— (l— l_) Figure 4.7. -function (solid line) and electron wave (dashed line) meeting a finite
o potential barrier.
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4. Solution of Schrodinger Equation
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-

4.3 Finite Potential Barrier (Tunnel Effect)

<
<

ks

e L

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

The behavior of an electron in a crystal — A motion through periodic repetition
of potential well 7

well length : a 1% 7] B

barrier height : 7,

barrier width : b

-b 0 a L "'Jb'l- X
Reg|0n (l) Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig-
Penney model ).

2
d 2m

f+ —Ey =0 "
dx h

~ Surface potential
Region (I1)
d’ v, 2m
T (E Vo)y =0
T nuclel = "'

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential ).



, 4. Solution of Schrodinger Equation
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4., 4 Electron in a Periodic Field of Crystal (the Solid State)

'L,‘ >

(Continued) For abbreviation

azzz—mE 7/222—m(V E)

The solution of this type equation (not simple but complicate)
l//(x) — u(x) ™ (Bloch function)

Where, u(x) is a periodic function which possesses the periodicity of the lattice
In the x-direction

The final solution of the Schrodinger equations;

SIN aa
P +COSaa = Coska where p =" Vb

aaq K2




e 4. Solution of Schrodinger Equation
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

Mathematical treatment for the solution : Bloch function

w (x) =u(x) ™

Differentiating the Bloch function twice with respect to x

2
d 1’2” = (d L; du 2ik — k*u)e™
dx dx® dx

Insert 4.49 into 4.44 and 4.45 and take into account the abbreviation

Y
[
b 4

2
ot ™ k2 —atu=0 ) 9 Mgy 0

dx’ dx o’ dx

The solutions of (1) and (11)

u=e (4" +Be™™) (1) u=e ™ (Ce” +De”) ()



;4. Solution of Schrodinger Equation
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4.4 Electron in a Periodic Field of Crystal (the Solid State)
(Continued) From continuity of the function  and ci’_l//
X

A+B=C+D

du/dx values for equations (1) & (1) are identical at x =0
A(ia —ik)+ B(—-ia —ik) = C(y —ik) + D(y —ik)
Further, ¥ and u is continuous at x = a + » — EQq. (I) at x = 0 must be equal to
Eq. (1) atx =a + b, Similarly, Eq. (1) atx =a isequal to Eq. (1) at x = b
Ae(ia—ik)a +Be(—ia—ik)a _ Ce(ik+y)b _I_De(ik—;/)b

Finally, du/dx is periodicina + b
Ai(a—k)e"“™ - Bi(a + k)e “*™ = —C(y +ik)e"™ " + D(y —ik)e"™ "

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and

using some Euler eq.(see Appendix 2)
2

' -a sin(yb) -sin(aa) + cos(yb) - cos(aa) = cos k(a + b)
20y




;4. Solution of Schrodinger Equation
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

If V, is very large, then £ in 4.47 is very small compared to V, so that
2m
V=72V Vo xb —

Since Vb has to remain finite and » — 0, yb becomes very small.

For a small yb, we obtain (see tables of the hyperbolic function)

cosh(»p) =1 and SInh(yb) = y

Finally, neglect o> compared to y2 and, b compared to a so that 4.61 reads as follow

m .
~V,bsIn aa + COS ca = COS ka
ah

et P:maVob then PSInaa

> + COS aa = COS ka
h aa




1% 4. Solution of Schrodinger Equation
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy
certain allowed energy zone”

} Ssinaa
P T +COSo¢a
6_4-
L+
3.@
24
/ | 3
-3;[ -T U N 7 S
b -1n 1 7 bt o0
R

Figure 4.11. Function P(sinaa/oa) + cosoa versus aa. P was arbitrarily set to be

(3/2)m.



4. Solution of Schrodinger Equation
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

\
p 30&0 5'”“0 + COSQ

The size of the allowed and forbidden
energy bands varies with P.

For special cases T}—\—-—-—————— ————

(a) If the potential barrier strength, Vb 0 = . —~
Is large, P is also large and the ¢ \U/ \
curve on Fig 4.11 steeper. The % A Ve e SR s il il
allowed band are narrow.

2...

Figure 4.12. Function P(sinoa/aa) + cosaa with P = /10.

(b) Vb and P are small, the allowed

band becomes wider.
] 77777
(c) If Vb goes O, thus, P— 0 ‘
From 4.67, COSaa = COSka | ———
272 B ks —
E — (a) (b) (c)
2m Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and

(c) electrons in a solid.
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

(d) If the Vb is very large, P — ©©

sin aa
—— >0
oa e A—

sinaa — 0 Aa =nJjl

¢

for n=123...

2 2
» N7

2
A

Combining 4.46 and 4.69

(04

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater). The quantum numbers are explained in Appendix 3.
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5. Energy Bands in Crystals
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5.1 One-Dimensional Zone Schemes
£
For free electrons, the wave number in 1-dim
2
E=—1Fk" — k.= const. E'?
2m
In a crystal ’ i
. Figure 5.1. Electron energy E versus the wave vector k, for free electrons.
SIn aa
P +cosaa = cos ka IfP=0, cosaa=coska
aa

cosaa =cosk a =cos(k.a+n2x) : more general form in 1-dim
n=0, 1, +2,....

aa=ka+n2r
} k. +n 1/i_lmEl/2
o = ’hz 1/2



- NV NN NN
27 2m
k X +n—= —2E
a h /
- - - - - ) 3 ’,'/ N // /I//'{I
E is a periodic function of k_with N S K o
TP Sy Sy A" 4T
the periodicity of 277/ a " & = O & & B °
0 0 a a a a
Figure 5.2. Periodic repetition of Fig. 5.1 at the points k. = n-2n/a. The figure
depicts a family of free electron parabolas having a periodicity of +2n/a.

If an electron propagates in a periodic potential, discontinuities of the electron energies
are observed when cosk,.a has a maximum or a minimum, i.e., when  cos kxa =41

T
ka=nr, n=+x1,£243..  or k.=n-—
a

At these singularities, a deviation from the parabolic £ vs k_occurs and the branches
of the individual parabolas merge into the neighboring ones (see Fig.5.3)



» 5. Energy Bands in Crystals
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5.1 One-Dimensional Zone Schemes

£
7 The electrons in a crystal behave
7 / .
/\/\/\ / \/\/\ 7 like free electrons for most &, value
\N\NNNNNN Y except k, —n 7t/

N DN R periodic zone scheme (see Fig 5.3)

A . 4 0 n In Jn k
a a a a a a

£l

Sl
/ \ %_Bm reduced zone scheme (see Fig 5.4)

r/a <k =< m/a

Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between —n/a and
+?Tf-".u_j]
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3
\
7
m-Band
\
\
\
\/ % n-Band
i ) i)
n x In Kk -
_E a a a "'.‘_-_-_-..._.4,__ - o
-1 B2 2n Ky
EF" B.Z. 2‘1 B.Z. ¢

Figure 5.6. “Free electron bands™ plotted in the reduced zone scheme (cubic primi-
tive crystal structure). Compare this figure with the central portion of Fig. 5.2, that is,
with the region from zero to n/a. Note the sameness of the individual bands

free electron bands (see Fig 5.6)
Free electrons in a reduced zone scheme

Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are
shown, see Section 5.2.

extended zone scheme (see Fig 5.5)

Deviations from the free electron from 27z 2m i
g ] B k.+n—= —FE
parabola at the critical points k. = nw/a a

are particularly easy to identify. #2
2—(k +n—) n==20+1%2,....
m



5. Energy Bands in Crystals
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5.1 One-Dimensional Zone Schemes

hz
:2_(k +n—) n==x0+1,%2,....

By inserting different n-values, one can calculate the shape of branches of the
free electron bands

2

n=0, E=—Fk’ (parabola with 0 as origin)

2m
2
2
=-1, £ —;—(k ——7[) (parabola wzth — as origin)
a

212
Fork =0, E=4 d h2
2ma
T T°h’

Fork =—, E=1 5
a 2ma



5. Energy Bands in Crystals CCC T

5.2 One- and Two-Dimensional Brillouin Zones

1-d Brillouin Zone

/
The first Brillouin Zone (BZ) : \ / %ﬁm

n/a =< k.= m/a : n-Band % 7
\
7

The second Brillouin Zone (BZ): N / | %n-aand

A e e &
m/a <k < 2n/a, -w/a <k <-2mn/a : m-band S il AP

2":;:'. Z“B.Z.

Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are

shown, see Section 5.2.

- Individual branches in an extended zone
scheme (Fig. 5.5) can be shifted by 2z/a to left or to right.
Shift the branches of 2" BZ to the positive side of £- k_diagram by 27/a to the left, and
likewise the left band by 27/a to the right — The result 1s shown in Fig. 5.4

(a reduced zone scheme)
- The same can be done in 3" BZ and all BZ (because of the 27/a periodicity) —
relevant information of all BZ can be contained in the 15t BZ (a reduced zone scheme)



b+ 5. Energy Bands in Crystals
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5.2 One- and Two-Dimensional Brillouin Zones
2-d Brillouin Zone

Description for the movement of an electron in the potential of 2-d lattice
- Wave vector K = (k,, k) : 2-d reciprocal lattice (Fig 5.7)
- A 2-d field of allowed energy regions which correspond to the allowed energy band — 2-d BZ
- Ist zone in 2-d: the area enclosed by four “Bragg planes” having four shortest lattice vectors, G :

bisectors on the lattice vectors
- For the following zone, construct the bisectors of the next shortest lattice vectors, G,, Gj...

- For the zone of higher order the extended limiting lines of the zones of lower order are used as
additional limiting lines.

3
k‘:‘

[ @ ¢ @ ]

Figure 5.7. Four shortest lattice vectors in a k. — k, coordinate system and the
first Brillouin zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal — Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive
structure.) reciprocal lattice.



;5. Energy Bands in Crystals

N N § N N}
5.2 One- and Two-Dimensional Brillouin Zones
“Usefulness of BZ”

- energy bands of solids (discussed in later section)
- the behavior of electrons which travel in a specific direction in reciprocal space

Example: in 2-d lattice, an electron travels at 45° to k_-axis, then the boundary
of the BZ is reached, according to Fig 5.8, for k . = i V2
a

222
this yields with (4.8) a maximal attainable energy of F = 722

. T a m
If the boundary of a BZ is reached at k_, =—
a

. , 1 7°h°
the largest energy of electrons moving parallel to k, or k, axis £ ., = E( >
a m

)
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5.2 One- and Two-Dimensional Brillouin Zones

- Once the maximal energy has been reached, the electron waves (those of the incident
and the Bragg-reflected electrons) form standing waves (the electrons are reflected
back into the BZ.)

- Overlapping of energy bands: bands are drawn 1n different directions
in k-space (Fig 5.9) :
the consequence of

7

(@)

~N

~i,

~

30325855
 6%0% %%

0200 %"

0%0%%

%0’

5090505

'0%6%0%%

CRAHNS
[0S

CHHX
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iz

r k, — g r ksso — 3v2

Figure 5.9. Overlapping of allowed energy bands.
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5.2 One- and Two-Dimensional Brillouin Zones

A different illustration of the occurrence
of critical energies at which a reflection
of the electron wave takes place :

Bragg relation

2asmb=nA, n=1,273,...

Slnce }\, — 2 T[ /k Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence
is 0,
. 27T T
2asin@=n—7y — k_,=n—;
asin &
F dicular incidence, 0=90°, k_ =2
Oor a perpendicular Iciacence, v = . it —

ifo=45, f ="
a

For increasing electron energies, a critical k-value is finally reached for which
“reflection” of the electron wave at the lattice plane occurs.
At km-,f , the transmission of electron beam through the lattice 1s prevented.
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5.3 Three-Dimensional Brillouin Zones

- In previous section, it was shown that at the boundaries of the

zones the electron waves are Bragg-reflected by the crystal.

- The wave vector, |[K| =2 Jt /A, was seen to have the unit of

reciprocal length and thus is defined in the reciprocal lattice.

- The construction of 3-d Brillouin zones for two important crystal
structures of face centered cubic (FCC) and body centered cubic
(BCC) : important features in common with “Wigner- Seitz cells”
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5.4 Wigner - Seitz Cells
C;ystals have symmet‘rclczq propfn1es - ktil\
- An accumulation of “unit cell B :
- Smallest possible cell “primitive cell” 4
(consist of 1 atom) I ot B2
- BCC, FCC : conventional non-primitive 4
unit cells —\
Figure 5.11. Wigner Seitz cell for the body-centered cubic (bec) structure.

- Wigner-Seitz cell : a special type of
primitive unit cell that shows the cubic symmetry of cubic cells

- W-S cell construction: bisects the vectors from a given atom to its nearest
neighbors and place a plane perpendicular to these vectors at the bisecting
points. For BCC (Fig 5.11) & FCC (Fig. 5. 13)
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5.4 Wigner - Seitz Cells

- The atomic arrangement of FCC:
corners and faces of cube,
or center points of the edges and the
center of the cell (Fig 5.12)
-The W-S cell for FCC shown

Figure 5.12. Conventional unit cell of the fcc structure. In the cell which is marked

1n Flg 5 . 1 3 black. the atoms are situated on the corners and faces of the cubes. In the white cell,

the atoms are at the centers of the edges and the center of the cell.

Figure 5.13. Wigner—Seitz cell for the fcc structure. It is constructed from the white
cell which is marked in Fig. 5.12.
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5.5 Translation Vectors and the Reciprocal Lattice

Fundamental vectors or primitive vectors : t;, t,, t; I
Translation vectors, R : combination of primitive vectors e
R=nt, +n,t, +nt, .
where n,, n,, and n, are integers. T, Y
‘ @

Three vectors for the reciprocal lattice: by, b,, b,
a translation vector for the reciprocal lattice, G

G=2x(hb,+hb,+hDb,)

where h,,h,, and £ 1s integer

(b)

A - -
tl:E(_HHI)

Figure 5.14. (a) Fundamental lattice vectors t;,t2, t; in a cubic primitive lattice. (b)
Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit
cell (black) of a bee lattice. The axes of the primitive (noncubic) unit cell form angles
of 109° 28",
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5.5 Translation Vectors and the Reciprocal Lattice

The relation between real and reciprocal lattices -
By definition, AN |
3 \.q\ss\\\m S > DY
- SRS
D, ot, =1, Kronecker-Delta symbol x
® — _ Figure 5.15. Plane formed by t; and t; with perpendicular vector b;.
01 t2 09 }' bntm — 5nm9
0, 0t, =0. where 5, =1 forn=m and &, =0forn #m
1
b, =const. t,xt, — b, et =const. t,et,xt, =1— const=
t ot, xt,
H — t, xt, h - t, xt, h — t, xt,
't et, xt 27t et xt S
1 @ Ly X1 IS RARS L, ol, xt,



,' )+ 5. Energy Bands in Crystals

N N RN RN

5. 5 Translation Vectors and the Reciprocal Lattice
Calculation for the reciprocal lattice of a BCC crystal

Real crystal

a: lattice constant , t,, L, t;: primitive lattice vectors
I, J, | : unit vectors in the X, y, z coordinate system (see Fig. 5.14(b))

a - .
tl:E(_HHI)

a — a . —

Abbreviated, t1:5(111) '[2:5(111) t,
a2l J k a2

t,xt,=—|1 -1 1|=—(>O+]J+I+1-1+]

2T . 1 4( J ),

2 2

a .. a- .
—7(2J+2|)—7(J+|)

a

= (17)

Figure 5.16. Lattice vectors in reciprocal space of a bee crystal. The primitive vectors
in the reciprocal lattice are (because of (5.13 3)) larger by a factor of 2z. The lattice

constant of the cube then becomes 27 -

2/a.
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5.5 Translation Vectors and the Reciprocal Lattice

(continued)
a3 : . . a3 a3
tot,xt,=—(-i+j+DHe(0+j+)=—O0+1+1)=—
4 4 2 3
2
a” .
t, xt —(J+1)
b =1 2t o b =2 =l(j+|),
ot X1, a’ a
2

1 1 1
b, =—(011) b, =—(@101) b;=—(110)
a a a Figure 5.17. First Brillouin zone of the bce crystal structure.
BCC (reciprocal lattice) —» FCC (real lattice)

st Brillouin zone for BCC ——  Wigner-Seitz cell for FCC

—

Vice versa
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5.6 Free electron Bands
Periodicity of E(K) — all information of electron contained in the 1st Brillouin
Zone (BZ)
E,. for k' for outside 13t BZ — E, with in 1* BZ with a suitable translation vector G
k =k +G
“Energy bands are not alike in different directions in K-space”

for the demonstration, “free electron band” is used (Fig 5.6 ).

In 3-D, from (5.7) E. =£(k+G)2
Y 2m
2
E = h—(kx + n2_7z)2, n=10+t112..... (5.7)
2m a



5.6 Free electron Bands

In Fig 5.17, three important directions
[100] from [ {(origin) to point H : A
[110] from [to N: 3

[111] from J'toP :A

b
(9]

5¢C F[ W

[ f
N
A

Fig 5.18 calculated by using the following eqn.  : -
h’ L X |
E.=——(k+G)’ =KX
2m ]

rr 4 H H F P P A I T £ NN G H

Energy (Arbitrary Units)
w
o
T

]
(2]

Figure 5.18. Energy bands of the free electrons for the bec structure. The numbers
given on the branches are the respective h; values (see the calculation in the text).
mpare to Fig. 5.6. C = h”2n2 /ma’, see (5.38).
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5.6 Free electron Bands
band calculation for BCC I'—H [100] direction
Kiy =K, between 0 and 2 7z/a (boundary of BZ)
For this direction (5.35) becomes
W' 2 .
E=—(F=xi+G)’
2m a
Where x may take values between 0 and 1. to start with, let G = 0, then
W 2rx . W 2r. 2h'w
E=-—(Z)(xi) =’ where 0= (=2
2m a 2m a ma

this curve 1s labeled (000) in Fig 5. 18 since h;,h,,h; =0,0,0 for G=0
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5.6 Free electron Bands
For the case of h,h,,h; =0,-1,0

combined (5.36) and (5.38)

ht 2me. 2

E = |
2m  a

A

TG+DP = CliGx=1) =17

N N RN RN

C=[(x-1)°"+1]=C(x* -2x+2)

For x=02>FE=2C

and for x=1->FE=1C

The band labeled
in Fig 5.18 obtained.

(010)

Similarly, For FCC, see

Figs. 5.19 & 5. 20

Ky
R A Ry
i bty LG Z
PR
- 4.4y
2 5
3 A, L% 2
g 1 5
L
E 5
A,
Fy
0 I
r r'r KX

Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of
the graphs correspond to letters in Fig. 5.19 and indicate specific symmetry points in

k-space.
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5.7 Band Structures for Some Metals and Semiconductors

Band structure of actual solids: |-

Figs. 5.21-24

(results of extensive,

computer-aided

calculations)

Directions in k-space

[100]
[110]

[111]:

I'-X
I’ - K
I'-L

T

16
eV

N7

ZI
W
N\ W
Z,
Ws
Z3

o
|
et

Fermi Energy

N \ V(
= e D . / AN\ g+ ' Q
& ¥ n K
c B~ Lf 4
(73]
5 L,

N ST P

| | L

X

Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124,
1797 (1961). (The meaning of the Fermi energy will be explained in Section 6.1.)

Band diagram for aluminum

- parabola-shaped band: free- electron like
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5.7 Band Structures for Some Metals and Semiconductors

| | PeC
-
| l_3
ot I 4
/ "
2
{
X 5!
B x 3y
Fermi energy w
[r -|
A, I
5 Ly
A, : z #It -0 | =3
!|I 3
i -3 =
41 s L5 |,
'\..._‘ ‘r] -4 —
1
0 j‘l‘ -~ . 1
I A W l I K X L A [ A i X K 5 r
Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125, y ) N N ) _
109 (1962). The calculation was made using the /-dependent potential. (For the defi- Figure 5.23. ( alculated energy band structure of silicon (diamond-cubic crystal
nition of the Fermi energy, see Section 6.1.) structure). Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789

(1966). See also J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B14, 556 (1976).

Band diagram for copper Band diagram for silicon

- Lower half of the diagram closely
spaced and flat running bands (due to
3d-bands of Cu)

- Band gap : near 0~ leV —
“semiconductor properties”
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5.7 Band Structures for Some Metals and Semiconductors

Band diagram gallium arsenide:

so called III — IV semiconductor

Important for “optoelectronic devices”

ENERGY (eV)

Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman
and W.E. Spicer, Phys. Rev. 174, 906 (1968).
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5.8 Curves and Planes of Equal Energy

Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-
demonstrates various curves of equal energy for free electrons. dimensional square lattice.

Energy vs. wave vector, k
Fig 5.25: curves of equal energy for free electrons

Fig 5.26: near boundary of BZ- deviation from a
circular form (2-d)

Fig 5.27: 3-d BZ for Cu

Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and
the first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy.
Soc. London, A 250, 325 (1957).
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Brillouin Zone in 2-d

Figure 9.7

Hlustration of the definition of the Brillouin
zones for a two-dimensional square Bravais
attice. The reciprocal lattice 1s also a square
attice of side b. The figure shows all Bragg
planes (lines, in two dimensions) that lie within
the square of side 2b centered on the origin.
- These Bragg planes divide that square into
regions belonging to zones 1 to 6. (Only zones
1. 2, and 3 are entircly contained within the
- sguare, however.)

From Solid State Physics, N.W. Aschcroft & N.

D. Mermin, Holt, Rinehart and Winston
N O § N



Brillouin
Zone
in 3-d

II

I

¢ ¢ 8 (a) (b)

Figure 9.8

Surfaces of the first, second,
and third Brillouin zones for
(a) body-centered cubic and
(b) face-centered cubic crys-
tals. (Only the exterior sur-
faces are shown. It follows
from the definition on page
163 that the interior surface
of the nth zone is identical
to the exterior surface of thei
(n — 1)th zone.) Evidently
the surfaces bounding the
zones become increasingly
complex as the zone number
increases. In practice it is
often simplest to construct
free electron Fermi surfaces
by procedures (such as those
described in Problem 4) that
avoid making use of the ex-
plicit form of the Brillouin
zones. (After R. Liick, doe-
toral dissertation, Techni-
sche Hochschule, Stuttgart,
1965.)
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6.1 Fermi Energy and Fermi Surface

The Fermi energy, £;:
- An important part of an electron band diagram
- Defined as “the highest energy that the electrons assume at T =0 K”
- Fermi energy for Al and Cu : see Fig 56.21, 5.22
Fermi energy for semiconductor:
- The above definition can occasionally be misleading, particularly
when dealing with semiconductors

- Fermi function at £, F(£;) =2 :see Section 6.2 for more accurate
definition

Fermi surface (in 3-d A-space) for Cu : see Fig 5.27
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6.2 Fermi Distribution Function
Fermi function, F{E) : The probability that |
a certain energy level is occupied by E
electrons 1 -
F(E)= s
E—E,
exp +1
KgT
0 | F(E)

Fermi distributionfor 7=0 K (F|g ﬁig‘r)z 6.1. Fermi distribution function, F(E), versus energy, E, for T = 0.
and for higher 7(7+ 0 K) (Fig 6.2) £
At high energy (£>> £,), AE)is L’\—* 1%E,
approximated by classical Boltzmann

T40 at room temp.

distriptﬁi:c)nz exp| — Ek_.:.EF
B

|
o 12 | F(E)

Figure 6.2. Fermi distribution function for T # 0.
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6.3 Density of States

“How energy levels are distributed over a band?”

Assume free electrons are confined in a square potential well of crystal.
Similar to the case in Sec. 4.2, by using B.C., the solution of the

Schrodinger equation

272
T°h
E = P (n,”+n,*+n,%)
ma
2 2 2 2
n=n, +ny +1N,
where n,.n,n,are principal quantum number

a is the length of the crystal

Figure 6.3. Representation of an energy state in quantum number space.
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6.3 Density of States

A specific energy level, £, for each setof n,.n,n,, called “energy state”
- Equal values of the energy, £, lie on the surface of sphere with radius n

- All points within the sphere represent quantum states with energy
smaller

than £,
- The # of quantum state, n, with an energy equal to or smaller than £, is
proportional to the volume of the sphere

(nvalues can be defined in positive octant of the n-space)

In a one-eighth of the volume of the sphere with radgﬁs n
14 , xf2m’° 32
N=g 3™ = 2| E
8 3 6\ 7°h

(# of energy state n ),
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6.3 Density of States

Density of state, Z(E) : # of energy states

per unit energy in the energy interval d€ ;

(a® = volume that the electrons can
occupy) d:E

Z(E) . differentiation of n with respect to
the energy, £ Z(E)

Figure 6.4. Density of states Z(E) within a band. The electrons in this band are
considered to be free.

dn T
“ 1T _7(E) = —
dE (E) 4\ 7°h° 4t

dn = Z(E)-dE
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6.4 Population Density

Pauli principle : each energy state can be occupied by one electron of
positive spin and one of negative spin

Populationdensity N(E)=2-Z(E)-F(E)
V (ijwEm 1
272\ n? (E—EFJ
exp| —— |+1
kT

N(E) =

For 7> 0and £< E. > ME) = 2-ZE), AE) =1

For 7#0, £~ E., — the Fermi distribution Er
function causes a smearing out of N(E) 1
dE |

(Fig 6.5) $

N E-—}

Figure 6.5. Population density N(E) within a band for free electrons. dN* is the
number of electrons in the energy interval dE.
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6.4 Population Density

# of electrons NV, that have an energy equal to or smaller than the energy
E_(The area within the curve in Fig 6.5) For an energy interval between £

and E£+dE gN* = N(E)dE

From (6.8) and (6.9) and consider simple case 7— 0and E<E. ,F(E) = 1
N * Er N (E dE B E- V 2m ¥2 El/ZdE _ V 2m ¥2 E 3/2
B J.o (E)dE = jo 272\ R2 N F

372\ K?
E. = 37[2N* ; n*
- V ] 2m

If we define #of electrons per u;_;'g volume as N’ =N/V,

E. =(3z*N")"*—
e = ) -

N N RN RN
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6.5 Complete Density of States Function Within a Band

E4
Evs. Z(E) in actual crystals .
- Low energy : free-electronlike
- Higher energy : fewer energy -
state available (Fig 5.26)
— Z(E) decrease with increasing 0 Z(E)

E

- The corners of the BZ : Z(E£)
dropped to zero

Figure 6.6. Schematic representation of the complete density of states function

within a band.

A

{

K

7

NI

&

7

/o k,

Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-

dimensional square lattice.
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6.6 Consequences of the Band Model

Insulators : solids in which the
highest filled band is completely =
occupied by electron |

Alkali metal: the valence band is
essentially half-filled, electrons
can drift under external field

Diamond Alkali Metal Magnesium

Germanium

Figure 6.7. Simplified representation for energy bands for (a) insulators, (b) alkali
metals, (c) bivalent metals, and (d) intrinsic semiconductors.

Bivalent metals: upper band partially overlapped ; weak binding forces of
the valence electrons on atom

Semiconductors: valence band is completely filled with electron; relatively
narrow band gap (intrinsic semiconductors); a sufficiently large energy can
excite electron from valence band to conduction band — some electron
conduction
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6.7 Effective Mass

Effective mass (of electron), m*
experimentally determined electron mass

- Deviation of m”from free electron mass m,: usually attributed to
interaction between drifting electrons and atoms in a crystal

- For example,

Electron accelerated in an electric field might be slowed down slightly
due to “collisions” with some atom — ratio m’/m,>1

The electron wave in another crystal might have just the right phase in
order that the response to an external electric field is enhanced—
m’/m,<1

- Derivation of effective mass do . d (272'1/) B d (27ZE / h) B 1 dE

group velocity (2.10) 9 dk dk dk h dk

N N RN RN
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6.7 Effective Mass

(continued) a_dﬁzidzE dk
dt 7 dk® dt
@7n p=hk - dp_, 0K
dt dt
1 d*Edp_ 1 d’E d(mv)
hz dk? dt hz dk 2 dt

NN NN NN

2
1dEF

~ 1 dK
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6.7 Effective Mass * _ 32 E
dk?

Effective mass is inversely proportional to 1
the curvature of and electron band. |

| |
In Fig 6.8, m”is small and positive S e -~ @
near the center of BZ ° ’

dE

Negative m” (upper part of the band e
in Fig 6.8 ) : “particle travels in the £ ] i )
opposite direction to an applied NLAT | Kk
electric force ( and opposite to an = B
electron”; called “electron hole” g
cf) exciton : an electron/hole pair ikji

| |

I L | - (C)

LT E -
\I l/
| |
t |

Figure 6.8. (a) Simple band structure, as shown in Fig. 5.4. (b) First derivative and
(c) inverse function of the second derivative of the curve shown in (a).
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Part 11 Electricfal Properties of
Materials

Chap. 7 Electrical Condéuction In Metals and Alloys

Chap. 9 Electrical Propérties of Polymers, Ceramics,

Dielectrics, andé Amorphous Materials



, 7.1 Introduction

Observations of electrical phenomena

- BC 600 : Thales discovered “a piece of amber, having been rubbed with a
piece of cloth, attracted feathers and other light particles”
Electricity was from the Greek word e/ektron meaning amber

- In early 1700s : Stephen Gray found “some substances conduct electricity
whereas others do not”

-In 1733 : DuFray postulated “the existence of two types of electricity -
glass electricity and amber electricity dependent on which material was
rubbed”

- From then on, scientists contributed to our knowledge of electrical
phenomena: Coulomb, Galvani, Volta, Oersted, Ampeéere, Ohm, Seebeck,
Faraday, Henry, Maxwell, Thomson,

- At the turn of 20th century: Drude achieved “a satisfactory understanding
of electrical phenomena on an atomistic basis”

N N RN RN
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Conductivity, o : ability to conduct electrical current
span over 25 orders of magnitude (see Fig. 7.1)

over 40 orders of magnitude if a superconductor is included

Classification of materials by their electrical properties :

conductors, semiconductors, nonconductors (insulators, dielectrics)

Si0O,
Porcelain &
Dry wood . e
Doped Si
Quartz Rubber Glass Si Ge P Mn ég
| NacCl | Mica GaAs | | |U
| [ | A !
¢ P § o3k . ¢ % 4 n ¥ a4 b p a3 0 1 T 1 H._J F.k ol til] 0-[_1_.]
10-2° 10-'* 10°'¢ 104 102 10 10% 10°¢ 10* 1072 1 102 10* 10° {1 cm
- Insulators t Semiconductors l Metals —

Figure 7.1. Room-temperature conductivity of various materials. (Superconductors;
having conductivities many orders of magnitude larger than copper, near 0 K, are not
shown. The conductivity of semiconductors varies substantially with temperature and
purity.) It is customary in engineering to use the centimeter as unit of length rather
than the meter. We follow this practice.
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Ohm’slaw V = R/ or Jj=o0F

potential difference, V(in volt), electrical current, /(in amp), and
electrical resistance, R (in ohms, /.e. Q)

1
J = — :current density (A/lcm?), 0 : conductivity (1/¢2cm)
%
E= z : electrical field strength (V/cm)

j — Nve N:number of electrons per unit volume, v: velocity, e: charge

r=Lr

—— L :length of conductor, A: cross-sectional area

1
P = — :specific resistance, or resistivity (2cm)
O
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Drude’s postulation : a free “electron gas” or “plasma”, consisting of
valence electrons of the individual atoms in a crystal

Noé‘ number of atoms per cubic centimeter for a monovalent metal

N = IV such as N, where, N, is Avogadro constant, 6 the density, M
the atomic mass of the element, assuming one electron from
each atom

du ( N ,= 1022 to 1023 free electrons per cm?3)
mj =eFE Equation of electron motion, where eis charge, m mass
[

An electron, accelerated by an electric field, increase its drift velocity until it
encounters a collision. Electron motion counteracted by a friction force yv
which opposes electric force ¢E.

Suppose the resistance in metals is due to interactions of the drifting
electrons with lattice atoms (i.e., essentially with imperfections in the
crystal lattice) duv

mj +yv=ell where yis constant
t
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At v = v, (afinal drift velocity), dv/dt= 0 (steady state)

yi)
YU =el —» 7/:6_
Up

To obtain complete equation for the drifting elections under electric
filed force and friction (or damping) force

dv eFE
m
dt v,

. se00000 o ¥
The solution, 000060 9 ¢ vy [ —— =
L e“ 0666 e 66 _l_
— ® 06 L™ 00 o\
VD=0 1_exp — t 06066000660 b
F ¢, %
A relaxation time is defined t
(a) (b)
_ m UF Figure 7.2. (a) Schematic representation of an electron path through a conductor

7T = (contamning vacancies, impurity atoms, and a grain boundary) under the influence of
eE an electric field. This classical model does not completely describe the resistance in
materials. (b) Velocity distribution of electrons due to an electrostatic force and a

counteracting friction force. The electron eventually reaches the final velocity ve.
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Current density jis proportional to the velocity of the drifting
electrons and number of free electrons, N,

Jj=N;v;e=0ok
. o muy
Combining the above equation with 7 =
ek
N.e’t
O =
m

mean free path is defined by /| = DT
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- Visualize the velocity of electrons in a velocity space (Fig 7.3) with
and without electric field

- The maximum velocity that electrons are able to assume is the
Fermi velocity v,

- Only specific electrons participate in conduction : these electrons
drift with a high velocity which is approximately the Fermi velocity v,

v(k)A  V(K)y

Figure 7.3. Velocity of electrons in two-dimensional velocity space. (a) EiquiliLn“iLllln
and (b) when an electric field is applied. The shaded areas to the left and right of t.he
v(k) -axis are of equal size. They cancel each other. The cross-hatched area remains
uncompensated.
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A large number of electrons possess £; energy since the density of
states and thus the population density is highest around £ (Fig 7.4)

AE : a little extra energy needed to raise a substantial number of
electrons from the Fermi level into slightly higher states

Consequently, energy (or velocity) of electrons accelerated by the
electric field Eis only slightly larger than £ (or ;) so that mean
velocity ~ I

E
] '
N _ 4
E, g
0

' -
NE N(E)

Figure 7.4. Population density N(E) versus energy for free electrons (see Fig. 6.5)
and displacement AE by an electric field (see Fig. 7.3(b)). N’ is the number of dis-
placed electrons per unit volume (see (6.11a)) in the energy interval AE. N(E) is
defined per unit energy and, in the present case, also per unit volume, see (6.8).



e (.4 Quantum Mechanical Consideration
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Calculation of the conductivity by quantum mechanics
The velocity of electron responsible for electron conduction: V.

The number of electrons displaced by electric field £: N’

j=v.eN'’ N'=N(E,)AE

. dE
Then Jj=vgeN(E.)AE =v.eN (EF)%Ak

h° 2
Since E = —k? dE _ 7 k=

n’p  hmo,
2m dk m mh m

=hv,

j=v,"eN(E,)hAk



(continued) p =fik and F=m—

e 7.4 Quantum Mechanical Consideration
N U NN NN

dv d(mu) a’p hdk
dt dt dt dt

el
dlkc = — dt or Ak—eEA eE
h h h

j=v."eN(E)hAk —— j = UFZQZN(EF)ET

(E-: Fermi energy , E: electric field)

ek

If electric field vector points negative v(k), direction, only the
projections of ;- on the positive v(k), —axis contribute to the current
(see Fig. 7.5)



% 7.4 Quantum Mechanical Consideration
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Thus, sum up all contribution of the velocities in the 15t and 4t
quadrants in Fig 7.5

H 2
=e’N(E, )Er_[ (UF C0sf)’ — =e¢ cos’ 6d0
T T 72'/2
— —+7/2
2 Uzi 1 o 9
=’ N(E, JET=—"| 28IN 20+
T 9 » v(k)y
- —A-z/2 e

Jj= ; ‘N(E,.)Ezv:

(E-:Fermi energy , E: electric field)

A
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|

Figure 7.5. Two-dimensional velocity space.
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(continued) Similar calculation for a spherical Fermi surface

Thus, the conductivity, with o = j/ E
1,

0 =3¢ v.TN(E}) £ A
E; - ==
Conductivity depends on valence
= band
Fermi velocity, the relaxation time, "
And population densit E g
o ’ * e

Figure 7.6. Schematic representation of the density of states (Fig. 6.6) and thus, with
minor modifications, also the population density (6.7). Examples for highest electron

energies for a monovalent metal (E M), for a bivalent metal (Eg), and for an insulator
(£7) are indicated.



> 7.5 Experimental Results and Their
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7.5.1 Pure metals

- Resistivity of a metal decreases linearly with decreasing
temperature until it reaches a finite value (Fig 7.7)

- The empirical equation 0, = O, [1"' a(Tz - T1)]

a is the linear temperature coefficient of resistivity

pA
Cu-3at.%Ni
Cu-2 at.% Ni
Cu-1at.%Ni
/ -
Pres
i T

Figure 7.7. Schematic representation of the temperature dependence of the resistivity
of copper and various copper—nickel alloys. p,. is the residual resistivity.



=, 7.5 Experimental Results and Their
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7.5.1 Pure metals

- Matthiessen’s rule: the resistivity arises from independent scattering
processes which are additive

10 — pth +/Oimp +/Odef — /Oth +/0res
Thermally induced part of the resistivity O, : ideal resistivity
Resistivity by impurities 0, and defects Oy : residual resistivity

- Compare thermally induced change in conductivity in the light of the
quantum mechanical and classical model

2 1
_Nre'w o = §ezugrz\f(EF)

O
m

Consider the temperature dependence of each parameters of these
equations



> 7.5 Experimental Results and Their
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Y

7.5.2 Alloys

The resistivity of alloys increases with increasing amount of solute content.
However, the slope of p vs. 7lines remain constant.

Several mechanisms for the resistivity increase following Matthiessen’s
rule

- atoms of different size cause electron scattering

- atoms having different valences introduce a local charge difference
—increase scattering probability

- different electron concentration alter position of Fermi energy —changes
the population density M £) (egn. (6.8)) and conductivity (egn. (7.26))

A Sb
Ap
Sn
In
cd (b)
Ag at. % Solufe | 2 3 4 5 ValencyZ

Figure 7.8. Resistivity change of various dilute silver alloys (schematic). Solvent and
solute are all from the fifth period. (a) Resistivity change versus atomic % solute and

(b) resistivity change due to 1 atomic % of solute.
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7.5.2 Alloys

Linde’s rules : the resistivity of dilute single-phase alloys increase with

the square of the valence differences solute and solvent constitutions (Fig.
7.8)

Nordheim’s rule : true for alloys containing a transition metal (Fig. 7.9)
P =X,ppt+Xgpg +CX, X5 C:materials constant

Kondo effect : some alloys show a minimum in the resistivity at low
temperature. It is due to additional scattering of electrons by magnetic
moments of the solutes and is a deviation from the Matthiessen rule

/d isordered

Max. at O ~ 50%
solute content

|
Cu Cuaﬂu Cufu Au

Figure 7.9. Schematic representation of the resistivity of ordered and disordered
copper—gold alloys.
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7.5.3 ordering

Long range ordering
- the solute atoms are periodically arranged in the matrix

- for example, in a 50/50 alloy the A and B atoms alternately occupy
successive lattice sites, then electron waves are coherently scattered,
which causes a decrease in resistivity (Fig. 7.9)

- Cuz;Au, CuAu Au;Mn

Short range ordering
- small domains in which the atoms are arranged in an ordered fashion
- a. copper-aluminum : much smaller resistance decrease
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7.6 Superconductivity
NNN N NN

Superconductors are materials whose resistivites become
immeasurably small or actually zero below a critical
temperature, 7,

Table 7.1. Critical Temperatures of Some Superconducting Materials.

Materials T. [K] Remarks

Tungsten 0.01 e

Mercury 4.15 H.K. Onnes (1911)

Sulfur-based organic 8 S.S.P. Parkin et al. (1983)
superconductor

Nb;Sn and Nb-Ti 9 Bell Labs (1961), Type II

V;Si 17.1 J.K. Hulm (1953)

Nb;Ge 23.2 (1973)

La-Ba-Cu-O 40 Bednorz and Miiller (1986)

YBa,Cu3O7_,* 92 Wu, Chu, and others (1987)

RBa,Cuz;0O-_,* ~92 R = Gd, Dy, Ho, Er, Tm, Yb, Lu

Bi,Sr,CarCuz 045 113 Maeda et al. (1988)

Tl,CaBa;Cuy Oy, 125 Hermann et al. (1988)

HgBagCagCu303+(5 134 R. Ott et al. (1995)

*The designation *‘1-2-3 compound” refers to the molar ratios of rare earth to alkaline earth to
copper. (See chemical formula.)
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As T decrease below 7, — transition into the superconducting
state

for pure and structurally perfect elements : sharp transition

Transition temperature, 7_often varies
with the atomic mass, m,

m, -T. =const.

A
P
where a is materials constant Pure mefal,
: Isotope effect 7
,/
’fL Alloys and
I’ ceramic sup.cond.
&
f/
} —f
0 T T
K o]

Figure 7.10. Schematic representation of the resistivity of pure and impure super-
conducting elements. 7. is the transition or critical temperature.



N N RN RN

The critical magnetic field strength A, :a magnetic field above
which superconductivity is destroyed

H =H|1-—

Similar way, another limiting

. H L. Normal state
parameter exist: i
oy: Hob =<
The critical current /., above S
which superconductivity is \\ Normal state . Superconducting
destroyed \ . = .
Superconducting \
state ¥ T ?
T
0 T T
H
(a) (b)

Figure 7.11. (a) Dependence of critical field strength, H., at which superconductivity
is destroyed, in relation to the temperature of the specimen. (b) The limits of super-
conductivity are defined in a critical T-H-I-diagram.



7.6 Superconductivity
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Two classes of superconducting materials

- Type | : transition between superconducting and normal state
(destruction of superconducting state by magnetic field) occurs
sharply; H,is relatively low.

- Type Il : the elimination superconducting state by magnetic field is
gradual ; H,, and H_,exist

Normal
state

Pl Supercon-
ducting
state

He H

Figure 7.12. Schematic representation of the resistivity of a zype I (or soft) super-
conductor when a magnetic field of field strength H is applied. These solids behave
like normal conductors above H..
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Type |l superconductor : the interval between H_,and H,,, superconducting
and normal conducting areas are mixed in the solid, called vortex state

Vortices, or fluxoids : small circular regions in the normal state, which
carry the smallest possible unit of a magnetic flux, called a flux quantum

h
¢0_2_e

- current flows perpendicular tcg
these fluxoids — “Lorentz force

on the fluxoids”

- moving fluxoids become

obstacles for drifting electrons

“Fluxoid pinning” by
microstructural
inhomogeneities in the matrix

=2.07x107°(T - m°)

Normally conducting
fluxoids

Lorentz ¢ Me;iger:gtic
for h
G o direction

Current, I
——m

He, Hes H Superconducting matrix
(a) (b)

Figure 7.13. (a) Schematic representation of the resistivity of a type II (or hard)
superconductor. The region between H. and H. is called the vortex state. Above
H>, the solid behaves like a normal conductor. (b) Schematic representation of flux-
oids in a superconducting matrix.



N N NN RN
High-temperature Superconductor

(or High-Tc Superconductor) z
Ceramic superconductor : RBa,Cu,;0,_

Characterized by two-dimensional sheets of
atoms : Cu-O O .

Tetragonal : oxygen deficient, non- @ !
superconducting () cu

Orthorhombic : superconducting

Figure 7.14. Room-temperature unit cell of YBa>Cu30;_,. The structure is an or-
thorhombic layered perovskite (BaTiO3) containing periodic oxygen vacancies. Two
examples for oxygen vacancies are indicated by a “V.” Adapted from M. Stavola,
Phys. Rev. B, 36, 850 (1987).



7.7 Thermoelectric Phenomena
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Fig. 7.19, Potential difference, AV, between two thermocouple is
observed, which is essentially proportional to the temperature

difference, AT: thermoelectric power, or Seebeck coefficient

AV
AT

Cu - 45%Ni : 43 uVIK

For higher temperature

- 90% Ni-10% Cr

- 95%Ni-2% Mn-2%Al

- Pt-13%Rh

0°C Heat

Figure 7.19. Schematic representation of two thermocouples made of copper and
iron which are brought in contact with each other (Seebeck effect)



7.7 Thermoelectric Phenomena
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Peltier effect : A reverse of the Seebeck effect, A direct electric
current that flows through junctions made of different materials causes
one junction to be cooled and the other to heat up (depending on the
direction of the current)

“Thermoelectric refrigerators”

cool

T, T,

o efele]=

e e 1=
(a) (b)

Figure 7.20. Thermoelectric refrigeration devices which make use of the Peltier
effect. (a) Principle arrangement. (b) Efficient device utilizing p- and n-type semi-
conductors (see Section 8.3) in conjunction with metals.
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Chap. 9 Electrical Propérties of Polymers, Ceramics,
Dielectrics, andé Amorphous Materials
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Material characterization by
band structure

- Metal: partially filled
valence bands with electrons

| three p-states

| \one s-state

- Insulator: completely filled

valence bands and a.large T S XTI

energy gap up to unfilled for covalent elements

COﬂdUCtiOn band Figure 8.1. Sharp energy levels, widening into bands, and band ()\'crlaipping with
decreasing atomic distance for covalent elements. (Compare with Fig. 4.14.)

- Semiconductor: in low temperature, completely filled valence
band and a narrow gap between this and the next higher, unfilled

conduction band

Because of band overlapping, the valence band as well as the
conduction band consist of hybrid (mixed) s- and p-state — the eight
highest s+ p states(2 s- and 6 p- states split into two separate (s + p)
bands) (Fig. 8.1)



o
) NN N R YR
Fig. 8.2: calculated band structure of ° I
Si

Conduction

The valence band can accommodate -
4N, electrons: one lowest s-stateand &
three p-states (4 sp- hybrids) and T
empty conduction band of 4 sp- | i
hybrids > i
Gap energy, £ for group IV elements r x -

(Table 8.1) Figure 8.2. Schematic band structure of silicon in the &k, (or X) direction (plotted in

the reduced zone scheme). The separation of the two highest p-states in the valence

band is strongly exaggerated. Compare with the complete band structure of Fig. S.

Temperature dependence of gap energy
(empirical equation) )
_ 1l
E,r =Ejo—=—>—
T +6;
E,yis the band gap energy at 7=0 K,
E~5x10"eV /K 0, :Debyetemperature

47
.'.

Table 8.1. Gap Energies for
Some Group IV Elements at
0 K (see also Appendix 4).

Element Eg [eV]
C (diamond) 5.48
Si 1.17

Sn (gray) 0.08




8.2 Intrinsic Semiconductors

N N N N RR
The conduction mechanism is predominated by the properties of
the pure crystal

(i) Electron excitation from the valence band into conduction
band, usually by thermal energy (interband transition)

(ii)) Electron holes left behind in the valence band can also
contribute to the conduction

- Fermi energy in semiconductor:

Energy for which the Fermi

distribution function, A £) =1/2

E.=-E}2 e T

Figure 8.3. Schematic Fermi distribution function and Fermi energy for an intrinsic
semiconductor for 7" > 0 K. The “smearing out” of the Fermi distribution function
at Ep and Evy 1s exaggerated. For reasons of convenience, the zero point of the energy
scale is placed at the bottom of the conduction band.



8.2 Intrinsic Semiconductors
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Number of electrons in the conduction band

N : number of electrons that have an energy equal to or smaller than
a given energy £,

For an energy interval between Eand E + dE,

dN™ = N(E)dE
Where the population density N(E)=2-Z(E)-F(E)
Density of state Z(E) (see egn. (6.5))

3/2 E-E
Ar* \ R eXp(E_EFj-I—l B

Because £ - E; is about 0.5eV and AT at R.7. is of the order of 10
2eV, the exponential factor is large compared to 1
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Integration over all available electrons that have energies larger
than the energy at the bottom of the conduction band (£ = 0)

N™ = v tzmj jEl/z exp| — E-E dE
2’ I KgT )|

TLE" . exp| — E e
Jo kT )|




8.2 Intrinsic Semiconductors
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Introducing £, =-£ /2 and effective mass ratio m’/m,

N, = N7V : number of conduction band electrons per unit volume

3/2 « \3/2 E
N :1(2ml§Bj e T exp) |
4\ 7 m, 2k, T

32
where the constant factor %(ZmlzB j has the value 4.84 x10" (cm‘3 K 2)

Th

32 c
N, =4.84x10" Me | 132 exp| —| —*
m, 2k, T

- The number of electrons in the conduction band per cm? is a function of £,
and 7. A numerical evaluation of N, per cm3 in Si at RT ~10°: only one in
1013 atoms contributes an electron to the conduction

- “The number of electrons in the conduction band” = “the number of holes

in the valence band”. Thus equation for N, can be written for the holes by
assuming m’,=m’,



= 8.2 Intrinsic Semiconductors
L B B B
_ E“ ,’iz(E}
- Conductivity of an intrinsic _ Conduclon” / c-ery
. . . == 2 exp(-——=
semiconductor is determined by ] ;C__(_ ol y
o Density of electrons, Ng
number of current carriers (electrons R )
R ope Density of holes,
and holes) and also by their mobility . _______%_“”EL"_ S
The mobility of the current carriers v : iy "
N(E)
U Figure 8.4. Demsity of electrons ( N.) and holes (Ny) for an intrinsic semiconducto

H = E drift velocity per unit £

log N
.
log a

From J =okt & J — N Le h ‘;-'-"‘::“‘:rm_

S |/
- f

/
S A T + —

T 200 300 400 500 T 200 300 400 500 T

)
O = N —e = N e (a) (b) (c)
= H

Figure 8.5. Schematic representation of the temperature dependence of (a) electron

O = N e“ -+ N e“ and hole mobilities, (b) number of carriers in an intrinsic semiconductor, and (c)
e e h h»

conductivity for an intrinsic semiconductor. (7 is given in Kelvin.)

3/2 - EoY
o=484x10" 2| T e(n +p Yexp| —| —=—
m, (K, + 1, )exp T )

*




@~ 8.3 Extrinsic Semiconductors
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8.3.1 Donors and Acceptors

Extrinsic semicondutors: in most semiconductor devices, a considerably
higher number of charge carriers are introduced by doping,i.e., by adding
small amount of impurities (dopants) to the semiconductor materials

- n-type semiconductor: dopants (donor, element of group V : P,As,Sb)
— major carrier :donor electrons (negative carrier)

- p-type semiconductor: dopants (acceptor, elements of group il :
B,Al,Ga,ln)

— major carrier: holes (positive carriers) # \
> _

Si negative

i
\"‘/ \/ \:harge cloud

Figure 8.6. Two-dimensional representation of the silicon lattice. An impurity atom
of group V of the periodic table (P) is shown to replace a silicon atom. The chargg
cloud around the phosphorus atom stems from the extra phosphorus electron. Eack
electron pair between two silicon atoms constitutes a covalent bond (electron shar.
ing). The two electrons of such a pair are indistinguishable, but must have opposite
spin to satisfy the Pauli principle.
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[ele:nans 101?
cm’

1015

10"

~|leV

1014
10"

!
I | { L o
O 100 200 300 400 T(K]

10"

(a) (b) Figure 8.8. Schematic representation of the number of electrons per cubic centimeter
B _ _ In the conduction band versus temperature for an extrinsic semiconductor with low
Figure 8.7. (a) Donor and (b) acceptor levels in extrinsic semiconductors. doping.

8.3.3 Temperature Dependence of the Number of Carriers

With increasing temperature,

- n-type: the donor electrons overcome small potential barrier (Fig 8.7) :
excite from the donor levels into the conduction band. — N, deviation from
intrinsic way. Once all electron in donor levels have been excited into
conduction band, further temperature increase does not create additional
electron (Fig8.8)

- p-type : electrons excite from valence band into the acceptor levels,
creating positive charge carriers (holes).
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8.3 Extrinsic Semiconductors

N QN R
8.3.4 Conductivity

where N_,: number of donor electrons

O = N dee:ue

L. : mobility of the donor electrons

N, U, :two competing effects on conductivity of semiconductors

- For low doping and at low temperature, the conductivity decreases
with increasing temperature : lattice vibration — decrease mobility

At higher temperature:
conductivity increase : intrinsic

effects — increase number of s 10°F . N =10"[ 2]

carriers (L] ol - / e
10' =

- For high doping : temperature 1|

~b

dependence on conductivity is less 10 _
pronounced due to the already e —
higher number of carrier v

Figure 8.9. Conductivity of two extrinsic semiconductors, (a) high doping and
(b) low doping. Ny = number of donor atoms per cubic centimeter.
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8.3.5 Fermi Energy

Elevel position F A - W
e T ™ e i donor levels
- n-type semiconductor : E¢
_éi _________________
: between donor level
and
° Ev
conduction band
1 § 1 1 | S 1 1
0 200 400 600 1rxy

- p-type semiconductor _

“1gure 8_.10. Fermi level of an n-type semiconductor as a function of temperature.
‘b I i ~ 10'° (atoms per cubic centimeter).
: between acceptor leve
and valence band

With increasing temperature, £-of both type semiconductors
approach the value for intrinsic semiconductors, i.e., - Ega
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Evaluation of the effective mass of the charge carriers in
semiconductors

m¥is inversely proportional to the curvature of an electron band.

Consider the upper portion of the valence bands and the lower portion of the
conduction bands for Si

Curvature: convex
downward -> a
negative effective
mass, implying this
band is populated by

Curvature :
convex upward ->
populated by

Conduction electrons
band

electron holes. In 3-d, a spheroid
— shape:
2 heavy holes : e
smaller curvature | Valence Longitudinal mass
! an
S | my*
: . |
1light hole : larger 5 TR Transverse mass m;*
curvature r X

Figure 8.2. Schematic band structure of silicon in the k, (or X) direction (plotted in
the reduced zone scheme). The separation of the two highest p-states in the valence

37
.1.

band is strongly exaggerated. Compare with the complete band structure of Fig. 5.2



8.5 Hall Effect
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“Number and type of charge carriers can be measured by making
use of Hall effect”

Consider n-type semiconductor

Suppose electric current density j
flow in the positive xdirection and
magnetic field is applied z
direction

Lorentz force, F, on electrons:
F =vB.e

The electron accumulate on one
side of the slap — cause Hall field
F., thus Hall force

F, =€k,

Figure 8.11. Schematic representation of the Hall effect in an n-type semiconductor
(or a metal in which electrons are the predominant current carriers).



. 8.5 Hall Effect
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(continued) In equilibrium F,+ F, =0 U, Bze = EEy
E, =0v,B,

J, =—Nuv,e

“ —_

Combining the two, yields for the number of conduction
electrons per unit volume

N = — ) Bz variables on the right side of this equation can
eEy be measured and thus N can be obtained.
1

- Hall constant is defined as RH =

Ne

which is inversely proportional to the density of charge carriers, N.

- negative (positive) R, : major charge carrier are electrons (holes)
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Additional Materials

(Chap. 19 in Materials Science & Engineering,
An Introduction, 4t Ed., W.D. Callister Jr.)
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Ficune 18,10 Electron bonding model of

_electrical conduction in intrinsic silicon: , 7
o (a) before excitation, (b) and (¢) after
excitation (the subsequent free-electron and

hole motions in response to an external electric
o field).
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Ficure 18.11  Extrinsic n-type
semiconduction model (electron bonding).
(a) An impurity atom such as phosphorus,
having five valence electrons, may substitute
for a silicon atom. This results in an extra
bonding electron, which is bound to the
impurity atom and orbits it. (b) Excitation to
form a free electron. (¢) The motion of this
free electron in response to an electric field.

Ficure 18.12

(a) Electron energy
band scheme for a
donor impurity level
located within the band
gap and just below the
bottom of the
conduction band.

(b) Excitation from a
donor state in which a
free electron is
generated in the
conduction band.

Conduction
band

Band gap
oo

Energy —=

Valence
band

n-type semiconductigh i§° "

- Addition of 5 valence electrons to Si:
P, As, Sb
(group VA in periodic table)

QUITITIITT

|

- Donor state

96665668
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2
22
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o
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I Free electron in

conduction band
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Ficune 18,13 Extrinsic p-type semiconduction model (electron bonding). (a) An
impurity atom such as boron, having three valence electrons, may substitute for a
silicon atom. This results in a deficiency of one valence electron, or a hole
associated with the impurity atom. (b) The motion of this hole in response to an
electric field.
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= L
(a) Energy band go o
scheme for an acceptor T 8 =
impurity level located S —
within the band gap
and just above the top T )
of the valence band. z © £
. . e O
(b) Excitation of an 2 o
. wd - RO
electron into the = Acsigfgor
acceptor level, leaving o ©-
. : 2 -+
behind a hole in the BiE -3
© O &
valence band. s e
(a)

LI I S

p-type semiconglicionly”

to Si, Ge: B, Al

-Addition of 3 valence electrons

(group ITIA in periodic table)

NRRARARE

Hole in

_gﬁ-___Jf valence band



_ U NN
Part 11 Electrical Properties of

I\/Iatérials

Chap. 7 Electrical Condéuction INn Metals and Alloys
Chap. 8 Semiconductorfs

Chap. 9 Electrical Propérties of Polymers, Ceramics,
Dielectrics, andé Amorphous Materials



»* 8.6 Compound Semiconductors
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GaAs (I1l1-V compound)

- larger band gap compared to Si

- larger electron mobility due to smaller electron effective mass (Fig 5.24)

- direct band gap (chap 12) : optical properties

Applications
- High-frequency devices
- Laser / light-emitting diodes (LED)



8.6 Compound Semlconductors. CCCC

Other compound semiconductors
(applications: optoelectronic devices)

Group llI-V elements
- GaP, GaN, InP, InAs, InSb, AlISb

Group lI-V] elements
-2Zn0, ZnS, ZnSe, CdS, CdTe, HgS

Group IV-VI
- PbS, PbSe, and PbTe

Ternary or quaternary alloys

- Al,Ga, ,As, Al,Ga, ,As Sb, , GaAs, ,P,: LEDs

GaAs,_As also used in modulation-doped field-effect transistors
(MODFET)

Silicon carbide: Group IV-IV
- band gap 3eV, very high temperature(700°C) device
- Emit light in the blue end of the visible spectrum
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8.7.1 Metal-Semiconductor Contacts

-

1
Types of contacts in \ Conduction band
semiconductor/metal _ : 3

i
s _.EF i
| |
|
|

\ .

rectifying contact (8.7.2)

widely utilized in electronic
devices to convert
alternating current into
direct current

Valence band

4+ 4+ ++++

Surface i
_’, '
X |

|
|
Surface |l
]

—-IJ

-

\‘“Depletion layer \“IDeplet'ron layer

. (a) (b)
ohmic contact '

Figure 8.12. (a) Band diagram for an n-type semiconductor whose surface has been

electron can flow in both negatively charged. (b) Band diagram for a p-type semiconductor, the surface of
ways and obeys Ohm’s law which is positively charged. X is the distance from the surface.

Band diagram for n-type and p-type semiconductors (Fig 8.12)

n- type : surface negatively charged — repelling force on electron band edge
— bent upward , depletion layer (space-charge region)

p-type: band edge bent downward
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8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

Work function, ¢ . the energy difference between the Fermi energy and the
ionization energy which is necessary to transport an electron from £.to

infinity

Metal / n-type semiconductor, ¢, > ¢. : After contact (Fig 8.13b), electrons
flow from semiconductor “down” to metal until Fermi energies of both solids
are equal — the metal will be charged negatively and potential barrier is

formed just as shown in Fig 8.12

--- ——— ——& — lonization
T Y T energy
| X
- Ou -
| I : i : AP é
Er[p2 mome =t I
Ln N )
Metal n-type semiconductor K
[
a) i,
electron b)
flow
Figure 8.13. Energy bands for a metal and an n-type semiconductor (a) before and

(b) after contact. ¢y > ¢s. The potential barrier is marked with heavy lines. y is the
electron affinity.

In equilibrium state,
electrons from both sides
cross the potential barrier.
This electron flow constitutes
the so-called diffusion
current
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8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

Metal / p-type semiconductor, ¢,,< ¢

Electrons diffuse from metal into the semiconductor, thus charging the metal
and, therefore, the surface of the semiconductor positively. Consequently a

downward potential barrier is formed.

Contact potential:
the potential height for an electron diffusing from the semiconductor into

metal: ¢,— ¢ height of the potential barrier from metal side : ¢,— X, where x

electron affinity et
[ ] energy
g
Dm > m— i il :
Y~~~ cond,
J %~~~ band
Ee -———-1— N Er
5
'35'6»
cem— - i
N e +
valence 3
band &
Metal [
p-type ‘
semiconductor Metal p-type semiconductor
(a) (b)
Figure 8.14. Energy bands for a metal and a p-type semiconductor (a) before and

(b) after contact. ¢y < ¢s.
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8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

Net current flow in metal / n-type semiconductor by d.c biasing

- Reverse bias (when metal is connected to the negative terminal) : metal is
charged even more negatively — the electron in the semiconductor are
repelled even more — the potential barrier is increased and depletion layer

becomes wider (Fig 8.15a)

Both barrier are relatively high, the diffusion currents in both directions are
negligible, voltage independent small drift current from metal into the

S e m i C 0 n d u Cto r P S R L S ﬂ*;._-_'/_;..-;;»_;:.--l. S

- Forward Bias (semiconductor is
connected to negative terminal)

The potential barrier reduced. the st (R et
H H | layer i e
depletion layer is narrow _ " 2 I =
il -l
: a large electron flow from o fow .
(a) | (b)

semiconductor into metal
Figure 8.15. Metal-semiconductor contact with two polarities: (a) reverse bias and
(b) forward bias. The number of electrons that flow in both directions and the net

current is indicated by the length of the arrows. The potential barriers are marked by
heavy lines.



8.7 Semiconductor Devices

NN NN NN
8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

The voltage current characteristic (Fig 8.16a)
Rectifier : convert alternating current into direct current (Fig 8.16b)
The current that flows from the metal into semiconductor

b — 1 where, Ais the area of contact (see Fig.
2 .
| us = ACT “exp| —| 24—~ 8.13) and Cis a constant
+V Alternating current
7N
: 0
The F:urrent flovymg from : N Nt
semiconductor into the metal P,
—\
— —eV +V Rectified current
l,,, = ACT “ exp| — P = s Ll
kBT ‘ % a Reverse /-\ Reverse
Forward Forward
reverse bias forward bias -V Time —>

(a) (b)

Figure 8.16. (a) Characteristic of a rectifier. The reverse current is grossly ex-
aggerated! (b) Voltage versus time curves to demonstrate the behavior of an alter-
nating current and a current for which the negative voltage has been eliminated.
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8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

The netcurrent/ =/, -/,s consists of namely, the saturation current

|, =ACT? exp{ V’T‘( T¢S ﬂ

and voltage-dependent term. The net current is obtained by combining the
last two equation

Inet = Is{exp[%j_l}
B

Forward bias (positive V) the net current increase exponentially
with V
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8.7.3 Ohmic Contacts (Metallization)

Ohmic contact: no barrier exists for the flow of electrons in either diction (Fig
8.17¢c)

For the case of metal / n-type semiconductor contact, and ¢, < ?3, electron
flow from metal to semiconductor, charging metal positively.(cf, another case
: metal / n-type semiconductor contact, and ¢,.> ¢.)

The band of semiconductor bend “downward” and no barrier

_T_______T_—ionizction energy
5]
lM _‘@S _____________
. Ll
1 f——— E:
Metal | 6 lypeSC /
Metal . s
n-type SC. (c)
(a) (b)

Figure 8.17. Ohmic contact between metal and n-type semiconductor (@y < ds):
(a) Metal and semiconductor are separate. (b) Metal and semiconductor are in cofi=
tact. (¢) Current—voltage characteristic.
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8.7.4 p-n Rectifier (Diode)

After p-n contact : electron flow from higher level (n-type) “down” into p-
type so that p-slide is negatively charged

Conduction band: electron in the p-region diffuse “down” into n-region, in
equilibrium state the number of electrons crossing the junction in both
directions is identical

7 Conduction

/ AL
/////2 band

donor levels

s Valence
oo band

depletion
layer

Figure 8.18. Schematic band diagram for a p—n junction (diode) in equilibrium.
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o gro ° g depletion P n P
8.7.4 p-n Rectifier (Diode) _/- s
“quasi-Fermi levels” (Fig 8.19a) 4 I T Fomvand bis
: A w—T
Electron density varies in the | PR S S
junction from the n-side to the p- L Roverse bias A
side by many orders of magnitude, |
while electron current is almost ()
constant. Consequently, the £.is 0 o © H' o,
almost constant over depletion | |!' L Hl oP® o]
layer | |
External potential applied (Fig sB o B ‘ o 8 i ———
8.1 9) ‘ if"#"""'i’ L AOE ‘ Current flow
(d) Forward bias
- Reverse bias (connecting positive ! O
terminal to n-side): depletion layer S s
becomes wider and potential () Reverse Dias i
barrier grows higher !
- Forward bias: barrier decreases _

in height, a large net electron flow (@)
OCCurs from ntype tO ,O-type region Figure 8.19. (a) 4 (b) Reverse and (c)+ (d) forward biasing of a p—n junction

(diode). (¢) Symbol of a p-n rectifier in a circuit and designation of polarity in an
actual rectifier.
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8.7.4 p-n Rectifier (Diode)

The diffusion constant is connected with the mobility (Einstein relation)

__ﬁ%pkéT
ep e
The saturation current, / in reverse bias, Shockley equation (ideal diode

law)

Cep Dep 4+ Chn Dhn
L L.

ep

|, = Ae

Cin: equilibrium concentration of the holes in n-region, C,, :concentration of
electron in the p-region, D: diffusion constant, L: diffusion length

The minority carrier diffusion length is given by a reinterpretation of a well
known equation of thermodynamics,

L =./D._-7

ep ep " éep

while 7, is the lifetime of electrons in the p-type region before these
electrons are annihilated by recombination with holes



8.7.5 Zener Diode
- Breakdown: when the reverse voltage is € ' o
increased above a critical value, high /@ 0
electric filed causes some electrons to Py
become accelerated with a velocity at 9"’2@—
which impact ionization occurs — ™ i, _r©
avalanching process S "@‘\@
- Zener breakdown (Tunneling): another gy
breakdown process; when the doping is &
heavy and thus the barrier width /
becomes very thin (< 10nm), applying  brezkdow “hias
high enough reverse voltage causes the /
bands to shift to the degree that some : : : ; " =
electron in the valence band of p-side are( Roverse kil Heddiaied
apposite to empty states in the o o
conduction band of n-side and these =
electron can tunnel through the depletion
layer (Fig 8.20b) ; a circuit protection x|, ) e S L L L
device (Fig 8.20d) breakdown voltage at a large reverse voltage. As in Fig. 8.16(a), I is shown grossly

exaggerated. (d) Zener diode in a circuit for voltage regulation
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Al

: : . 1 el _
: a p-njunction diode P~
AL 2
1. Light of high energy fall on or e cond. bona
near the depleted area T
bz WL Al
. | | valence band (®)
2. Electron are lifted from the NESSAT
o =
valence band into the depleted”"
. . area
conduction band, leaving holes _
. Figure 8.21. Solar cell; the p-region is only about 1 xm thick. (a) side view: (b) Front
in the valence band

3. The electron in the depleted area immediately “roll down” into the n+region,
whereas the holes are swept into the pregion

— The carriers can be measured in an external circuit (photographic
exposure meter) or used to generate electrical energy

In order to increase the effective area of the junction (Fig 8.21)
- extremely thin p-type region (1 vm) :light radiation through p+region
- narrow metal electrode (in the form of strips)
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8.7 Semiconductor Devices
8.7.6 Solar Cell (Photodiode)

- The closer a carrier was created to
the p-nboundary, the larger is its
change of contributing to the
current. (the electron - hole created rigure 522, Schematic representation of the contribution of electrons and holes to

some distance away from the the photocurrent (1) with respect to the distance x from the p—n junction.
depleted region, do not separated — .
by junction field and eventually LN— N ——
) P SSUr—— M
recombine; do not contribute to the 3 —i—

Substrate (n")

electric current) : see Fig 8.22
+
- Quantum effiCiency Figure 8.23. Schematic of a transverse-type photodiode that is connected to a light-

carrying medium such as an optical fiber or a waveguide (L ~ 100 nm).

exp(—aW) W, L: the width and length of depletion region

1+l a - a parameter that determines the degree of
photon absorption by the electrons

n=1
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8.7 Semiconductor Devices

*8.7.7 Avalanche Photodiode

A p-nphotodiode that is operated in a high reverse bias
mode, i.e. at near-breakdown voltage

. Electron and holes created by transition from the valence

band into the conduction band by the incident light, are
accelerated through the depleted area with high velocity —
which, in turn, ionize the lattice atom and generate secondary
hole-electron pairs, thus generate even more hole-electron
pairs — photo current gain

. Low light-level application, detectors in long-distance, fiber

optics telecommunication system
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8.7 Semiconductor Devices

*8.7.8 Tunnel Diode

A p-njunction diode - depleted
area is very narrow ; — heavy
doping Fermi energy extends
into the valence band of p-type
semiconductor

energy band diagram and |-V
characteristic : Fig 8.24

- The voltage is increase to 100mV
(in Fig 8.24d), the potential barrier
might be decreased do much that,
opposite to the filled n-conduction
state, no tunneling take place;
current decreases with increasing
forward voltage: “negative current-
voltage characteristic” : c-d region

No
(a) bias
Re\
(b) big
: Small
(c) forward
bias
(mAl 3+
{d] _F:/-‘ Medium rl"y" S8 |4 ¢ .|/
forward T |
‘___‘/T_‘_ bias | t i
— EnE /1a 100 200 tmv
-+ .!f | - Lr
o forward bias
/|
!
P /
() & == Normal !
- forward
R - PR 4 Dbias :
(1)
Figure 8.24. (a)-(e) Schematic energy band diagrams for highly doped n- and p-type

semiconductors (tunnel diode). (a) No bias. (b) Reverse bias. (¢) Small forward bias
d) Medium forward bias. (e) “Normal™ forward bias. (f) Voltage—current charac-
teristic for a tunnel diode.
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8.7.9 Transistors i i

Bipolar Junction Transistor *_f_\’—“ 7 o
n-p-ntransistor (n-p diode back to back EF‘““““T;: “““““““

with p-ndiode) ; three connections of the _/—\_ 5’ b

transistor are called emitter(E), base(B),
and collector(C)

Emitter Base Collector

Figure 8.25. Schematic band diagram of an unbiased n-p-n bipolar junctio
transistor.

- For the amplification of a signal, the “diode” consisting of emitter and base
is forward biased, whereas the base-collector "diode” is strongly reverse
biased (Fig 8.26a)

1.The electrons injected into the emitter needed to have enough energy to
be able to “climb” the potential barrier into the base region.

2.The electron diffuse through the base area until they heave reached the
depletion region between base and collector.

3.The electrons are accelerated in the strong electric field produced by the
collector voltage — this acceleration case amplification of the input a.c
signal
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b 4

bias voltage on the base
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8.7 Semiconductor Devices

M input G__'_E_y % c -
8.7.9 Transistors e I :W?’\%
Bipolar Junction Transistor L
The electron flow from emitter to A ;'[c%émon e c
collector can be controlled by the e i @

ot . b | foverse (©)

- A large positive (forward) bias e .

decreases the potential barrier
Figure 8.26. (a) Biasing of an n—p—n bipolar transistor. (b) Schematic band diagram

and the width of the depleted =" " ™ . , _ el b
. . (partial) of a biased n—p-n bipolar transistor. (c) Symbol used for a bipolar n—p—n
region between emit transistor.

— The electron injection into the p-area is relatively high

- A small, but still positive base voltage results in a comparatively larger
barrier height and in a wider depletion area, which causes a smaller
electron injection from the emitter into the base area.

- the strong collector signal mimics the waveform of the input signal

: this feature is utilized for the amplification of music or voice, etc
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8.7 Semiconductor Devices

8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

- A field-effect transistor consists of -

a channel through which the charge HHIMQ?
carriers need to pass on their way ’ o\ LT
from a source (S) to the drain (D) |

(G)

N N RN RN

s
0
) \ .-
GO~ - ‘ . J—\'J B
Drair \L/
(D) +—
Oxide D

- The electrons that flow from the °l
source to the drain can be J
controlled by an electric field which : j]

is established by applying a voltage

to the so-called gate (G) e L L ST
- The gate electrode is electrically
insulated from the channel by a thin '[‘,"h '; 'l*l" }‘; ' 35,

oxide layer which preventad.c
current to flow from gate to channel
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8.7 Semiconductor Devices
8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

Two types of MOSFETs are common:
1. Depletion-type MOSFET or “normally on” MOSFET

- Consists of high-doped source and drain regions and a low
doped channel, all of the same polarity (e.g. n-type): Fig8.28a

- The channel width is controlled by the voltage between gate and
body

- A negative charge on the gate drives the channel electrons away
from the gate and towards the substrate; the conductive region
of the channel becomes narrowed by a negative gate voltage.

- The more negative voltage (Vg), the smaller the current through
the channel from source to drain until eventually the current is
pinched off (Fig 8.28c)
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8.7 Semiconductor Devices
8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor o |
Source (S Gate (G) Drain (D) [ ] |..‘__.4_m o
2. Enhancement-type MOSFET or : w0\ — /
“normally-off” MOSFET s W
- No built-in channel for electron i AT | Y
conduction at least as long as no T — |
gate voltage is applied. 6 |
- Iflarge enough positive voltage is ‘ /
applied to the gate, most of the holes bl !
immediately below the gate oxide
are repe”ed, i.e., they are driven into Figure 8.29. (a) Enhancement '_m'st.'m;llll_\'—nﬂ‘]-1_\pl:. r_s-ch:umcl MOSFET. For I\E-L'l-.n'l\.
. see the caption of Fig. 8.28. (b) Circuit symbol. (The broken line indicates that the
the SUbStrate, thUS remOV'ng path between S and D is normally interrupted.) (c) Gate voltage (V)/drain current
(Ip) characteristic. Vr is the threshold gate voltage above which a drain current

possible recombination sites and sets in

negative charge carriers are attracted into this channel; a path for the
electrons between source and drain can be created by a positive gate
voltage

- Usages: memories, microcomputers, logic circuits, amplifiers, analog
switches and operational amplifiers
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8.7 Semiconductor Devices

8.7.9 Transistors

Metal-Oxide-Semiconductor Field-Effect Transistor
CMOSFET: complementary MOSFET C-MOS Transistor input (V-)

- Both an n-channel and a p-channel
device are integrated on one chip and
wired in series

- This tandem device has become the
dominant technology for information
processing, because of its low (On) (0ff)
operating voltage (01\/), |0W pOWder ?rtatlﬁ:s/-/g\’/;/]:/vw.plexoﬁ.com/SBF/images/tokuyasu-mirror/cmos-
consumption, and short channel length

with accompanying high speed
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8.7.10. Quantum Semiconductor Devices = ?/77%{% _ =7] ==

-To explain the nature of a quantum ; -

device: recall “the behavior of one AGaAs '

electron in a potential well (Sec 4.2)”

- Size quantization : dimensions of the % 2 o

crystalline solid are reduced to the size of ]

the wavelength of electron (e.g., 20nm for 77

GaAs ; — density of state, Z(E) is « i : .-

quantized { L N
| SIS (.

- A small-band gap material is sandwiched — k~— -

between two layers of a “wide-band gap H— o o

material (Fig 8.33a,b): the configuration )

for which all three dimensions of the LAl b el e e it

center materials have values near the diference between GaAs (E; = 142 ¢V) and AlGaAs is greatly exaggerated. This

difference may be as small as 0.2 eV.) (c) Discontinuous density of energy states for a

electron wavelength, is called quantum guantum dot sructur, The dashed parabola indicate th densiy of taesfora bl
dot (quantum wire for 2-d, quantum well ‘

for 1-d confinement) — potential barrier

between two GaAs region
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8.7.10. Quantum Semiconductor Devices

- Fig 8.34: If a large voltage is
applied to the device, the
conduction band of the n-doped
GaAs is raised to a level at which
its conduction electrons are at the
same height as an empty energy
state of the center GaAs region.

— At this point, the electrons are
capable of tunneling though the
potential barrier formed by the
AlGaAs region and thus reach one
of these discrete energy state

E |

7/

it

et

I |
I |
I I
| GaAs |
I |
] 1

I

]
n-doped GaAs : | n-doped GaAs  distance
| AlGaAs AlGaas |
I I I
(a)
{l
E
- +
Conduction
band ~ S
L o
d
(b)

Figure 8.34. Parts of two energy band structures for the quantum device shown in
Fig. 8.33. For simplicity, only the conduction bands are shown. (a) No applied volt-

age. (b) With applied voltage, which facilitates electron tunneling from the conduc-

tion band of the n-doped GaAs into an empty energy level of the center GaAs region.
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8.7.10. Quantum Semiconductor Devices

- If a slightly higher voltage is |
applied, the electrons of the n-
doped GaAs are no longer at

par with an empty energy level

and tunneling comes to a near
standstill a I-V characteristic :
with negative differential i

. . Figure 8.35. Current-voltage characteristic of a quantum dot device as depicted in
resistance (Fig 8.35) Figs. 8.33 and 8.34.

- An array of a multitude of quantum wells stacked on top of each other
: The periodic arrangement of wide-band gap and narrow band gap
materials is called supperlattice

- Quantum devices are about one-hundredth of the size of presently
known FETs

- The major problems have still to be overcome concerning
interconnections, device architecture, and fabrication of three-
terminal devices
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8.7.11. Semiconductor Device Fabrication

(Text reading p.146-155) i ) i
Techniques for single-crystal growth
1.Czochralski
2. Float-zone technique
3. Bridgman tech <Y
N S /

Once the rods have been obtained, T I
M ‘Ln __'//;ﬁ_ EiEniT .____;'l>:>—-— Ingot

They are sliced, lapped, etched, and R =

polished to obtain 0.3-0.4mm thick ey e——

618°C 1250°C

(c)

wafe rs Figure 8.36. Techniques for single-crystal growth. (a) Czochralski method. Heating
is performed by radio frequency coils or (for big crucibles) by resistance heating.
(b) Float zone method. (¢) Bridgman method (demonstrated for GaAs). (d) A 300
mm (12 inch) silicon single crystal is removed from the crucible. (Courtesy Wacker
Siltronic AG) ’
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/

8.7.11. Semiconductor Device 2 surace %//M/ o I— %

Fabrication s,
N ST

Device fabrication on the wafers - M////// /////% .

- Surface oxidation, g e —.

- Photolithography

o Bt o iy [ W/// \.

- Photoresist Strip 6. Onide ech 7

- Doping —

- Metallization E e %22 o %//%

- Packaging

8. Doping }
// 7

Figure 8.37. Photoresist (PR) masking sequence to obtain a p—n—p bipolar transistor
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Chap. 8 Semiconductorfs

Chap. 9 Electrical Propérties of Polymers, Ceramics,
Dielectrics, andé Amorphous Materials
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9.1 Conducting Polymers and Organic Metals

Polymers consist of o Fiﬂ o q ol Hla
o | I

(macro)molecules which are long and  —c-c+ctc-c- e C'ch'_ (::1"”"?_

chainlike. Several atoms combine HOH{H|H H Aomih omn

el |

and form a specific building block, (a) (b)

Ca"ed a monomer, and thousands Of Figure 9.1. (a) l’olycthylcltw: (b) I’o]yvin),-'l.uhlm'idc. (Thf dashed cnclt:mﬂjcs n?m'k .lhe
monomer Combine to a polymer, (see t}::lifhlllll Polyethylene is frequently depicted as two CH repeat units for historical
Fig. 9.1)

The binding force between

individual atoms within a chain:

usually covalent and sometimes

ionic in nature

The binding force between
macr0m0|eCU|eS: a Weak Van der 11111531; 9.2. Simplified representation of a semicrystalline polymer (folded-chain
Walis type

Degree of order or degree of periodicity of the atoms in polymers:

dependent on the length of the molecules and on the regularity of

molecular structure. Certain heat treatment affects some structural
parameters; e.g. slow cooling yield, for certain polymer, a crystalline

structure (Fig. 9.2)



s

9;1 Conducting Polymers and Organic Metals

A high degree of crystallinity and a
relatively high conductivity have been
found in polyacetylene, a simplest
conjugated organic polymer; the
prototype of a conducting polymer

A conjugated polymer has alternating
single and double bonds between the
carbons (see Fig. 9.3)

Two principle isomers: trans, cis

trans : the hydrogen atoms are
alternately bound to opposite sides of
the carbon

cis . the hydrogen atoms are situated
on the same side of the double-bond
carbons

Trans-polyacetylene is obtained as
silvery flexible film that has a
conductivity comparable to that of
silicon (Fig. 9.4)
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N N R
Cis TRANS
H\C _ C/H H\c _ C/H H\C _ C/H "If T T T T T
7/ \C=C/ Czc/ \C-— /C\ /c\ /C\ /c\ fc\ /C\
/ \ X c c C c Cc
S R
(a) (b)

Figure 9.3. Theoretical isomers of polyacetylene (a) cis-transoidal isomer, (b) trans-
transoidal isomer. Polyacetylene is synthesized as cis-(CH), and is then isomerized
into the trans-configuration by heating it at 150°C for a few minutes.

(7om)
o\
| {lcm
' 6
Me|tals o Cepper
108 Graphite: AsFg
! 0 (SN),
B (CH)y: AsFg
10% —
Doped polypyrrole
T 5 Graphite
Semi- jpoorly difined conducting polymers
conductors 1072 —
10~*
Trans (CH)y
1076
A
| 10—8 =
10710 -
Cis (CH)x
10~12 )
Insulators Ny|0n
10714 —
10716 Teflon
Polyester

Figure 9.4. Conductivities of polymers in Q' ecm~!. (Compare with Fig. 7.1.)



Electrical Properties of Polymers, Ceramics,
Dielectrics, and Amorphous Materials NN NN NN

9. 1 Conducting Polymers and Organic Metals
Calculated band structure for trans-(CH)x

ENERGY (eV)

assuming different distances between s

the carbon atoms N

- Fig 9.5(a) all carbon length are equal, 5

the resulting band in the highest is E:x0

partially filled : metal behavior ; the 8

electrons in the double bond of a -10

conjugated polymer (called z-electron) -19)

are loosely bound to the neighboring =

carbon atoms, thus one of these i o o

electron is easily dissociated from Figiie 9.5 Caloilated band siructurs:of transCHD); for dilfevent catbonacatbon
carbon atom by a small energy — [ 0 i 100 ) sk et (608 6
contribute to electrical conduction 27,y | P slemton i Beped vit permision from P Gran

- Fig 9.5(b),(c) : Real case; the distance between the carbon atoms alternate
because of single and double bonds. The width of band gap near the Fermi
level depends mainly on the extent of alternating bond lengths : semiconductor
or insulator. In order to improve the conductivity of (CH), : decrease the
disparity in the carbon-carbon bond lengths, thus approaching uniform bond
length.



Electrical Properties of Polymers, Ceramics,

5

Dielectrics, and Amorphous Materials
b S NN NN
9.1 Conducting Polymers and Organic Metals _°[—
Conductivity increase by doping in polymer- [l T AsF g i
based semiconductor : Fig 9.4 and Fig 9.6 104 _

12

- The dopant molecules diffuse between the
(CH), chains and provide a charge transfer - L
between the polymer and the dopant

- Doping level in polymer “20 ~ 40 %” -2

Conduction mechanism in polyacetylene :

“soliton” is a structural distortion in a 18
conjugated polymer and is generated when a
single bond meets another single bond as

shown in Fig 9.7. 10 O

0 0.1 0.2
CONCENTRATION

At the distortion point a localized nonbonding
electron State iS generated in the Center of Figure 9.6. Conductivity change of polyacetylene as a result of doping.
forbidden band.

Near the center of a soliton, the bond lengths
aretelqual : uniform bond length constitute a M H OH M
metal.

H H H
\ | é :
. L NANILN /é\ )\ A\ ,}\
When many solitons have been formed and \\f A A A A

their sphere of influence overlap, a metal-like H H H K K H
conductor would resulit.

Figure 9.7. A broken symmetry in polyacetylene creates a soliton. (An antisoliton 1s
the mirror image of a soliton. )
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9.1 Conducting Polymers and Organic Metals

Other conductive polymers: polyanilines, polypyrroles,
polythiophenes, polyphenylenes, polypphenylene vinylene, and
their derivatives

Charge-transfer complexes : the conduction is increased by producing
a mixture of easily ionized electron donors and electron acceptors, The
charge is shared between the donors and acceptors: graphite, AsF.-doped
graphite (higher conductivity)

Charge-transfer salts :a donor molecule, such as tetrathiafulvalene
(TTF), transfer electrons to an acceptor molecule, like
tetracyanoquinodimethane (TCNQ) : the planar molecules stack on top of
each other in sheets, thus allowing an overlap of wave functions and a
formation of conduction bands that are partially filled with electron due to
the charge transfer ; doped complexes of C60 (so called Buckyball) which
exhibits superconductivity at low temperature.
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9.2 lonic Conduction P’

E |5~ D
The ionic conduction is caused * P
by the movement of some * A h
charged ions which hop from o 2 . : .
lattice site to lattice site under —d—> e B
the influence of electric field. — distance

L .. (a) (b)
This ionic conductivity,

Figure 9.8. Schematic representation of a potential barrier, which an ion (@) has to
N overcome to exchange its site with a vacancy ([]). (a) Without an external electric
— . eu. field; (b) with an external electric field. 4 = distance between two adjacent, equivalent
n 1on //llon lattice sites; Q = activation energy.
N.,: number of ions per unit volume that can change their position under
the influence of an electric filed

Uion - the mobility of ions

The conditions for ions to move in a crystalline solid
1. They must have sufficient energy to pass over an energy barrier. (Fig. 9.8)

2. The lattice site next to a conducting ion must be empty. — N,,,, depends

on the vacancy concentration in the crystal (i.e., on the number of Schotty
defects)
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9.2 lonic Conduction

Diffusion theory links the mobility of ions with the diffusion coefficient, D
through Einstein relation

De D=D,e O Arrhenius equation
ion — 5~ = XP|—| ——=
lLlO kBT ’ ° p kBT

Qis the activation energy, D, is a pre-exponential factor that depends
on the vibrational frequency of atoms and some structural parameter.

Combining with 0,,, = el;,, yields

ion

N, e’D, 0, 0
. _ion _ .= exp| —| —
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9.2 lonic Conduction i i B e
Ino
011
Ino,, =Ino,—| = |=
k, )T
/T
Figure 9.9. Schematic representation of Ino versus 1/7 for Na® ions in sodium

chloride. (Arrhenius plot.)
- From the slopes of the straight lines in Arrhenius plots, the activation
energy Qis calculated.

- In Fig. 9.9, two different activation barriers.

- Extrinsic region atlow temperature:
Activation energy is small.
The thermal energy is just sufficient to allow the hopping of ions
already existing vacancy

- Intrinsic region at higher temperature:
The thermal energy is large enough to create additional vacancies.
The related activation energy is thus the sum of the activation
energies for vacancy creation and ion movement.
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anion ( C17)

s

92 lonic Conduction

Whenever vacant lattice site is created,
an overall charge neutrality needs to be catil_)l_n
maintained. (Na™)

- Both a cation and anion are removed
from a lattice (Schottky defect)

. . ep e . 2+ . . .

- Formation of vacancy- interstitial pair Mg“" impurity
(Frenkel defect) Figure 9.10. Schematic representation of a {100} plane of an ionic crystal having the
NaCl structure. The diffusion of a cation into a cation vacancy is shown. Also de-
picted is the creation of a cation vacancy when replacing a Na* ion with a Mg?* ion.

- Vacancies creation by differently charged impurities : By replacing a
monovalent metal atom with a divalent atom a positively charged vacancy
needs to be introduced.

(Examples)

1. Mg?* ion substitutitution for a monovalent Na* ion: extra Na* ion has to be
removed to restore charge neutrality (Fig.9.10).

2. Calcia(CaO)-stabilized Zirconia(ZrO,): Ca?* ions substitute for Zr4* ions,
and then an anion vacancy needs to be created to maintain charge

neutrality.
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9.3 Conduction in Metal Oxides

Metal oxide can be insulating, have metallic conduction properties, or be
semiconducting : For understanding the mechanisms involved in metal
oxides, their electronic configuration in the orbital (or band structure)
should be considered. (Appendix 3. p.409)

1. TiO, (O : 75?2 2s22p? , Ti: 3dF4s?)
- Noble gas configuration, insulator

- Oxygen have four 2p-electrons in its outermost shell. Two more electrons
will bring O% into the closed-shell configuration and four electrons are
obviously needed to accomplish the same for two oxygen ions: 4 electrons
are provided from Ti 3d-and 4s-shells.

- Since ionic bonds are involved, any attempted removal of electrons would
require a considerable amount of thermal energy : insulator with wide
band gap.
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9.3 Conduction in Metal Oxides

2. TIO (0 :7s22s%2p%, Ti: 3cP4s?)
- Metallic

- Only two titanium valence electrons are needed to fill the 2p-shell of one
oxygen ion, two more titanium electrons are free to serve as conduction

electron

3.2Zn0 (0 :7s2 2s?2p? , Zn: 3p’%4s?)

- Insulator for stoichiometric : a filled Zp-band and an empty zinc 4s-band
employing a gap energy of 3.3 eV

- ntype semiconductor for non-stoichiometric : if interstitial Zn atoms (or
oxygen vacancy) are introduced into the lattice, then the valence electrons
of these Zn interstitials are loosely bound to their nuclei ; firstionization

energy is 0.05 eV (act as a donor)
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9.3 Conduction in Metal Oxides

4. Sn0O, (some times doped with In,0;)

- Transparent in the visible region and a reasonable conductor in the 1 Q-
lcm range

- Optoelectronics to provide electrical contacts without blocking the light
from reaching a device: indium-tin-oxide (ITO)

5. NiO (O : 7s? 2s?2p? ,Ni: 3p34s?)

- Insulator for stoichiometric : a filled oxygen 2p-band and empty nickel
4s-band ; deep-lying localized electron states in the forbidden band close
to the upper edge of the valence band are observed

- p-type semiconductor for nonstoichiometric; obtained by removing
some nickel atoms, thus creating vacancies.
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9.4 Amorphous Materials (Metallic Glasses)
Structural features of amorphous materials

- Random arrangement of atoms

- Short range order

- Diffraction patterns consist of diffuse rings

- Positional disorder (in case of pure materials), compositional disorder
(more than one element): the individual species are randomly distributed

Many elements and compounds that are generally known to be crystalline
under equilibrium conditions can also be obtained in the nonequilibrium
amorphous state by applying rapid solidification techniques: fast
quenching, melt spinning, vapor deposition, sputtering, radiation damage,
filamentary casting in continuous operation, spark-processing, etc.

The degree of amorphousness (or, the degree of short range order) can be
varied by the severity of quench

ex) metallic glasses or g/assy metals, amorphous semiconductor
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9.4 Amorphous Materials (Metallic Glasses)
Atomic structure of
amorphous metals and alloy

- Dense random packing of 4
hard spheres model (Fig. 9.11)
(Bernal model) : ideal

e . Figure 9.11. Two-dimensional schematic representation of a dense rand acking
- In transition metal-metalloid of hard spheres (Bernal mode). e e

compounds (such as Ni-P) itis
thought that the small
metalloid atoms occupy the
holes which occur as a
(a) (b) (c)

consequence of this packing
(Bern-Polk model)
. Figure 9.12. Defects in crystalline and amorphous silicon. (a) Monovacancy in a
The atOITIS n amOrphOUS crystalline semiconductor; (b) one and (c) two dangling bonds in a continuous random
Semiconductors ‘' No Close network of an amorphous semiconductor. (Note the deviations in the interatomic
. distances and bond angles.)
packing

- Atoms of group IV elements (covalent bond): Often arranged in a continuous random
network with ordering up to the third or fourth nearest neighbors (Fig 9.12b,c)

- Amorphous pure silicon contains numerous dangling bonds similar to those found in
the crystalline silicon in the presence of vacancies (Fig 9.12a)
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9.4 Amorphous Materials (Metallic Glasses)
The calculation of electronic structure E }
for amorphous metals and alloys: L =N E
Zrd — ., -
cluster model approach l ==
e.g.) Fig 9.13 : the electronic structure
of amorphous Zr-Cu A
A seri Cud = %@m
- A series of clusters were assumed ] =
which exhibit the symmetry of closed- Cu sg L
packed lattice fcc (as Cu) and hcp (as -
for Zr) Z(E)
Figure 9.13. Schematic representation of the molecular orbital energy level diagram

and the density of states curves for Zr-Cu clusters. The calculated density of states
curves agree reasonably well with photoemission experiments.

- Partially filled electron states: metal-like conduction, Z(E) near E. is small,
which suggest relatively small values for conductivity. ( o for Cu-Zr =5 x

103/ 2 cm)

- The electrical resistivity of many metallic glasses (such as Pdg,Si,, or
Fe;,NizCr,,P,,B,s) stays constant over a wide temperature range :

resistance standards
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9.4 Amorphous Materials (Metallic Glasses)

The energy level diagram and
density of states curves for
amorphous semiconductors oo

delocalized states —_—

- stronger binding forces between localized states< Ef-

the atoms in covalently bound ST

delocalized states rero o

materials, the valence electrons E———

A
— T_”‘/\

Electrical Properties of Polymers, Ceramics,
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tails

7

are tightly bound, or localized —

the density of state for localized

: ” ” Z(E)
state extends into the "band gap
F, 9 1 4 Figure 9.14. Localized and delocalized states and density of states Z(E) for amor-
( Ig Y. ) phous semiconductors. Note the band tails, which are caused by the localized states.

Electrical conductivity for amorphous semiconductors

Density of carriers (N,) in amorphous semiconductor is
O,= NAelLlA extremely small ; electrons are localized, mobility of

charge carriers is small — incoherent scatte
of periodic lattice)

o =0, exXp| — QA (T) Temperature-dependent activation
A 0 ke, T activation energy Q,

ring (absence

process;
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9.4. Amorphous Materials
(Amorphous Semiconductor)

9.4.1. Xerography or
electrophotography

- An important application of
amorphous semiconductor :
selenium, silicon

- When deposited on a
cylindrically shaped metallic
substrate, constitutes the

photoreceptor drum

F, 9 1 5 Figure 9.15. Schematic representation of the electrophotography process. The indi-
( lg. . ) vidual steps are explained in the text.

Before copying, the photoreceptor is charged by corona wire to which a
high voltage is applied. 2. Light which have been reflected from the
document to be copied fall on the photoreceptor, electron hall pair formed
causing photoreceptor to become conducting. This step discharge the
affected parts on the drum, creating a latent image on the photoreceptor. 3.
Toner develop ; 4. Toner transfer to papers ; 5. Heat (toner is fused)
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9.5 Dielectric Properties

Capacitance, C': the ability to
store an electric charge, g
per unit applied voltage, V.

q A
C=— and C=¢c¢&,—
14 )
C 5
where g=— /
Cvac < L >
Area, A of the plate, the

— . I e
distance, L between electrodes 'M'|'\|/""'l

Figure 9.16. Two metal plates, separated by a distance, L, can store electric energy
after having been charged momentarily by a battery.

Determine the magnitude of the added storage capability;
€ . dielectric constant (unitless), or relative permittivity, €,
€, : permittivity of empty space, 8.85 x 1012 F/m
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9.5 Dielectric Properties

Table 9.1. DC dielectric constants of some materials

Potassium tantalate niobate 6000

Barium titanate (BaTiO3) 4000 Ferroelectric

Potassium Niobate (KNbO;) 700

Rochelle salt (NaKC4H406 . 4H20) 170

Water 81.1

Acetone 20

Silicon 11.8

GaAs 10.9

Marble 8.5

Soda-lime-glass 6.9

Porcelain 6.0

Epoxy 4.0

Fused silica 4.0 Dielectric

Nylon 6,6 4.0

PVC 3.5

Ice 3.0

Amber 2.8

Polyethylene 253

Paraffin 2.0

Air 1.000576
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9.5 Dielectric Properties

Electric dipole moment

P=9X

xis the separation
between the positive
and negative charge
(Fig 9.17¢) (@) (b) (c)
Figure 9.17. An atom is represented by a positively charged core and a surrounding,
negatively charged, electron cloud (a) in equilibrium and (b) in an external electric
field. (c) Schematic representation of an electric dipole as, for example, created by
separation of the negative and positive charges by an electric field, as seen in (b).

- The dipole moment is a vector pointing from the negative to charge.

Polarization : the process of dipole formation (or alignment of already existing
dipoles) under the influence of an external electric field that has an electric
field strength, £
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9.5 Dielectric Properties e
. . =R =

- Dipole formation of all  EE=E= B + =N -
involved atoms within a EDERNENED e

. . . e AT . I
dielectric material cause a e ERE il

charge redistribution so

(a) (b)
that the surface nearest to s
the positive capacitor BESIT et
plate is negatively charge + el - + Tr e
(and vice versa): Fig. 9.18a ey e
- Electric field lines within | '
(c) (d)

a dielectric material are
weakened due to Figure 9.18. Schematic representation of two capacitor plates between which a
polarization: Fig 9.18b dielectric material is inserted. (a) Induction of electric dipoles of opposite charge.
(b) Weakening of the electric field within the dielectric material [Eq. (9.13)]. (c) The
E = Evac direction of the polarization vector is from the negative induced charge to the positive
induced charge see Fig. 9.17(b). (d) The dielectric displacement, D, within the di-

electric material is the sum of &¢& and P [Eq. (9.15)].

g
q

D = EEOE == Dielectric displacement, Dor surface charge density

A
Dielectric polarization P, the induced electric dipole moment
D=c E+P per unit volume (Fig 9.18 c and d)
—©0

Units for Dand Pare C m
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9.5 Dielectric Properties

- Electric polarization (Fig 9.17)

The mechanism of polarization T

Molelcu]ar \
- lonic polarization: cations and IULC \
anions are somewhat displaced TR .
from the equilibrium positions T
under the influence of an Electronic

external field and thus give rise | | l 1

to a net dipole moment 107 1010 10" 10
Frequency (Hz)

Polarization

Figure 9.19. Schematic representation of the polarization as a function of excitation
frequency for different polarization mechanisms.

- Orientation polarization: permanent dipole align to the external electric
filed; molecular polarization

How quickly do the dipoles to reorient or to align under a rapidly changing
electric filed (in alternating circuit)

Polarization mechanisms which can respond equally quick to an alternating
electric field (Fig. 9.19)
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9.5 Ferroelectricity, Piezoelectricity, and Electrostriction

Ferroelectric materials

- A spontaneous polarization P
without the presence of an
external electric field :

P,
suitable for the manufacturing
of small sized, highly efficient
capacitors

- Hysteresis loop (Fig. 9.20)

Ps: saturation polarization
P. : remanent polarization
E. : coercive filed

Figure 9.20. Schematic representation of a hysteresis loop for a ferroelectric material
in an electric field. Compare to Figure 15.6.

- A critical temperature (called, Curie temperature) exists, above which
the ferroelectric effect are destroyed and the material becomes
paraelectric (a kind of dielectric)
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9.5 Ferroelectricity, Piezoelectricity, and Electrostriction

Why do certain material possess
spontaneous polarization?

- Tetragonal BaTiO; : the negatively
charged oxygen ions and the
positively charged Ti4* ion are
slightly displaced from their
symmetrical position (Fig 9.21)

- A large number of such dipole

moment line up in a clusters (also

called a’omains) Figure 9.21. Tetragonal crystal structure of barium titanate at room temperature.
Note the upward displacement of the Ti** ion in the center compared to the down-

-In virgin state. the polarization ward displacement of all surrounding O~ ions. @ = 0.398 nm; ¢ = 0.403 nm.
b
directions of the individual domains are

randomly oriented: no net polarization \:/7\ -
Ny o
- An external field orients the dipoles of l : T ? ‘
favorably oriented domains parallel to : |
E: those domains in which the dipoles /':\\ ,:‘_\

are already nearly parallel to £ at the
expense Of Unfavorably Oriented Figure 9.22. Schematic representation of spontaneous alignments of electric dipoles

. within a domain and random alignment of the dipole moments of several domains in
domains a ferroelectric material such as BaTiO3;. Compare to Figure 15.9.
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9.5 Ferroelectricity, Piezoelectricity, and Electrostriction

- Piezoelectricity : If pressure is applied to a ferroelectric material, such as
BaTiO,, a change in the polarization occur, which results in a small voltage
across the sample

Transducers : convert mechanical strain onto electricity ; strain gages,
microphones, sonar detectors, and phonograph pickups

- Electrostriction : inverse mechanism of piezoelectricity; an electric field
produce a change on dimensions in a ferroelectric material

An earphone, quartz crystal resonator (which is used in electronic devices
as a frequency selective element)



Polanzation P

Definition

» P is defined by the electric dipole moment per unit
volume of material : P = Np

where N = number of dipoles/unit volume, p = avg.

dipole moment.

» P also represents the surface charge density of the

bound charge

The total charge Q
Q = G,V (= Qs : free charge)
+ (C - Co)V (= Qp : bound charge)
The total charge density D
D = Q/A = Q/A + QuA = £E
where Q/A = &E (Gauss Law)
and P = Qpd/volume of the dielectric material
(- p=Qud) = QA
Then D = &E + P = éE = g&E since & = C/C, = d&

P — 8E_80E




Dielectnc Constant ¢

material property determining the capacitance C

The charge on a capacitor,
Q =CV
where C [Farad (F)] , Q [Coulomb (C)], V [Volt (V)].

Since Q = AD = AeE, C = AeEV = “¢

= GiCO = &C,

C, (capacitance in vacuum) = 4 &

& . pemittivity (dielectric constant) of a vacuum,
& . relative permittivity (dielectric constant)
& = CIC, = d&
Also

P=(¢-&E = &(& -1)E

_ P
X:&_l_eE

O

Qr = 69 (free charge)

r

Qr Q(l—%) (bound charge)



Dielectric Loss Factor tané

represents the relative expenditure of energy to obtain a

given amount of charge storage

With a sinusoidal voltage V = Vyexpiat, since Q :/[dt,

_ AV
| = dQ/dt = C.

Then, a charging current I; is given by
Ic = 10CV = aCVeexp [i(at + m2)]
90° advanced in phase compared with V in the ideal

dielectnic.

For real dielectrics, (90° - &) advanced in phase occurs

due to a loss.

E = V/d, E = Eeexp(iat) and D = Deexp(iat - 6)
Since D = ¢E = eEexp(iat)

e = (Do/Eo)exp(-6) = &exp(-8) = &(cosé -isind)
where & is the static dielectric constant. In terms of a
complex dielectric constant

& =& - 1&" = (¢ - 18 &

&' = &C0ss, &" = &siné

The loss tangent, tand = &'/&" = &/&"




Then the total current | in terms of &,
I = dQ/dt = C4¥ = iaCV = &CoiaV
= (&' - i&")CoiaV
= 1w&'ColV + w&a"CoV
Ic(charging current) = iw&'CoV= 1aCV = lw€'E
Ii(loss current) = @&"CoV = we''CV
= w€E = Idand = ot

where ¢ is the dielectric conductivity

The corresponding energy loss W at the max. voltage V,

W = ZRS'I;’tan& per cycle

= 2nf£’"g20tan5 per second

- Dielectric Strength: The ability to withstand large field

strengths without electrical breakdown.



Ferroelectnicity

The spontaneous alignment of electrical dipoles by their
mutual interaction (spontaneous polarization Ps)

Since the average dipole moment p of the charged
particles is proportional to the local electric field E'
p = aF
NaF

Then P = NaE' = 1= No/3c,

P

since E' = E + " (Mosotti field)

_ 1 = P Na/eo
X= & 28 T 1= Nof3e,

(¢

(Clausius-Mosotti equation)
Therefore, when Na/3& — 1, the P, x and & must go

to infinity.

As the local fields E' is proportional to the
polarization P, spontaneous polarization is expected at
some low temperature at which the randomizing effect of
thermal energy is overcome and all the electric dipoles
line up in parallel arrays.

If the orentation polanzability is much larger than that



for the electronic and ionic portions,

ao,= C/keT where C is Cune constant.

At T; (Cune temp),
Tc = NC/3ks& = NaoT/3&

Consequently,
Below T, spontaneous polarization occurs

— f— P - 3Tc
Above T, x= & -1 = B T— 7

Curie-Weiss Law

Charactenstics of Fenroelectrics

P Appearance of very high dielectric constants
P A hysteresis loop for polarization

P The existence of ferroelectric domains
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Light Waves

N N N R
X (R) 4000 5000 6000 7000
X (m) 040 0.50 0.60 0.70
X (nm) 400 ' 500 ) 600 ’ 700
Ultraviolet Violet Blue Green Yellow Orange Red infrared
E (eV) 32 | 30 275 2 2.25 2.0 1.85 L
E (ecm™ x10% |25 225 20 175 1.50 1.40
9(Hz x10"%) 75 70 65 6.0 55 50 45 4.2
FIG. 4.1 The near-visible region of the electromagnetic spectrum with a variety of wave-

lenth, energy, wave-number, and frequency scales.

QO R N



Properties of electric and magnetic fields
TABLE 4.1 Maxwell’s Equations

Wave equations for

EM waves:

Maxwell’s equations

Light Waves

N N RN RN

of free space

Gaussian Units SI Units
VD =4np V:-D=p
vV:B=0 V:-B=0
1 0B JB
VXx8=—-— VXE=——
c Ot at
108 4nl aD
Vi H == o VXH=—+1
é o1 at
D—electric displacement
D=¢8& D = £¢&686

¢,—dielectric constant; & = (367 x 10°)™' F/m—permittivity

&—electric field
p—charge density
B—magnetic induction

B =uH

B = uruoH

u;—permeability; uo = 4n X 107" H/m—permeability of

free space
H—magnetic field

J = g86—current density; g—electrical conductivity




» Light Waves

The First Maxwell Equation: VeD=p  inSlunit

From coulomb’s Law: the force on a charge g due to another charge
q'separated by distance r qq'

drer’

If we define the electric field generated from gis £, the force on a
charge g’ in free spaceis given by F= q'£,

_ 9
£ q 2
d7zg,r
Electric field due to charge g in the dielectric material with dielectric
constant ¢, E = q
q 2

dre &1

N N RN RN
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Polarization, P : dielectric dipole moment per unit volume induced
by the electric field

=
i
[
+ - 4 - + | + + + B
[ !
! o f &alout)
N O
- & ——
O Z, nlin) i
+ + + +

(b)

FIG. 4.2 Illustration of relationship between displacement D and electric field & with the
simple case of a material between two condenser plates. (a) With no material between the plates
the normal components are related D,, = &,&,. (b) With polarizable material between the plates
Dy = €08 is the same both in free space and in the material, since it is conserved upon crossing
the boundary. Because of the polarizability of the material, however, the electric field in the
material is reduced so that £,(in) = E.(out)/¢;. Note that in this simple example, the tangential
component of & that is conserved on crossing the boundary between the two materials is zero
in all cases.

Where Nis the volume density of dipoles, p is the dipole
P — Np — Nq*d moment, and g’ is the charge involved in the dipole moment,
with positive and negative charges separated by distance o
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The polarization is proportional to electric field P = 80}(E
Proportional constant, x: dielectric susceptibility

Since the electric displacement, D is defined by
D=gE+P=¢c¢E Thus &, =1+%

Since there are a number of possible mechanism contributing the
dielectric susceptibility (depending on frequency of EM waves)

8r :l_l_ZiZi

For the displacement of atoms in the lattice x, and that of electrons
in an atom, x, — _
Evioy =1+ XL+ Xe & (hi) =1+ 7.

The following relation is a good indication of the relative degree of
ionic binding for materials

{[l/gr(hz) |- [l/gr(lo) 1t =x; /[gr(hz)gr(la)]

N N RN RN
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Consider charge g with spherical symmetry and £ (1) at a distance r

Eq - 4726‘?807’2 Divergence theorem ﬁAF -dS = _”J;/V -FdV

€., £.&, .8,

By writing [ = gOgrE, VeD= yo,

The first Maxwell Equation for an isotropic and homogeneous material.

E = —V¢ where @ the is called electrostatic potential
‘¢ p

S =T Poisson’s
Ox €& Equation
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The Second Maxwell Equation VeB=0(

“Isolated magnetic poles do not exist”

Only magnetic dipoles exist. A line of force starting on a “North”
pole is terminated on a “South pole”. No divergence of magnetic
field line.

When we apply a magnetic field to a material, the magnetization M

M = xH
Where Kis the magnetic susceptibility

A guantity B is conserved at an interface even when magnetization
is present

B=uH+u,M (inSlunity B=H+47zM (incgsunit)
U =1+x u. =1+4rx
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The Third Maxwell Equation V xE = _B

ot

When a wire is moved into or out of the pole of magnet. The wire will
be subjected to a changing magnetic flux od /o¢, with © = j BedS

A potential difference @ has been induced in the wire with a value
which can be given simply by

oD

G

@: aline integral of electric field E
oB
jE-dI:—JG—B-dS »  VxE=-——
ot ot

By Stoke’s Theorem
pF-dl = [[VxF.dS
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The Fourth Maxwell Equation VxH= ’ +J
“ A continuous electrical current | or a displacement current ( 8_D)
gives rise to a magnetic field” ot

Consider the attempt to measure a magnetic field around a wire
carrying a current. At distance rfrom a wire direct current |

- 27r
oD oD
IH dl=|—-dS+1 — displacement current
Ot ot
l By Stoke’s Theoremand | = IJ o dS
oD where J is electrical current densit
VxH=—+J y

8t J =0kt
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Dielectric Relaxation Time

Suppose that a charge is placed on a neutral material. The length of
time it takes for this charge to relax either to a uniform charge
density if the material is electrically isolated, or to zero, restoring the

neutral state, by the excess charge leaking off to ground: dielectric
relaxation time, 7,

VeVxA=(0 Aisanyvector: applied to the 4th Maxwell

Equation
VxH:%$+J
l VeVxH=0 J=0okE D=¢e¢E
0=9V*D) . a3
ot

l 1st Maxwell equation

O0p = op  solution L t j £ &,
= > p=p,exp| —— . =2
Ot .8, T, 5

r
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Electromagnetic wave equation

Deviation of wave equation from Maxwell Equation

VxE = _%_B (3rd Maxwell equation)
t
+—VxVxE=V(VeE)-V’E B=guH VeE=-"F
, gr80
gy L (VxH) =~ £ _vE
ot &,.&,
<—V><H:58—D+J , D=¢ge,E » J=0E
l
= E Vp o,
o grEOIUrIUO o lLlrﬂOG_ - = E

ot’ ot &.&,
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Electromagnetic wave equation (continued)

We can neglect the first term on the right of the equation if we are
interested in the steady-state condition after the decay of any such
space charge

0°E ok

+ o—
atz ILlI”lLlO at

VzE = grgOlurlLlO

If we calculate VxV xH , ratherthan VxV x E

We obtain the same form of equations for the magnetic field H

0°H oH
V’H=¢ ¢ S+ U 1O ——
r OILlrILIO @tz lLlr/LlO 5t
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Electromagnetic wave equation: the case of no absorption

In the absence of all absorption processes: a first time derivative
term of the EM equation equal to zero: then EM equation —
“Harmonic wave”
0’E 0’H
V'E = ¢844, P ViH = ¢.6,, 4, Ea

Solution of these equations have the form

E=E,expli(k-r—art)] H=H,expli(k-r-owr)]

In the form of EM wave equation, we can conclude immediately the

phase velocity of the electromagnetic waves is given by
L= : =c, invacuum c=(gu )_1/2
/2 = &y —
(grEOILlrlLlO)/ 00
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Appendix: The Divergence Theorem and Stoke’s Theorem

The Divergence Theorem: Because of the definition of the
divergence, it can be shown that

va o AdV = jVA o NdS

Thus converting a volume integral of the divergence of A into
surface integral of the scalar product of A with the vector n, the
outward drawn unit vector normal to dS

Stoke’s Theorem: It follows from the properties of the curl that

Ln-(vxF)dS=§F-ds

thus converting a surface integral of the curl F to a line integral of
F over a closed path on the surface
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o+~ Introduction

v' The interactions of light with the valence electrons of a material
is postulated to be responsible for the optical properties.

v’ Light comprises only extremely small segment of the entire
electromagnetic spectrum (Fig 10.1)

v Optical methods are among the most important tools for
elucidating the electron structure of matter

v Optical devices : lasers, photodetectors, waveguides, light-
emitting diodes, flat-panel displays

v Applications for communication : fiber optics, medical
diagnostics, night viewing, solar applications, optical computing
and etc..

v Traditional utilizations: widows, antireflection coating; lenses,
mirrors, etc..

cf) BBR (black body radiation)

N N RN RN
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Interactions between light and matter
= Refraction

= Reflection

= Transmission

= Absorption

= Luminescence

A

A

N N RN RN

A
v

/= ?
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What is light?

Light
= Speed: c~3x10'° cm/s in vacuum
= Ray: geometric optics such as lens, mirror

= Electromagnetic wave: refraction, reflection, interference,
diffraction, hologram, etc.

= A stream of photons: absorption and emission

Spectrum (wavelength) of light
v-ray (102 A) ~ X-ray (1 A) ~ UV(100 nm)
~ visible (400nm (blue) ~ 700nm (red))
~ IR (=10 um) ~ microwave (GHz) ~ radio (MHz-KHz)
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T }
400 nm [~ ., . TTTFTC Y-Rays
violet N St |
1
500 nm [~ \\_:— _—le
green e e
yellow // E,
600 nm Iorange _+" Infrared (heat)
red -~ Microwaves
700 nm [~ 2 ¥ --—T———
/s — S
//
Visible - Radio,
spectrum TV

Wavelength
(m)
1044 -
10—12 -
10—I() |
nm
108 -
106 | pm
1074~
mimn
IOﬁZ o
10° = m
102 L
km
104 =
106 -

N N N NN
Energy Frequency
V) (o)
16% | 1022 |-
105} 1020 |-
10* = 1018 |-
102 - 1016 |-
10° |~ 10 |-
102 - 1012 |-
e o 1010 |-
10-6 0% GHz
1078 1= 10¢ - MHz
10-10 104
10-12 02l kHz

Figure 10.1. The spectrum of electromagnetic radiation. Note the small segment of
this spectrum that is visible to human eyes.
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Electromagnetic Wave
Periodic displacement in time and position
) infinitely
N long string

— = wave travels this
direction mn time

4 wix)

A w(x,t)= A r;in(Ezr’Tr +2n 1:{)— Asin(ﬁrr[#i w-“.
A A
0 > 2m
: =—1: w=2rv
PL.!UL A I\/ . k il and
!
h X - . A m " .
why? 0 =2n X =2m here,sox =A y(x,1) = Asin(kx * “”}I |

% y(x.0) = Acos(kx t wi)]

72~ 6 w(X,t)=Asin(kx—at)
w(X,1) = Asin(kx + wt)
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Electromagnetic Wave

= E = A cos(kx - ot + ¢),

= E=A/2 [exp{i(kx - ot+ #)} + cc],

= E = Re [A exp{i(kx - ot+ ¢)}],

= E = Aexp{i(kx - ot + ¢)} for convenience:

= This, of course, is not strictly correct; when it happens, it is always
understood that what is meant by this equation is the real part of
Aexp{i(kx-wt)}. This representation is OK for linear mathematical
operations, such as differentiation, integration, and summation, are
concerned. The exception is the product or power.

m E: electric field
= A: amplitude, I=E<E*
k: wavenumber, wavevector (=2n/A)

®: angular frequency (=2nv)
¢: phase

Intensity of a Light Wave, I: the quantity which determines the amount of energy per unit time per
unit cross-sectional area that is carried by a wave:

5 Enerey Power Watts
[=y? = LU ( ]

Time - Area Area ]11CTC‘I'52
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Electromagnetic Wave
e Polarization state specified by the electric field vector, E(r,t)

« Assuming propagation in the z-direction

— Transverse wave lies in xy-plane
— Two mutually independent components are

E = A cos(at—kz+9,)
E, =A cos(at—kz+0,)

— A, A, are independent positive amplitudes

- 0,, 6, are independent phases

» These correspond to elliptic polarization with relative phase
0=0,O,
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Electromagnetic Wave
Polarization of light-circular polarization

5=5,-0,=+7/2, A, = A, E, = A cos(at —kz +9,)

?Ey = A, cos(at —kz+0,)

Right(-hand) circularly polarized
(look back at the source)
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Electromagnetic Wave
Polarization of light-circular polarization

Beam of light is circularly polarized if the electric field vector undergoes
uniform rotation in the xy-plane

§=6,-6,=+al2
A=A,

Beam of light is right-hand circularly polarized when 6=- /2 which
corresponds to counter-clockwise rotation of the E field vector in xy-plane

Beam of light is left-hand circularly polarized when 6=+xr/2 which
corresponds to clockwise rotation of the E field vector in xy-plane.

A linear polarized wave can be synthesized from two oppositely polarized
circular or elliptic waves of equal amplitude.
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10.2 Index of Refraction, n
Snell’s law : refractive power of a |
mat_erial | Nyac
SINx _ N eq - |
sinf - n,,. i
. . I Nmed
The index of refraction E
of vacuum, n___is | o | . , |
. . Figure 10.2. Refraction of a light beam when traversing the boundary from an opti-
arbltrarlly set to be cally thin medium into an optically denser medium.
unity
SN _ Cc 4us n=ve =& light passes from vacuum
sin 3 Croed Creg U into a medium

Dispersion: the property that the magnitude of the refractive index, n
depends on the wavelength of the incident light. In metals, nalso
varies with o

When light passes from vacuum into a medium, its velocity as well as
its wavelength decreases in order to keep the frequency constant.
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10.3 Damping Constant, &

Consider a plane-polarized wave propagating along the positive z
axis and which vibrates in the x-direction. (Fig.10.3) We neglect

possible magnetic effects. The electromagnetic wave equation may
be written as

, O°E, 0°E, o ¢E
CC—F=e—~+

0z ot &, ot
Where E, is the x-component of the electric field strength, ¢is the

dielectric constant, o is the (a.c.) conductivity and &, is a constant,
called permittivity of empty space

X

See (A. 26) in Appendix 1

The solution to the above wave equation

i ZNn E,is the maximal value of the
E =E,exp|lo|t——

electric field strength and w = Zrrv
is the angular frequency

N N RN RN
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10.3 Damping Constant, &

Differentiating the above equation once with respect to time and
twice with respect to time and z, and inserting these values into the

wave equation yields A .
A=e-Ziz=e-—2j and N=0N —IN,

Eq@ 27EV
Nn,is often denoted by & and then (10.7) written as Nn=n-ik

n,or kis the damping constant (sometimes called, absorption
constant, attenuation index, or extinction coefficient).

A . O ;
A°=n°—k*—=2nki=¢— |
27V
Then —n‘— k2 o =4rg,nKv
And ﬁz ~k?-2nik=e=¢ —is,

O

—k2 &, =2nk =

27E,V

N N RN RN
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10.3 Damping Constant, A&

£;, £, The real and the imaginary parts of the complex dielectric constant

£,. absorption (product)

For insulator ( 0 = 0) it follows from (10.11) that A= 0. then (10.10) reduces to
= n?(Maxwell relation).

2
1 o 1
n==|_|g°+ te|l==(J&e +¢& +¢
\/ (27[80]/) 2( 1 2 1)

2

kz—l{\/52+( o J—8]=;(1/812+822—6‘1)

2EWV

Table 10.1. Characteristic Penetration Depth, W, and Damping Constant,
k, for Some Materials (4 = 589.3 nm).

Material Water Flint glass Graphite Gold

W(cm) 32 29 6 x 1076 1.5 x 10°¢
k 1.4 % 107 1.5 % 10~7 0.8 3.2
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10.3 Damping Constant, &

Returnto (10.5) g —E exp{ia)(t _ﬂﬂ
c

Replace the index of refraction by complex index of refraction (10.8)

¥ z(n—ik
EX = EO eXp |a)(t —_ ( )j:| —=-Vacuum - \—--—- Metall o .. e
- ¢ \\\‘ exp| —(27)]
[k . Zn
E, = E,exp —z]exp{lw(t —ﬂ
| C C y
damped undamped

Figure 10.4. Modulated light wave. The amplitude decreases exponentially in an
optically dense material. The decrease is particularly strong in metals, but less intense
in dielectric materials, such as glass.
Damping constant, A determines how much the amplitude
decreases : the degree of damping of the light wave

At high frequencies the electromagnetic wave are conducted only
on the outer surface of wire : skin effect
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10 4 Characteristic Penetration Depth, W, and Absorbance, a

The damping termin (10.18)

| =E* = Ioexp(—zwkzj
C

| 1 _, Wedefine acharacteristic penetration depth, W, as that
—=—=€ distance at which the intensity of the light wave, which travels
through a material, has decreased to 1/e of its original value

c ¢ _ L
20K 4mk 4k

in conjunction with (10.19) z=W =

The inverse of Wis called attenuation or the absorbance
By making use of (10.21), (10.14), and (10,11)

a_47zk_27z52_ o 20K
A AN ncg, C
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10.5 Reflectivity, R, and Transmittance 7

e /, reflected intensity

reflectivity R = T
0

/, incoming intensity

S , | ; /- transmitted intensity
transmissivity, or transmittance T = ——

Iy

Experiments have shown that for insulators, R depends solely on
the index of refraction. For perpendicular incidence one finds.

2
R = (n-1) Also, can be derived from Maxwell
(n+1)° equations

nis generally a complex quantity. R should be real. Thus, Rbecomes

A 2
n-—1

N

_(n=ik=1) (n+ik=1) (n-1)"+k°
(n—ik+1) (n+ik+1) (n+1)%+k?

R =
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10.5 Reflectivity, R, and Transmittance 7

The reflectivity is also a function of ¢, , &,
n°+k?+1-2n
n°+k?+1+2n

(1) n?+k?=/(n?+k?)? =/n* +2n%k? + k>
=/n*—2n%k? +k* +4n%k? = |/(n® —k?)? + 4%k
=& +é&

(2) 2n=+4n? =\[2(n +k? + 1% —k?) =2l + &2 +2,)

Inserting (1) and (2) into (10.26)
w/gl +e& +1- \/2(1/51 +& +8)
& +52 +1+\/2(1/51 +&l +g)

R —
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10.6 Hagen-Ruben Relation

To find relationship between reflectivity and conductivity

For small frequency (i.e v<10'3s), the ratio o/2r¢,v for metals is
very large ol/2mre,y=1017s1. with e=10 we obtain

17
o 10 Ve & =2nk= o
2mey 10V 27EqV
o
Then (10.15) and (10.16) reduce to n° ~ ~k*
e,V

By combing the slightly modified equation (10.26) with (10.31)

_n2+2n+k2+1—4n_1 4n

R 2 2 T = AL2
nN“+2n+1+k 2N +2n+1




» The Optical Constants

S NN NN RN
10.6 Hagen-Ruben Relation

If 2n+ 1 is neglected as small compared to 272 (which can be done
only for small frequencies for which n is much larger than 1), then
(10.32) reduces by using (10.31) to

R=1-2=-1-4.|Y zs,
N O

Set 0 =0 ,(d.c. conductivity) which is again only permissible for
small frequencies, i.e., in the infrared region of the spectrum .
This yields the Hagen-Ruben equation,

R=1—4\/ingo

Oy

The Hagen-Ruben relation is only valid at frequencies below 1013s-1,
or equivalently, at wavelength larger than about 30um.
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o+~ Introduction

v' The interactions of light with the valence electrons of a material
is postulated to be responsible for the optical properties.

v’ Light comprises only extremely small segment of the entire
electromagnetic spectrum (Fig 10.1)

v Optical methods are among the most important tools for
elucidating the electron structure of matter

v Optical devices : lasers, photodetectors, waveguides, light-
emitting diodes, flat-panel displays

v Applications for communication : fiber optics, medical
diagnostics, night viewing, solar applications, optical computing
and etc..

v Traditional utilizations: widows, antireflection coating; lenses,
mirrors, etc..

cf) BBR (black body radiation)

N N RN RN
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Interactions between light and matter
= Refraction

= Reflection

= Transmission

= Absorption

= Luminescence

A

A
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A
v
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What is light?

Light
= Speed: c~3x10'° cm/s in vacuum
= Ray: geometric optics such as lens, mirror

= Electromagnetic wave: refraction, reflection, interference,
diffraction, hollogram, etc.

= A stream of photons: absorption and emission

Spectrum (wavelength) of light
v-ray (102 A) ~ X-ray (1 A) ~ UV(100 nm)
~ visible (400nm (blue) ~ 700nm (red))
~ IR (=10 um) ~ microwave (GHz) ~ radio (MHz-KHz)



400 nm

500 nm

600 nm

700 nm |~

Visible
spectrum

Introduction

\\\ T
N -—-—1+—— vy-Rays
violet ™« ¥ L ¢y
AN X-Rays — - Y _ _
iblue . eI
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green ______ o
yellow 7 4
I orange - Infrared (heat)
s Taalllv. S
Ired/" Microwaves
£ I “‘T‘“
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TV

Wavelength
(m)
10—}4 o
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10-10 |-
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102 =
km
104 =
106 -

N N N NN
Energy Frequency
(eV) (Hz)
108 - 1022 |-
100 1020 |-
10 = 1018 |-
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107 1014 |
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(el 1010 |-
10-6|- Bl GHz
10 |- 10 |- MHz
10-19}- 104
10-12 |- 102_kHz

Figure 10.1. The spectrum of electromagnetic radiation. Note the small segment of
this spectrum that is visible to human eyes.
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Electromagnetic Wave
Periodic displacement in time and position
) infinitely
4 long string

— = wave travels this
direction n time

4 wix)

A w(x,t)= A r;in(Ezr’Tr +2n 1:{)— Asin(ﬁrr[#i w-“.
A A
0 > 2n
: =—|; w=2rv
PL.!UL A I\/ . k A and
!
h X - . A = " .
why? 0 =2n X =21 here,sox =A y(x,1) = Asin(kx * “”}I |

% y(x,f) = Acos(kx twi)]

72 ~__” 6 w(X,t)=Asin(kx—at)
w(Xx,1) = Asin(kx + wt)
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Electromagnetic Wave

= E = A cos(kx - ot + ¢),

= E=A/2 [exp{i(kx - ot+ #)} + cc],

= E = Re [A exp{i(kx - ot+ ¢)}],

= E = Aexp{i(kx - ot + ¢)} for convienence:

= This, of course, is not strictly correct; when it happens, it is always
understood that what is meant by this equation is the real part of
Aexp{i(kx-wt)}. This representation is OK for linear mathematical
operations, such as differentiation, integration, and summation, are
concerned. The exception is the product or power.

m E: electric field
= A: amplitude, I=E<E*
k: wavenumber, wavevector (=2n/A)

®: angular frequency (=2nv)
¢: phase

Intensity of a Light Wave, I: the quantity which determines the amount of energy per unit time per
unit cross-sectional area that is carried by a wave:

5 Enerey Power Watts
[=y? = & ( ]

Time - Area Area ]11CTC‘I'52
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Electromagnetic Wave
e Polarization state specified by the electric field vector, E(r,t)

« Assuming propagation in the z-direction

— Transverse wave lies in xy-plane
— Two mutually independent components are

E = A cos(at—kz+9,)
E, =A cos(at—kz+0,)

— A, A, are independent positive amplitudes

- 0,, 6, are independent phases

» These correspond to elliptic polarization with relative phase
0=0,O,
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Electromagnetic Wave
Polarization of light-circular polarization

5=5,-0,=+7/2, A, = A, E, = A cos(at —kz +9,)

?Ey = A, cos(at —kz+0,)

Right(-hand) circularly polarized
(look back at the source)
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Electromagnetic Wave
Polarization of light-circular polarization

Beam of light is circularly polarized if the electric field vector undergoes
uniform rotation in the xy-plane

§=6,-6,=+al2
A=A,

Beam of light is right-hand circularly polarized when 6=- /2 which
corresponds to counter-clockwise rotation of the E field vector in xy-plane

Beam of light is left-hand circularly polarized when 6=+xr/2 which
corresponds to clockwise rotation of the E field vector in xy-plane.

A linear polarized wave can be synthesized from two oppositely polarized
circular or elliptic waves of equal amplitude.
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10.2 Index of Refraction, n
Snell’s law : refractive power of a |
material | Nyac
Sln a _ nmed _ n I
sing  n,,. i
I Nmed
The index of refraction E
of vacuum, n___is o o | ‘ . |
. . Figure 10.2. Refraction of a light beam when traversing the boundary from an opti-
arbltranly set to be cally thin medium into an optically denser medium.
unity
SN _ Cc 4us n=ve =& light passes from vacuum
SINS  Coy C., U  intoamedium

Dispersion: the property that the magnitude of the refractive index, n
depends on the wavelength of the incident light. In metals, nalso
varies with o

When light passes from vacuum into a medium, its velocity as well as
its wavelength decreases in order to keep the frequency constant.
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10.3 Damping Constant, &

Consider a plane-polarized wave propagating along the positive z
axis and which vibrates in the x-direction. (Fig.10.3) We neglect

possible magnetic effects. The electromagnetic wave equation may
be written as

, O°E, 0°E, o ¢E
CC—F=e—~+

0z ot &, ot
Where E, is the x-component of the electric field strength, ¢is the

dielectric constant, o is the (a.c.) conductivity and &, is a constant,
called permittivity of empty space

X

See (A. 26) in Appendix 1

The solution to the above wave equation

i ZNn E,is the maximal value of the
E =E,exp|lo|t——

electric field strength and w = Zrrv
is the angular frequency

N N RN RN
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10.3 Damping Constant, &

Differentiating the above equation once with respect to time and
twice with respect to time and z, and inserting these values into the

wave equation yields A .
A=e-Ziz=e-—2j and N=0N —IN,

Eq@ 27EV
Nn,is often denoted by & and then (10.7) written as Nn=n-ik

n,or kis the damping constant (sometimes called, absorption
constant, attenuation index, or extinction coefficient).

A . O ;
A°=n°—k*—=2nki=¢— |
27V
Then —n‘— k2 o =4rg,nKv
And ﬁz ~k?-2nik=e=¢ —is,

O

—k2 &, =2nk =

27E,V

N N RN RN
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10.3 Damping Constant, A&

£;, £, The real and the imaginary parts of the complex dielectric constant

£, absorption (product)

For insulator ( 0 = 0) it follows from (10.11) that A= 0. then (10.10) reduces to
= n?(Maxwell relation).

2
1 o 1
n==|_|g°+ te|l==(J&e +¢& +¢
\/ (27[80]/) 2( 1 2 1)

2

kz—l{\/52+( o J—8]=;(1/812+822—6‘1)

2EWV

Table 10.1. Characteristic Penetration Depth, W, and Damping Constant,
k, for Some Materials (4 = 589.3 nm).

Material Water Flint glass Graphite Gold

W(cm) 32 29 6 x 1076 1.5 x 10°¢
k 1.4 % 107 1.5 % 10~7 0.8 3.2
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10.3 Damping Constant, A&

Returnto (10.5) g —E exp{ia)(t _ﬂﬂ
c

Replace the index of refraction by complex index of refraction (10.8)

. z(n—ik "‘
EX = EO eXp|:|a)(t _—( j:| =-Vacuum —= \—--—- Metall e
C \\f\“ o] (%)

k . zZn DT
E, =E, exp[— e z} : exp{l a)(t — ﬂ /V
C C /
damped undamped

Figure 10.4. Modulated light wave. The amplitude decreases exponentially in an
optically dense material. The decrease is particularly strong in metals, but less intense
in dielectric materials, such as glass.
Damping constant, & determines how much the amplitude
decreases : the degree of damping of the light wave

At high frequencies the electromagnetic wave are conducted only
on the outer surface of wire : skin effect
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10 4 Characteristic Penetration Depth, W, and Absorbance, a

The damping termin (10.18)

| =E* = Ioexp(—zwkzj
C

| 1 _, Wedefine acharacteristic penetration depth, I, as that
—=—=€ distance at which the intensity of the light wave, which travels
through a material, has decreased to 1/e of its original value

c _c _ 2
20K  4mK 47K

in conjunction with (10.19) 7z =W =

The inverse of W is called attenuation or the absorbance
By making use of (10.21), (10.14), and (10,11)

a_47zk _2rme, O 20K
A AN ncg, C
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10.5 Reflectivity, R, and Transmittance T
| . .
Determination for the reflectivity R =-% /rthe reflected intensity
Io /,incoming intensity

L . I
transmissivity, or transmittance T = —T

0

Experiments have shown that for insulators, Rdepends solely on
the index of refraction. For perpendicular incidence one finds.

2
R — (n-1) Also, can be derived from Maxwell
(n+1)° equations
nis generally a complex quantity. Rshould be real. Thus, R
becomes
. A—1l° R_(n—ik—l).(n+ik—1)_(n—1)2+k2
A+l (n—ik+1) (n+ik+1) (n+1)°+k?
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10.5 Reflectivity, R, and Transmittance 7

The reflectivity is also a function of ¢,, &,
n°+k’+1-2n
n°+k*+1+2n

(1) n2+k?=./(n?+k?)? =+/n* +2n%k?2 + Kk’
=/n* = 2n2%k? +k* +4n%k? =,/(n% —k?)? + 4n%k’

=& +é&
(2) 2n=+4n? =\[2(n? +Kk? + 1% —k?) = 2(J&? + &7 +2,)

Inserting (1) and (2) into (10.26)
w/gl +e& +1- \/2(1/51 +& +8)
& +52 +1+\/2(1/51 +&l +g)

R =
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10.6 Hagen-Ruben Relation

To find relationship between reflectivity and conductivity

For small frequency (i.e v¥<10'3s) the ratio 0/2x¢,v for metals is
very large ol/2mre,y=1017s1. with e=10 we obtain

o 10" Ve
2me,vy 107
o
Then (10.15) and (10.16) reduce to n° ~ ~k*
27EWV

By combing the slightly modified equation (10.26) with (10.31)

_n2+2n+k2+1—4n_1 4n

R 2 2 T = AL2
nN“+2n+1+k 2N +2n+1
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10.6 Hagen-Ruben Relation

If 2m+1 is neglected as small compared to 2/ (which can be done
only for small frequencies for which n is much larger than 1), then
(10.32) reduces by using (10.31) to

R=1-2-1-2.|Y zs,
n O

Set 0 = o,which is again only permissible for small frequencies,
i.e., in the infrared region of the spectrum . This yields the Hagen-

Ruben equation

R=1-2 | 7ze,
Oy

The Hagen-Ruben relation is only valid at frequencies below 1013
s, or equivalently, at wavelength larger than about 30./m

N N RN RN
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11.1 Survey

- Hagen-Rubens equations (Fig 11.1(a))

The validity of equations derived from continuum theory, considering only
macroscopic quantities and interrelating experimental data, are often
limited to frequencies for which the atomistic structure of solids does not
play a major role.

- Drude model (Fig 11.1(a))

In the visible and near IR region, an atomistic model needs to be
considered to explain the optical behavior of metals. Moving electrons
collide with certain metal atoms in a nonideal lattice. Absorption band
cannot be explained by the Drude theory.

- Lorentz postulations (Fig 11.1(a))

The electrons are considered to be bound to their nuclei, and an external
electric field displaces the positive charge of an atomic nuleus against
the negative charge of its electron cloud: “harmonic oscillator”



11.1 Survey

An oscillator absorbs a
maximal amount of
energy when excited
near its resonance
frequency. (Fig11.1b)

Atomistic Theory of the Optical Properties
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St e e HAGEN and RUBENS

(3

>
£
>
°
p
L
& DRUDE-

“7-LORENTZ

I 4 :
i - ‘IOH, (sec’h
classical IR absorption o ablo;pflon band
red  violet —————i
vorE
visible spectrum
(a)
o
2z
=
8
& experimental i
2 NG Lorentz
IR uv
visible spectrum vorE
(b)
Figure 11.1. Schematic frequency dependence of the reflectivity of (a) metals,

(b) dielectrics, experimentally (solid line) and according to three models.
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11.2 Free Electrons Without Damping

Let’s consider the interaction of a plane-polarized light with the electrons.
The field strength of the plane-polarized light wave is given by

E =E,exp(iwt) where w (= 2rv) is the angular frequency
d’x :
mF =ekE =eE, exp(iwrt)
5

The stationary solution of this vibrational equation is obtained by forming
the second derivative of the trial solution . _ X, exp(ia)t)

This yields ek
X=-

marv®

The vibrating electrons carries an electric dipole moment.

P = efo where N, is free electrons per cubic centimeter
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The dielectric constant ¢ =1+——

gk - e’ N
Inserting (11.3) and (11.4) into this equation &=1- f

drte,my?
The dielectric constant equals the square of the index of refraction, n
2
R e’ N
i =1- 2 ’ 2
A e, my

We consider two special cases as follows,
2
e"N,
(a) For small frequencies, the term Arle
0

my2 IS larger than one.

Then ;2 is negative and imaginary. An imaginary n° means that
the real part of n disappears. Eq.(10.25) becomes, for n=0
R (n=1)"+4° _ 1+ k? _1 i.e., the reflectivity is 100
(n+1)*+k* 1+k° % (Fig 11.3)
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1‘:I .2 Free Electrons Without Damping - N,

(b) For large frequency (UV light), the term 4,°¢ my* becomes
smaller than one. Thus n’is positive and 7 = n real. The reflectivity

for real values of 7 , i.e., for k=0, becomes

2
= M The material is essentially transparent for
(n+1)? these wavelengths (Fig 11.3)
We define a characteristic frequency, v, often called plasma
frequency, which separates the reflective region from the
transparent region. (Fig 11.3) The plasma frequency can also be
deduced from (11.6) or (11.7). In these equations ¢V, must have

the unity of the square of a frequency, 4r’g,mv’

-Reflective—seTransparent>

which we define to be v, € 100
2 Z (%
2N s O
2 _ f S 50 -
v — Q
1 2 ©
A e m =
Q A —
€ 0 R ol
visible V1 Y
region

Figure 11.3. Schematic frequency dependence of an alkali metal according to the free

electron theory without damping. v, is the plasma frequency.
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11.2 Free Electrons Without Damping
The alkali metals are Table 11.1. Plasma Frequencies and Effective Numbers of Free Electrons
transparent near UV and for Some Alkali Metals.
reflect the light in the visible el Li Na K Rb Cs
region (Table 11.1) :the s- " 1) Gheerved 14.6 14.3 9.52 8.3 6.81
electrons of the outer shell | (10" ), calculated 19.4 14.3 10.34 9.37 8.33

1 J; nm (= ¢/vy), observed 150 210 290 320 360

of the alkali metals can be N.it|free electrons/atom)| 0.57 1.0 0.8 0.79 0.67

considered to be free. a1

In Table 11.1, the calculated and the observed values for v, are only
identical for sodium : sodium does exactly one free electron per atom
contribute to the electron pas.

For other metals “effective number of free electrons” is commonly

introduced, which is defined to be the ratio between the observed and

calculated v, values )
v, (observed)

v2(calculated)

eff

e
kin the red or IR spectrum

Neff
e

B A-n’ +k*W4r’eyn N ~can be obtained by measuring n and
o 2
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To take account of the damping, we add to the vibration equation (11.2) a
damping term y(dx/ dt) , which is proportional to the velocity

d*x dx
m——-—+y—=eklk =ek,exp(iwt 11.11
T o EXp(icor) (11.11)

We determine first the damping factor,

The damping is depicted to be a friction force which counteracts the
electron motion v’ = const.

2 E d r_J -
dt y dt eN,
N.e’
— y:
i d’x Né* d
Thus (11.11) becomes, m a + A ek = eE,exp(iot)

dt* o, dt



== 5
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11.3 Free Electrons With Damping

The stationary solution ofeqn. d*x N Ne® dx

dt* o, dt
obtained by differentiating the trial solution x = x,exp(iwt) by time
and inserting the second derivatives into the equation, which yields

=eF =eE, exp(iot)

, Nfe2
—mw° x + xow= ek
0y
‘e ) eN E
N.ew maw: P:efo then P = >
/ — few. mao
o, e [ —
o, e
P P 1
&y & E 2re,v . mlrne, ,
0 0¥ _ 0y,
2
A 1 V12 O-O Nfe
TEWV .V TTEV e
N iv=""0L —y? theterm ——/— equal to v,°
o Vi o A e,my
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11.3 Free Electrons With Damping

The term 27zgov12 | o, in (11.22) has the unity of a frequency. We define a

damping frequency 2 e 12 ,
V, =—— =276V, Py
Oy

Table 11.2. Resistivities and Damping Frequencies for Some Metals.

Metal Li Na K Rb Cs Cu Ag Au
po (U cm)? 8.55 4.2 6.15 12.5 20 1.67 1.59 235
vy (1012 s71) 10.1 4.8 3.1 4.82 515 4.7 4.35 3.9

* Handbook of Chemistry and Physics, 1977; room-temperature values.

Table 11.2 lists values for v, which were calculated using experimental o,and
v,values. Now (11.22) becomes ,

2
Vi

N

e=1+

=, where £ is identicalto 7;°
ivv, —Vv 2

(n)* =n®—2nki—k* =1- "

2
Ve —VV,i
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11.3 Free Electrons With Damping

A
®

Multiplying the numerator and
denominator of the fraction in
(11.25) by the complex
conjugate of the denominator | e

allows us to equate individually 0 visible 1 v

real and imaginary parts. Figure 11.4. The absorption, & = 2nk, versus frequency, v, according to the free

electron theory (schematic).

This provides the Drude

equations for the optical &
constants ) N
n-—k :glzl_ﬁ U visible _
veo+v, " g
2
20 VvV, V
vV Vv VvV~ + v, Figure 11.5. The polarization, &; = n* — k2, as a function of frequency according to
2 the Drude theory (schematic).
2 2
. .y . e’ Ny 27EWV,
with the characteristic frequenciesV; = and V,=—""

2
Arxs,m o,
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11.4 Special Cases

For the UV, visible, and near IR regions, the frequency varies between
10'4 and 107° s-1. The average damping frequency, v, is 5 x 1012 s-
(Table 11.2). Thus, 12 >> 1,2, Equation (11.27) then reduced to

Y V12
£, =——%
vV Vv
Vs
With v = v, (Table 11.1) We obtain &, = —
Vv

For very small frequencies v2 <<V,? , we may neglect v2 in the
denominator of (11.27). This yields, with (11.23)

2
o lvi o,

nkv = = =
Are, 2v, A4rng,

Thus, in the far /R the a.c. conductivity, o and the d.c. conductivity o,
may be considered to be identical
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11.5 Reflectivity

100
R %

S S . !
HAGEN and RUBENS | ™™~} -

80

DRUDE

40

t
\

1 3 s 10" 5 10 s 10° s sec”

p —————
2 v

visible

20

)
|
|
|
|
|

50 |
|
|
1
l
|
|
|
|

Voe——

Figure 11.6. Calculated spectral reflectivity for a metal using the exact Drude equa-
tion (solid line), and the Hagen—Rubens equation (10.34) using v; = 2 x 10'° s~! and
v = 3.5 x 1012 571,

The reflectivity of metal is calculated using (10.29) in conjunction with
(11.26) and (11.27).
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11.6 Bound Electrons (Classical Electron Theory of Dielectric Materials)

“At higher frequency, the
light is absorbed and
reflected by metal as well as
by nonmetals in a narrow
frequency band” —

It can be interpreted by
Lorentz model: He assumed
that under the influence of
and external electric field,

(b)

Figure 11.7. An atom is represented as a positively charged core and a surrounding,
negatively charged electron cloud (a) in equilibrium and (b) in an external electric
field.

the positively charged L@ i
electron cloud are displaced
with respect to each other { g
(Fig11.7) —

“harmonic oscillator” B . :

Figure 11.8. Quasi-elastic bound electron in an external electric field (harmonic
oscillator).
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11.6 Bound Electrons

Under the influence of and alternating electric field (i.e. by light), the electron
is thought to perform forced vibrations

el = ek, exp(iwt
0 plic) d’x L dx

The vibration equation: de +y' o +kx = ek, exp(icr)

kx : restoring force (xis displacement, k is the spring constant), y’: damping
parameter

The stationary solution for week damping (see Appendix 1)
eg,

X = — expli(wt —¢)]

12 2

\/mz(a)g—a) ) +9"w

where o, =2rv, = \/E is resonance frequency of the oscillator, @ is the
phase m

difference between forced vibration and the excitation force of the light
wave (see Appendix 1) tan g = Y @ B y'v

m(a; —o°) - 2mm(ve —v°)
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1 1 .6 Bound Electrons
P=exN, Inserting (11.33) yields P =

with expli(wt — ¢)|= exp(iar) - exp(—ig)
e N E

\/m (wo ) Ty o’

e’ N E,expli(wt — ¢)]

r22

m*(wF —w”)* +y

exp(—ig)

P ~ . A .
which yield (11.5) € =1+ —Eand (1042)n° =n° -k’ - 2nik =& = ¢, —i¢,
)

§=n?—k?—2nki= e’N,E exp(—id)

eoJm (@ — ) +7" %’

with exp(—i¢@) =CcoS¢g—isin g

2
n® — k% —2nki=1+ e N, COS ¢
50\/m2(a)§—a)2)2+y'2a)2
2
N :
—1 € sin ¢

50\/m2(a)§—a)2)2+y’2a)2
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The trigonometric terms in (11.42) are replaced, using (11.35), as follows

2 2
Cos 1 _ m(w; — o)
\/1+tan2¢ \/mz(a)é—a)z)ery'za)z
sin ¢ tan ¢ Y @

\/1+ tan’ ¢ sz(a)j —0°) +9"° 0’
separating the real and imaginary parts in (11.42) finally provides the optical

constants
2 p? 14 esza(a)g—a)z)
& =n o 2/ 2 2\2 2.2
Elm™ (@) —@°)" +y"v

e’mN (v, —v°)

& =1+
' g [47°m® (Vi —v°)? +y'5v%]

that is,
eZNay!a) i eZNayrv
, or £, = :
go[m® (@f —@0°)* +y"*°] P 2me [AntmE (vVE —vP)P +y' AV

&, =2nk =
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11.6 Bound Electrons

Figures 11.9 and 11.10. Frequency dependence of polarization, & = n.z — k2, gnd
absorption, & = 2nk, as calculated with (11.45) and (11.46), respectively, using

characteristic values for N, and y'.
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11.7* Discussion of the Lorentz Equation for Special Cases

Small Damping : y’is very small, equation (11.45) reduced to
2
e"N,

A e,m(vy —v°)

s &l

VR S\ N

Figure§ I1.11 and 11.12. The functions & (n?) and &, respectively, versus frequency
according to the bound electron theory for the special case of small damping.
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11.7* Discussion of the Lorentz Equation for Special Cases

Absorption near v, : Electrons absorb most energy from light at the
resonance frequency, i.e., £, has a maximum near v,. For small damping,
the absorption band becomes an absorption line (Fig 11.12)

2
e"N,
!
27250)/ Vo

&y =

More than One Oscillator

2

e’mN, Z f (v =v°)

g =n"—k*=1+ z
&, Ar’m (vol—v ) +y Y

4

2
6, = 2nk =1+ < Ve Z L/ —
2me, T Antm® (vi, —v?)’ + %y

N}
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11.8 Contribution of Free Electrons and Harmonic Oscillators to
the Optical Constants

The optical properties of metals may be described by postulating a certain
number of free electrons and a certain number of harmonic oscillators.
Both the free electrons and the oscillators contribute to the polarization.

Thus, the equations for the optical constants may be rewritten, by
combining (11.26), (11.27),(11.49), and(11.50)

. v emN, S (vg=v")
‘91_1 2 2 T Z ,2 2
VeV, A ArPm® (v, —v?)2 + %y
V7 e’N fvy!
—an— —L a Z i

v Vi +ve 2me, T Antm® (Vi —v°) +
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11.8 Contribution of Free Electrons and Harmonic Oscillators to
the Optical Constants
€4
0
5
I
l
I
|
|
|
|
|
]
O v visible 2 ;

spectrum

Figures 11.13 and 11.14. Frequency dependence of ¢ and &, according to (11.53) and

(I11.54). (i =1). f = free electron theory; b = bound electron theory; S = summary
curve (schematic).
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12.1 Introduction

- From the classical point of view, it is not evident why the electrons

should behave freely at low frequencies and respond as if they would
be bound at higher frequencies.

- An unconstrained interpretation for this is only possible by applying
wave mechanics. This will be done in the present chapter.

12.2 Absorption of Light by Interband and Intraband Transitions

- For optical frequencies, the momentum of a photon, and thus its wave
vector k, = p/his much smaller than that of an electron: £, is much
smaller than the diameter of the Brillouin zone (Fig.12.1)

Direct interband transition: electron transitions at which Aremains
constant (vertical transition)

Indirect interband transition: absorption of a light guantum under
participation of a phonon; excess momentum is transferred to lattice.



L B B B B

- 18t Brillouln—~
Zone

Figure 12.1. Electron bands and direct interband transitions in a reduced zone.
(Compare with Fig. 5.4.)

'

o k™ B2, K,

Figure 12.2. Indirect interband transition. (The properties of phonons are explained

N Qg § N in Chapter 20.)
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12.2 Absorption of Light by Interband and Intraband Transitions
An example for interband transition: be
Cu

The interband transition having the
smallest possible energy difference
is shown to occur between the upper
d-band and the Fermi energy. This
smallest energy is called, “threshold
energy for interband transition” (or
the fundamental edge” : marked in

Fig 12.3 by a solid arrow. W i ’

Figure 12.3. Section of the band diagram for copper (schematic). Two pertinent in-
terband transitions are shown with arrows. The smallest possible interband transition
occurs from a filled d-state to an unfilled state just above the Fermi energy.

Photon energy for this transition : 2.2 eV — the red color of Cu

At slightly higher photon energies, a second transition take place, which
originates from the Fermi energy : marked a dashed line
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12.2 Absorption of Light by Interband and Intraband Transitions

Interband transition: under certain conditions photons may excite electrons
into a higher energy level within the same band. This occurs with
participation of a phonon, i.e. a lattice vibration quantum (Fig 12.4)

El
Interband transitions are
mainly observed in metals
because metals have
unfilled electron bands.

Figure 12.4. Intraband transitions. The largest energy that can be absorbed by intra-
band transitions is obtained by projecting the arrow marked “Ey,.,”" onto the energy
axis.
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12.3 Optical Spectra of Materials

- Optical spectra are the principal means to obtain experimentally the
band gap and energies for interband transition.

- For isolated atoms and ions, the absorption and emission spectra are
known to be extremely sharp.

- Plain reflection spectra of solids are not to useful for deduction of
transition energies, mainly because Ris a rather involved function of ¢,
and £,: Thus g, (i.e. absorption) spectra are often utilized instead.

- Modulated optical spectra (Sec 13.1.3) separate the small
contributions stemming from points of high symmetry (such as the
centers and edges of the Brillouin zone) from the general much larger
background.
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*412.4 Dispersion

The alternating electric field of the light which impinges on the solid
perturbs the potential field of the lattice periodically. Thus, we need to

add to the potential energy a correction term, the so-called
perturbation potential, VV’

V=V,+V E = Acoswt

Then, ' =¢FEx=eAC0S(wt)-x

Time dependent Schrodinger equation

2m 2im oY
VWY - — VY - =0
i h Ot
VY —2—?(1/0 +eAxcoswt)¥ — 2im 0¥ =0

h ot



1+ Quantum Mechanical Treatment of the

¢ Optical Properties NN NN NN
*12.4 Dispersion
Our goal is to calculate the optical constant from the polarization
The classical polarization P = Nex is replaced in wave

mechanics by P — NeJ.xSUSU*dT

Ne® A Vv,
As results, we obtain &, = n°—k’=1+ Za,f,- > 5 - 2
o7t V.=V

ni

This equation is the sought-after relation for the optical properties of solids,

obtained by wave mechanics 4om

Empirically introduced oscillator strength 7: fl - A @i Vi

hv,;is that energy which an electron absorbs when it is exited from the n-
band into the ~band. Thus, the resonance frequency, v_,, of the /th
oscillator in Sec 11.17.4 is replaced in wave mechanics by a frequency v, ,,
that corresponds to an allowed electron transition from the nth into the th
band.
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Magnetic Field, H CCCCCG

D H represents a magnetic force generated in a volume of the space due to a
change in magnetic energy of that of the space.

Examples of the magnetic force

- A force on a current-carrying conductor

- A torque on a magnetic dipole

- A reorientation of spins on electrons within atoms

» H is fundamentally generated by an electrical charge in motion.
Earth (~ 0.70e¢)
Bulk magnets (~ 5,0000e)
Current-carrying conductors (~30,0000¢)
Superconductors (>100,0000¢)
(ref. Table 1.1 in David Jiles)

» Unit
mks or SI(Systeme Interrnational): [A/m]

00
cgs: [Oe] 1 Oe= “an A/m (~79.6 A/m)



»* Basic Concepts in Magnetism, . . .

> (See Fig. 14.1) Diamagnetic materials are expelled from the field,

whereas para-, ferro-, antiferro-, and ferrimagnetic materials are
attracted in different degrees.

H
F=VyuH L (an)
dx

F: force

V : the volume of the sample

X . susceptibility

Figure 14.1. Measurement of the magnetic susceptibility in an inhomogeneous mag-
netic field. The electromagnet is driven by an electric current, which flows through the

. . . helical windings of a long insulated wire called a solenoid. The magnetic flux lines
H : magnet|c field (dashed) follow the iron core.
dH

d—: the change of the magnetic field strength #in the x-direction
X



Magnetic Induction, B & & & & & &

P B is the response of a medium to an applied magnetic field H

)
» B is defined by B:Z

B is the magnetic flux, ® [Wb] passing through a unit cross-sectional area.
Magnetic flux, ©?
- Generated by the presence of a magnetic field in a medium.

- By Lentz law, the voltage V'is induced as ® changes

dd dB
V=-N I =—NA I called, "electromagnetic induction"
1 volt = —(1) ®,-9 If ©=0,0,=1Wb Relation between B and H
dt (1Wb = 1 voltesec) p= ;1 where yis permeability(5-2-&)
Maxwell's equation (Gauss's law) =1, In free space

= 47 X 1077 H/m (or Wb/A)
VeB =0 : Always form a closed path!

» Unit: [G], [T]
1 Tesla =1 Wb/m? ( =1 voltesec/m?)
A force of 1 N/m on a conductor carrying 1 A perpendicular to the direction of B

Relative permeability 1z = 1/n

Z_=1in a perfect vacuum(free space)



Hz%(/l/m) (14.2)

B = H

(14.3)

Basic Concepts in I\/Iagnetjs.rq ¢ ¢ ¢

H : the field strength

/ : current

n . the number of the windings
L : the length of the solenoid

B : magnetic induction or magneltic flux
density (tesla; 7)

U . permeability or relative
permeability(u,.)

(unitless)



4@‘\ N

Magnetic Moment, m

» Definitions :
m = pl in a bar magnet
m =iA in a conductor loop

» Unit SI cgs
[Am?] [emul]
[Wbm] [erg/Oe]

1
1 Wbm “In 101°Gem3

» Measurements of m
i) Torque measurement: 7=puym X H=m X B
T= T, if m is perpendicupar to H (or B), and then
- Tmax/yoH
Since m = pl and p = ®/p in the Sommerfeld conversion
m = Ql/ 11,
i) Magnetization measurement

m=MV

N N RN RN



b I\/Iagnetlzatlon, M N N N N NN

» M is the total magnetic moment m per unit volume (m per unit mass = specific magnetization 0)

M= m/V (cf. o= M/p|emu/g]), where pis density
Since m = CDI/[.IO’ V=Al

M=®/uA=B/u,

Therefore, B = g M when H =0

» Saturation Magnetization

M, : complete saturation, where all atomic moments are aligned parallel to H,
M_ : technical saturation, where multiple-domains become single domain

» Relation between M and H
M = xH , where x is susceptibility(A} 8-&) <> B = uH (uis permeability(F-A-£))
uand x are not useful for ferromagnets.
Need differential values: ;' = dB/dH, x' = dM/dH

» Relationship between H, B, and M

A universal relationship

B =y (H+ M) : SI(Sommerfeld)
=uH+1 : SI(Kennelly)
= H + 41tM : cgs(Gaussian)

B=uH+M)=yH+xH)=py1+xX)H
Since B=pH=puH, p=1+x
z.and x are different ways of describing the response of a material to magnetic fields.



#* Basic Concepts in Magnetism . . .
U= 1+ A (14.9) (See Table 14.1)

- For empty space and, for all practical purpose, also for air,
x=0 and thus z=1
- For diamagnetic materials,
x is small and negative. — yis slightly less than 1
- For para- and antiferromagnetic materials,
x is small and positive. — uis slightly larger than 1
- For ferro- and ferrimagnetic materials,
x and u are large and positive.

= The magnetic constants are temperature-dependent, expect
diamagnetic materials. The susceptibility for ferromagnetic
materials depends on the field strength, H.



*“ Basic Concepts in Magnetign
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Table 14.1. Magnetic constants of some materials at room temperature

Type of
Material x (SI) unitless  yx (cgs) unitless  x unitless magnetism
Bi —165 x 1076 —13.13 x 1076 0.99983
Be —232x107%  —1.85x10"®  0.99998
Ag ~23.8 x 10~ ~1.90 x 1076 0.99997
Au —34.4 x 10~ ~—2.74 % 107¢ 0.99996 Diamagnetic
Ge ~71.1 x 10~¢ —5.66 x 107 0.99999
Cu -9.7 x 10~ —0.77 x 107 0.99999
Si —4.1 x 1076 —0.32x 10°®  0.99999
Water -9.14x107®  —0.73x107%  0.99999
Superconductors® —-1.0 ~—8 x 1072 0
B-Sn +2.4 x 1076 +0.19 x 107° 1
w +77.7 x 1076 +6.18 x 107° 1.00008
Al +20.7 x 10°¢  +1.65x10"®  1.00002 Paramagnetic
Pt +264.4 x 1075 +21.04 x 10°®  1.00026
Low carbon steel ~5x 103 3.98 x 102 5x 103
Fe-3%Si (grain-oriented) 4 x 104 3.18 x 10° 4 x 104 Ferromagnetic
Ni-Fe-Mo (supermalloy) 106 7.96 x 10* 10°

“See Section 7.6.

Note: The table lists the unitless susceptibility, y, in SI and cgs units. (The difference is a factor of 4z, see
Appendix 4.) Other sources may provide mass, atomic, molar, volume, or gram equivalent susceptibilities
in cgs or SI units. # has the same value in both unit systems, see Section 14.3.

Source: Landolt-Bornstein, Zahlenwerte der Physik, Vol. 11/9, 6th Edition, Springer-Verlag, Berlin (1962).



Basic Concepts in Magnetigm
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B=uH+pu,M  infreespace (14.5)

M = yH M : magnetization (14.6)

¢ — BA (14.7)

- magnetic flux
B : magnetic flux density

¢ = u,HA (14.7a)

in free space (M=0)

M = il (14.8)
|4

U, . magnetic moment

- ——- poM-
< —— - M-

(@) (b) (c) (d)

Figure 14.2. Schematic representation of magnetic field lines in and around different
types of materials. (a) Para- or ferromagnetics. The magnetic induction (B) inside the
material consists of the free-space component (4,H) plus a contribution by the ma-
terial (4yM ); see Eq. (14.5). (b) The magnetic field lines outside a material point from
the north to the south poles, whereas inside of para- or ferromagnetics, B and g,M
point from south to north in order to maintain continuity. (c) In diamagnetics, the
response of the material counteracts (weakens) the external magnetic field. (d) In a
thin surface layer of a superconductor, a supercurrent is created (below its transition
temperature) which causes a magnetic field that opposes the external field. As a con-
sequence, the magnetic flux lines are expelled from the interior of the material.
Compare to Figure 9.18.



> Sl unit VS

b= p,d + p M (14.5)

B = puH (14.3)
H=1+y (14.4)

magnetic field strength, # (Oersted)
magnetic induction, B (Gauss)

In some European countries, and in
many international scientific journals

NN NN NN
cgs unit

B=H+4zM  (14.9)
B=uH (14.10)

u=1+4ry (14.11)

magnetic field strength, #/(A/m)
magnetic induction, B(Tesla)

The scientific and technical literature on
magnetism, particularly in the USA



» Diamagnetism

O Lenz’s Law: acurrentis induced in a
wire loop whenever a bar magnet is
moved toward (or from) the loop.
The current induces a magnetic
moment opposite to the bar magnet
(Fig.15.1(a)

d The external field (H,,) accelerates or
decelerates the orbiting electrons,
in order that their magnetic moment
is in opposite direction from H,,

O Lamor precession: Precessions of
electron orbits about the magnetic
field direction (Fig.15 1(b))

Overview —Types of Magnetism

N RN N

Figure 15.1. Explanation of diamagnetism. (a) Induction of a current in a loop-
shaped piece of wire by moving a bar magnet toward the wire loop. The current i.n
the loop causes a magnetic field that is directed opposite to the magnetic field of the
bar_ magnet (Lenz’s law). (b) Precession of an orbiting electron in ;.n external mag-
netic |1c_ld.‘Precc.\;5i0n is the motion which arises as a result of external torque atctinﬁ
On a spinning body (such as a spinning top) or, as here, on an orbiting electron. )
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> Diamagnetism

O Diamagnetism in superconducting materials (Sec. 7.6)

- Meissner effect : Superconductors expel the magnetic flux lines in the
superconducting state. Inside superconductor Bis zero. (Fig. 14.2(d))

H=-M
- Perfect diamagnetism: Magnetization is equal and opposite to the
external magnetic field.
Susceptibility, v =M/H =-1

0 Usage of strong diamagnetism of superconductor
- Frictionless bearing: support of loads by a repelling magnetic field
- Levitation: magnet hovers above a superconducting materials

- Suspension effect: a chip of superconducting material hangs beneath a
magnet
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> Paramagnetism

Largely due to electron spin
motion. An additional source
stems from orbiting motion.

Nucleus

- An external field turns
randomly oriented magnetic

moments into the field (a)

direction Figure 15.2. (a) Schematic representation of electrons which spin around their O\W}
axes. A (para)magnetic moment g, results; its direction dcpcnds on the mode ©
rotation. Only two Spm directions are shown (Lﬁ”ﬂd ‘spin up’ and ‘spin down”)-

[1Spin paramagnetism : net 7" S on is the source of electron-orbit paramagnetism.
magnetic moment results from
electrons which spin around
their own axis (Fig.15.2(a))
* Observed in some metal and salts of transition elements

(b)

] Electron-orbit paramagnetism : net magnetic moment stems from
magnetic moments of orbiting electrons (Fig.15.2(b))
* Free atoms (dilute gases), rare earth elements and their salts and oxides
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> Paramagnetism

Temperature dependence of paramagnetism
8

O Curie law : susceptibility, 1, is ; Ef)// )
inversely proportional to the // /(-b)
absolute temperature T L7 T

x=C/T  (15.1) il -
................ 2

where, Cis Curie constant
Figure 15.3. Schematic representation of (a) the Curie law and (b) and (c) the Curie—
Weiss law. (d) The diamagnetic behavior is also shown for comparison.

Q Curie-Weiss law : a more general relationship

y=C/(T-6) (15.2)
where 6 is another constant that has same unitas the 7

* Ni (above Curie temperature), Fe and /-Co, rare earth elements, salts
of transition elements (e.g., the carbonate, chlorides, and sulfates of
Fe, Co, Cr, Mn obey Curie-Weiss law)



» Paramagnetism

Overview —Types of Magnetism . . . . .
Iy drer 1

Figure 15.4. Schematic representation of the spin alignment in a d-band which is
partially filled with eight electrons (Hund’s rule)

- Why only spin paramagnetism is observed in most solids?

In crystals, the electron orbits are essentially coupled to the lattice, which
prevents the orbital magnetic moments from turning into the field
direction (“orbital quenched?).

- Exception of “orbital quenched” elements: Rear earth elements and their

derivatives having “deep-lying 4 Felectrons”. The latter ones are shielded
by the outer electrons from the crystalline field of the neighboring ions ,
and thus orbital magnetic moments of the ~electrons may turn into the
external magnetic field and contributed to electron-orbit paramagnetism

The g-factor : the friction of total magnetic moment contributed by orbital
motion versus by spin motion

Hund’s rule and Pauli principle
Bohr magneton : the smallest unit (or quantum) of the magnetic moment

lg=ehl(4tm)=9.274x 1024 JT= (A-m2) (15.3)
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> Ferromagnetism
O A ring shaped solenoid (Fig.15.5)

By increasing current external field is Variable |
increased, then the magnetization, W, 'pw-?r‘:fhppl.vj
rises showing a hysteresis loop (Fig 15.6) 5%/ é’“

* M, : saturation magnetization

* M.: remanance
* H_: coercive field Primary _
4 Hard (soft) magnetic materials:
a large (small) M.and H,

\\
Secondary

A

Flux meter

Figure 15.5. A ring-shaped solenoid with primary and secondary windings. Tl:le
magnetic flux lines are indicated by a dashed circle. Note, that a current can flow in
i 3 ; . the secondary circuit only if the current (and therefore the magnetic flux) in the pri-
B s neaatic ipreacotation of 4 liysereals loop of u ferromagnetic amte- mary winding changes with time. An on—off switch in the primary circuit may serve

rial. The dashed curve is for virgin material. for this purpose
S se.



> Ferromagnetism
0 7dependence of M, (Fig.15.7(a))
Above the Curie Temperature, 7,
ferromagnetics become paramagnetic.
d A small difference between 7,and
© (in Curie-Weiss law) is due to
a gradual transition from ferromagnetism
to paramagnetism (Fig. 15.7(b))

* Magnetic short-range transition:
Small clusters of spins are still aligned
slightly above 7,— gradual transition
(Fig. 15.7(b))

Table 15.1. Saturation Magnetization at 0 K and Curie Temperature
(Tc) for Some Ferromagnetic Materials.

Overview —Types of Magnetism. o o ¢ o &

ferromagnetic paramagnetic

(a)

Te

Mgy : ;

: ” 20 K—

Metal (A/m) (Maxwells/cm~) Tc (K) ' b

(b)

1 - 6 ) 4 3 5

liL 1.5 l[.)6 2.~2 X 104 1043 Figure .] 54T (a} Temperature dependence of the saturation magnetization of ferro-
(.Q 1.45 x ]Us 1.82 x 10‘1 1404 Magnetic materials. (b) Enlarged area near the Curie temperature showing the para-
Ni 0.51 % 10 0.64 x 10 631 magnetic Curie point @ (see Fig. 15.3) and the ferromagnetic Curie temperature T,

Gd 5.66 x 10° 7.11 x 10* 289
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> Ferromagnetism M Compressive stress

S
Tensile stress

0 Piezomagnetism : the
magnetization of
ferromagnetics is stress | s :
dependent (Fig 15.8) | TOR B, ™ / Fe

P /

Ex) a compressive stress
increases Mfor Ni, while B H
. (a) (b)
tensile stress reduces WM.

Figure 15.8. Schematic representation of the effect of tensile and compressive stresses
on the magnetization behavior of (a) nickel and (b) iron. (Piezomagnetism.)

O Magnetostriction : inverse of piezomagnetism
* magnetic field causes a change in dimension of a ferromagnetic substance
 also observed in ferrimagnetic or antiferromagetic materials
 terbium-dysprosium-iron display magnetostriction about 3 orders of
maghnitude larger than iron-nickel alloys



> Ferromagnetism

O Explanation of
Ferromagnetism

- Spontaneous magnetization:

* the spins of unfilled a-band
spontaneously aligned parallel
to each other below 7, within
magnetic domains without the

presence of external magnetic
field (Fig 15.9)

Overview —Types of Magnetism. o o ¢ o &
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(a) (b) () (@)

Figure 15.9. (a) Spontaneous alignment of all spins in a single direction. (b) Division
into two magnetic domains having opposite spin directions. (c) Closure domains in a
cubic crystal. (d) Growth of a domain whose spins are parallel to an external mag-
netic field. (The domain walls are not identical with the grain boundaries.)

» exchange energy causes adjacent spins to align parallel to each other

O Magnetic Domain structure

e Energetically favorable by a reduction in magnetostatic energy

— Spontaneous division into many individual domains in which all spins
are aligned in the same direction

* Closure domain structure: most favorable in the point of magnetostatic

energy Fig. 15.9 (c)
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> Ferromagnetism

a Magnetic Domain

* The individual domains are magnetized to saturation.

* The spin direction in each domain is different so that as a whole it
cancels each other and thus the net magnetization is zero.

* An external magnetic field causes to grow the domain whose spins are
parallel or nearly parallel to the external field.

* At the technical saturation magnetization, M, the entire crystal
contains one single domain, having all spins aligned parallel to
external field.

e Domain wall: the region between individual domains in which the spins
rotate from one direction into the next.

e Barkhausen effect : a discontinuous domain wall movement by
external field



> Antiferromagnetism

- Spontaneous alignment of moment
below critical Temp. (Néel Temp.)

- Aligned in antiparallel (Fig 15.10)

- No net magnetism

- Néel Temperature, 7,

(a) (b)

Figure 15.10. Schematic representation of spin alignments for antiferromagnetics at
0 K. (a) Display of a (100) plane of MnO. The gray (spin down) and black (spin up)
circles represent the Mn ions. The oxygen ions (open circles) do not contribute to the
antiferromagnetic behavior. MnO has a NaCl structure. (b) Three-dimensional rep-
resentation of the spin alignment of manganese ions in MnF,. (The fluorine ions are
not shown.) This figure demonstrates the interpenetration of two manganese sub-
lattices, A and B, having antiparallel aligned moments.

- Modified Curie-Weiss law for antiferromangtics
x =C/(T-(-0)) =C/(T+6) (15.4)

the extrapolation of paramagetic (above T,) line to 1/ y = 0 yield a negative &

Table 15.2. Characteristic Data for Some

Antiferromagnetic Materials.

Substance T~ (K) -6 (K)
MnO 116 610
MnF, 67 82
a-Mn 100 ?
FeO 198 570
NiO 523 ~2000
CoO 293 330
Cr 310 ?

i

X «3\55
oS

A

- -

~ i
P o

) 5 1 T(K)
?—Eﬁjﬁparamagnetic——*

Figure 15.11. Schematic representation of the temperature dependence of a poly-
crystalline antiferromagnetic (a.f.) material.
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. . A sites B sites
> Ferrimagnetism S PR vEr—
- Exhibit spontaneous magnetic XEYY) 222220 2
moment and hysteresis below e o e e i i e
a Curie temperature, similarly 0 Fe0s Tre sins witin one s are armanged considerng Hues f6 £

15.4), The iron ions are equally distributed among the A and B sites. The nickel 1ons

: are only situated on B sites. The relevance of the number of ions per unit cell is ex-
as fe rromag nthS Plained later on in the text.
- Aligned in antiparallel, but
magnetic moment remain Table 15.3. Calculated and Measured Number of Bohr Magnetons for
Some Ferrites.
uncanceled. — - Fo Co Ni Cu
- Ceramic (oxide) materials, Calculated zg 5 4 3 2y ‘
Measured pup 4.6 4.1 3.7 23 1.3

poor electrical conductor
- Nickel ferrite NiO-Fe,O; (Fig 15.12)

 Two uncanceled spins, 25 per formula unit

- The small discrepancy between experiment and calculation (Table 15.3) is
caused by some contribution of orbital effects to the overall magnetic moment.



> Ferrimagnetism

Q Cubic ferrite (Spinel structure)

(Fig.15.13)

* MO-Fe,O;, where M = Mn, Ni, Fe,

Co, Mg, etc.

\\w\

¢ In the unit Ce", tOtal 56 ions (8 M2+ ions’Figure 15.13. Crystal structure of cubic ferrites. The small filled circles represent

16 Fe3*ions, 32 O, ions)
64 tetrahedral Asite/ 8=8
32 octahedral Bsite/2=16

* Normal Spinel :
8 M?*in A, 16 Fe3*in B
* Inverse Spinel :
8 Fe3*in A,8 M2*+8Fe3*inB
U Temperature dependence of
ferrimagnetics (Fig.15.14)

metal ions, the large open or shaded circles represent oxygen ions: (a) tetml_'ledral'or
A sites; (b) octahedral or B sites; and (c) one-fourth of the unit cell ofg cubic ferrite.
A tetrahedron and an octahedron are marked. Adapted from J. Smit, and H.P.J.
Wijn, Ferrites, Wiley, New York (1959).

1

Mso

ferrimagnetic T, T—

Figure 15.14. Schematic representation of the temperature dependence of the satu-
ration magnetization, M, and the reciprocal susceptibility for ferrites.



»Langevin Theory of Diamagnetism
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Magnetic moment ;,, created by a current /, passing through a loop-

shaped wire of area A
€V7Z7’2 evr

e e
w=1-A=—A=—-4= 15.5
H { s/v 27 2 ( )

Where, e = electron charge, r=radius of the orbit, s =2 r=length of orbit,
v= velocity of the orbiting electron, = orbiting time

Electrostatic force |F] on the orbiting electron
F=ma=Ee (15.6)
where, Eis the electric field and mis mass of the electron

Acceleration of the electron
a=av/dt = Ee/m (15.7)

E=VJL

where, V,=induced voltage(or emf), L= orbit length



,Langevin Theory of Diamagnetism
NN NN NN

A change in an external magnetic flux, ¢, induces in loop-shaped wire an
emf which opposes, according to Lentz’s law, the change in flux:

V. =—d¢/dt =d(u,HA)/ dt (15.9)

By, combining (15.7) — (15.9)

eAp, e’ i,

dH | dt = — dH  dt = <20 gl /1 dr (15.10)

dv/dt=Ee/m=V,e/Lm=—
Lm 2mrm 2m

A change in the magnetic field strength from 0 to Hyields a change in the
velocity of the electron

j dv:—er'u"j dH (15.11)

i (15.12)
2m
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This change in electron velocity yields in turn a change in magnetic
moment as we see by combining (15.5) with (15.12):

2.2
AﬂmzeAvr:_er,uOH (15.13)
2 4m
So far we assumed that magnetic field is perpendicular to the plane of the
orbiting electron. In reality the orbit plane varies constantly in direction
with respect to the external field. Thus we have to find a average value for

Al

m 2.2
— eruH
Ay =-ST T (15.14)
6m
If you take all Zelectron, Z= atomic nhumber , anrd is the average radius
of all electronic orbits,
270 u H
— e r
Ap,, =~ : (15.15)

6m



Langevin Theory of Diamagnetism
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The magnetization caused by this change of magnetic moment:

D) —2
M:ym/Vz—eZF HH (15.16)
omV

This finally yields, together with (14.6), the diamagnetic susceptibility,

2572 2572
Zdia:M/H:_eZF ,UO:_le Hy Noo (15.17)
omlV 6m w

Where, N,6/Wis the number of atoms per unit volume, N,= Avogadro
constant, § = density, W= atomic mass

The quantities in (15.17) are essentially temperature-independent.



, Langevin Theory of (Electron Orbit)

*  Paramagnetism CEREREES
Suoﬁ
Langevin postulated that the BAR
magnetic moment of the orbiting Ve
electron are responsible for /B/
paramangetism. S/ ‘

When magnetic moment, ;,  is aligned »
by an eXternal magnetlc f|e|d’ theFigure 15.15. Schematic representation of the magnetic moment of an electron that
potential energy is: has been partially aligned by an external magnetic field.

E =—-u uHcosa (15.18)

p__

Where «is the angle between field direction and

The probability of an electron to have the energy £, is proportional to exp(-
E /kgT), where kgis the Boltzmann constant, 7is the absolute temperature.



;,Langevin Theory of (Electron Orbit)
Paramagnetism VRS

Assume the electrons to be situated at
the center of a sphere. The vectors,
representing their magnetic moment,
may point in all possible direction (Fig
15.16)

This infinitesimal number dn of magnetic
moments per unit vol. which have the
energy £, is:

dn = const.dA exp(-E /kgT) (15.19)

Figure 15.16. Schematic representation of a unit sphere in whose center the electrons

dA =2][R23ina,da, (1 5.20) are thought to be located.

where R=1 is the radius of the unit sphere. Combining (15.18) —(15.20)

: H
dn = const2rsinada - exp(m cosa) (15.21)
B
For abbreviation - _ My Mo (15.22)

k,T



Langevin Theory of (Electron Orbit)
®  Paramagnetism TS

Integrating (15.21)

n= Zﬂconst.joﬂ sin ¢ exp(¢ cosa)da (15.23)

n

const. = . (15.24)
27zj0 sin @ exp({ cosa)da

Total magnetization is the sum of all individual magnetic moments

M = jon U, cosadn (15.25)

with (15.21)
M =const2nu joﬂ cosasin a exp({ cosa)da (15.26)

with (15.24)

nu, Jw cosasina exp({ cosa)da
M = 0

- (15.27)
_[0 sin @ exp({ cosa)da



Langevin Theory of (Electron Orbit)
Paramagnetism NN RN NN

This function can be brought into a standard form by setting x = cosa, and

ax = - sinada | 4 4/3 2§5
M=nu (cos¢ ——)=np, (=——=—+ -
H,(cos¢ 4,“) ﬂm(3 15 T 043

Where the expression in parenthesis is called Langevin funtion L({).
The term {=y 11,H/k, T is usually much smaller than one, so that:
2
£ — n/um /uOH
3 3k, T (15.29)
Which yield, for the susceptibility (14.6) at not-too-high field strength,

) (15.28)

M=nu,

. M nu 2,u 1 1
orbit m 0 —
ara — = C 15.30
Lo H 3kB T T ( )

This is Curie’s law (15.1), which express that the susceptibility is inversely
proportional to the temperature. The Curie constant is:

2
c=lEnth (15.31)
3k,



> Discussion of the Langevin
theory

- The magnetization, Mis a or L(c)
linear function of Hfor a
given temperature and for

small fields (Fig 156.17), o s w BUTY , |
Figure 15.17. Schematic representation of the Langevin function L({) =
(Eg.15.29) coth{ ~ 1/¢, where & = wouoH /kyT. '

- For large fields H, the magnetization reaches M at which all magnetic
moment aligned to their maximum value.

- Langevin theory can explain the Curie law.

- Refinement of Langevin function by applying quantum theory
-> Brillouin function



#* Molecular Field Theory (.« s« s

Weiss postulation: Total magnetic moment H,is thought to be composed
of two parts, external field H,and molecular filed H,,

Ht =He +Hm (15.32)
where, Hm =yM (» = molecular field constant) (15.33)

M

Z=M/HI=H+7M=C/T (15.34)
M = H,C (15.35)

Finally, we obtain I=
¥ = M ¢ ¢ (15.36)

H T-yC T-6
Weiss postulated that the above-introduced internal or molecular field is
responsible for this parallel alignment of spins, and considered
ferromagnetics to be essentially paramagnetics having a very large

molecular field. In the quantum theory, the H  is essentially the exchange
force (Sec 16.2).



Molecular Field Theory CCC TS

M T)TC T=TC

Let us consider the case for no external
magnetic field. Then the spins are only
subjected to the molecular filed A, . This
yields for the Langevin variable ( (see
(15.22)) with (15.33)

4/ — ll’lmlLlOH — ﬂmﬂOyM (15.37) i 17
kT kT f

Figure 15.18. Langevin function L(¢), i.e., (15.28) and plot of (15.38) for three tem-
peratures.

And provides for the magnetization by rearranging (15.37):
ke, T
ﬂm/’le/

The magnetization is linear function of {with the temperature as a
proportionality factor (Fig.15.18)

T(Tc

0 S L)

M = 4 (15.38)

The intersection /of a given temperature line with the Langevin function L(J)
represents the finite spontaneous magnetization, M, at this temperature



#* Molecular Field Theory CCCC O

QIn Fig.15.18

 7< T7,.:With increasing temperature, slope is increased, the point of
intercept, /, is decreased, and therefore the value for the spontaneous
magnetization is decreased.

* At Curie temperature, 7,: no intercept, and hence no spontaneous
magnetization

The slope kg/11,,11,7) in (15.38) is identical to the slope of the L(J ) near the
origin, which is n 1, /3 =M/3. This yields, for 7,

ot _M 15.39
Huly 3 (15.39)
Molecular filed constant, y, calculated by measuring 7,and inserting 7.into
Eq.(15.39) kBTC
V= (15.40)
ll’lmlLlOM

This yield, for the molecular magnetic field strength (15.33)

3k, T
H =yM=—"2% (15.41) (~1070e!!)
ﬂmlLlO



Paramagnetism and Diamagqel:igrq

1. Paramagnetism

- Magnetic moment of the spinning electrons: dominant contribution to
paramagnetism

- Susceptibilities for paramagnetic metals based on the energy theory

B

Fig16.1. Schematic representation of the effect of an external
magnetic field on the electron distribution in a partially filled
electron band (a) Without magnetic field (b) and (c) with
magnetic field.

N

N
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Paramagnetism and Diamagnetism . .

U The density of states of the two half-bands (Fig. 16.2). We can observe a
relatively large Z(E) near E.. Thus, a small change in energy may cause a
large number of electrons to switch to the opposite spin direction.

U The susceptibility (

A Eis larger - the larger the external magnetic field strength |H|,and the
larger the magnetic moment of the spinning electrons |y |

Xspin, para) OF Paramagnetism

AE = u,Hu, = (16.1)

Z(E)

Figure 16.2. Schematic representation of the density of states Z(E) in two half-
bands. The shift of the two half-bands occurs as a result of an external magnetic field.
Free electron case. (See also Fig. 16.1(c).) The area AN equals AE - Z(E).



Paramagnetism and DiamagrLeEi§rQ

The number of electrons , AN (transferred from spin down to up)
depends on the density of states at the Fermi energy, Z(£,)

AN = AEZ(E}) = pyHy, Z(Ey) (16.2)
T YAy
The magnetization |M| is — % (16.3)

The magnetization is larger, the more electrons are transferred from spin
down into spin up states.

2
A oo M py o Hm o HZ (E)

16.4

V V ( )

Thus, the susceptibility Z:M:/”st%z(EF) (16.5)
H V
The spin magnetic moment of one electron equals one Bohr magneton,
Up 7 Z(E )
Hs g
Zspin,pam =7 V - (1 66)

N}



2. Diamagnetism

O Susceptibility (x ) of metals might
be positive or negative depending on
which of the two components
(paramagnetism, diamagnetism)
predominates.

O Example of diamagnetism
1(beryllium)

- Be is a bivalent metal having a filled
2s-shell in its atomic state. However,
in the crystalline state, band
overlapping can be found, which
causes some of the Zs-electrons to
spill over into the Z2p-band. 2s-
electrons populate the very bottom of
Zp band. (see Fig. 16.3)

Paramagnetism and DiamagrLeEi§rQ

N}

EA

28 band

Fig16.3. Overlapping of 2s-and 2p-bands in Be and the
density of states curve for the 2p-band.

Thus, the density of states at the Fermi level, and consequently, x ., is very
small.— Diamagnetic susceptibility predominates, which makes Be

diamagnetic.




O Example of diamagnetism 2 ( copper)

The Fermi energy of copper is
close to the band edge. (see Fig.
5. 22). Thus, the density of states
near £, and the paramagnetic
susceptibility are relatively small
compared with diamagnetic

susceptibility.

O Diamagnetic susceptibility

_ e’ Zr’ u,
Zdia 6mV
Copper has about ten 3a-

(16.7)

electrons, which makes Z~10.

The radius of atshells is fairly

large.

- Thus, for copper, yx_,, is large

compared with y,,_..

Paramagnetism and DiamagrLeEi§rQ

2l 1I: I ‘
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Fig 5. 22. Band structure of copper (fcc). Adapted from

B.Segal, Phys. Rev. 125, 109 (1962). The calculation was

made using the |-dependent potential.




J""uantum theory of magnetic materjals_

3. Quantum-mechanical point of view of magnetic moment of an
orbiting electron

4 The orbital motion of an electron induces a magnetic moment, (/.

Recall y,, from a current passing through a loop-shaped wire.

V7Z7"2 evr

iU, _]XA_;A_S/—VA_ Sy (A= area of loop) | (16.8)

Electrons which have mass, m can make de Brogli wave.

2mr = nA =n ﬁ > Ip= 2in = hn, (mvr=angular momentum)
P T
nh
mvr = hn = — (16.9)
27
= e’ = = (16.11)
H 4 m (16.10) Forn=1, M, 4 2 :
eh (16.12)

DY
Bohr magneton (i, = =9.274 x10 (F)

4 Tm



U Characterlzatlon of ferromagnet
(unfilled d-bands): d- band diagram of
Fe,Co,Ni (Fig 16.5)

- d-bands overlap the next higher s-band. d-
band can accommodate up to ten electrons, so
that the density of states for a d-band is
relatively large

- For instance, the density of states of Ni near
Fermi energy are comparatively large, one
needs only a relatively small amount of energy
to transfer a considerable number of electrons

from spin down into spin up configurations.

- only minimum energy is needed to change
spin direction in the ferromagnetic metals.

U Difference between para- and
ferromagnet

- paramagnet: external magnetic field is
needed for spin alignment, no magnetic
domain

- ferromagnet: spontaneous spin alignment,
magnetic domain formation

omagnetism and Antiferromagnetism

E
A

e,

Ephni, |

(Eo”

€k

3d- \ ds-
band >band

Fig 16.5. Schematic representation of the density of
states for 4s-and 3d-bands the Fermi energies for iron,
cobalt, nickel, and copper. The population of the bonds
by the ten nickel (3d+4s)-electrons is indicated by the

shaded area.




romagnetism and Antiferromagrke’gigrq

O Exchange energy

“Set free” when equal atomic system are closely coupled, and in this way
exchange their energy

O Explanation of exchange energy

- Two ferromagnetic atoms: two identical pendula interconnected by a spring.

- The spring represents the interactions of electrical and magnetic fields

a;f

Fig16.6. Amplitude modulation resulting from the coupling of two
pendula. The vibrational pattern shows beats, Similarly as known
for two oscillators that have almost identical pitch.

- One pendulum deflect — its amplitude decrease, with energy transferring
to 2nd pendulum, which in turn transfer its energy back to the 1st one.

Vi

\ .fﬂ\ ﬂ i
N\

- The amplitudes of two pendula decrease and increase periodically with
time. (Fig16.6)



romagnetism and Antiferromagqe’gigrq p

The mathematical expression for two pendula

pattern
X, =bsinwt (16.13)
X, =bsmw,t  (16.14)
which yields
XI+X2:X:2b(:osW1 W2 pgin M2 (16.15)

Equation (16.15) provides two frequencies, W —w,) (W +w,)
2 2

)

The difference of frequencies is larger, the stronger the coupling.



romagnetism and Antiferromagrke’gigrq p

If the two pendula vibrate in a parallel fashing, the restoring force, Ax,
is small. As a result, the frequency is smaller than for independent
vibration

yo= |* (16.16)

" 27 \m

This equation shows that two coupled and systemically vibrating
systems have a lower Etwo individual systems.



U By solving the appropriate
Schrodinger equation for two atoms
only, ferromagnetism can be quantum
mechanically explained.

1. = [w.0w,w,w, (1)P—i L +1}dr (16.17)

Foo "o T N2

- 1, is positive — parallel spins are
energetically more favorable than
antiparallel spins. (vice versa)

romagnetism and Antiferromagrke’gigrq p

Iex Co

ferromagnetics

: Fe N
" (rare eart\h elements)
0

/ Mn rab
antiferromagnetics 7
- | for i

Fig 16.7. Exchange integral, |, versus the ratio
of inter atomic distance, r,,, and the radius of an
unfilled d-shell. The position of the rare earth
elements (which have unfilled f-shells) are also

shown for completeness.

- /., becomes positive for a small distance r,,between the electrons, i.e., a
small radius of the d-orbit, . Similarly, /,, becomes positive for a large
distance between the nuclei and neighboring electrons r_,and r, .

-1, vs. r,/r,(Fig16.7)




0 Bohr magneton of Ni

- Band overlapping is found between 3dand 4s
band, so that combined ten (3d+4s)-electrons
occupy the lower s-band and fill, almost
completely, the 3atband.

— Nickel 3adtband : filled by 9.4 electrons
(experimentally) .

- Hund’s rule : the electrons in a solid occupy the
available electron states in a manner which
maximizes the imbalance of spin moments.

- For Ni : 5 electrons are spin up and an average
of 4.4 electrons are spin down. As a result, we
can obtain a spin imbalance of 0.6 y/z per atom.

romagnetism and Antiferromagrke’gigrq

N

Table 16.1. Magnetic
Moment, 4, at 0 K for
Ferromagnetic Metals.

Metal .

Fe 2.22 iy
Co 1.72 iy
NI 0.60 stg
Gd 112 ug




O Magnetic behavior of Nickel-based alloys
(Fig 16.8)

Ni : 1s2 2s22p® 3s23p63dé 4s2

Cu:1s2 2s22pb 3s23pb3d10 4s?

- For Cu, no “unfilled d- or f-band”, the condition
for ferromagnetism.

- If copper is alloyed to nickel, the extra copper
electrons progressively fill the atband and
compensate some of the unsaturated spins of
nickel — the magnetic moment per atom of this
alloy is reduced.

romagnetism and Antiferromagqe’gigrq p

I T 1
Ni 20 40 60
at.% solute

Fig16.8. Magnetic moment per nickel atom
as a function of solute concentration

- The 3d- band of Ni is filled by only 9.4 electrons (0.6 electron lacks per
atom). Thus, about 60% copper atoms are needed until the magnetic

moment of Ni has reached a zero value.
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0 The production of ferro- and ferrimagnetic materials is large-
scale operation:

- The price of the material that goes into a chip is a minute
fraction of the device fabrication cost.

- The annual sales of electrical steel, used for
electromotors and similar devices, reach the millions
of tons

0 Other large-scale production items
- Permanent magnets for loudspeakers

- Magnetic recording materials



Electrical steels

N N RN RN

1.Core Losses

o The core loss is the energy that is dissipated in the form of
heat within the core of electromagnetic devices

o Several types of losses : eddy current loss, hysteresis loss
o Typical core losses are between 0.3 and 3 W/kg (Table 17.1)

Table 17.1. Properties of Some Soft Magnetic Materials,

Saturation
Coercivity, H, induction®,
R B
Permeability,
Name Composition (mass %) fioo (unitless) (Oe) (A/m) (kG) (T)
Low carbon steel Fe-0.05% C 5% 10° 1.0 80 21.5 2.1
Nonoriented silicon Fe-3% Si, 0.005% C, 7 x 10° 0.5 40 19.7 2
iron 0.15% Mn
Grain-oriented Fe-3% §i, 0.003% C, 4 x 10 0.1 8 20 2
silicon iron 0.07% Mn
78 Permalloy Ni1-22% Fe 107 0.05 4 10 8 11
Mumetal 77% Ni; 16% Fe, 5% Cu, 10° 0.05 4 6.5 0.6
2% Cr
Supermalloy 79% Ni; 16% Fe, 5% Mo 10° 0.002 0.1 7.9 0.8
Supermendur 49% Fe, 49% Co, 2% V 6 x 10 0.2 16 24 2.4
Metglas #2605 FegoBay 3 x 10 0.04 2 15 1.5
annealed
'Above B, the magnetization 1s constant and dB/d( u,H) is unity.

(Soft Magnetic Materials)

Resistivity,
p(p€d - cm)

Core loss at
1.5 T and 60
Hz (W/kg)

10
60

47

16

60)

~ 200

2.8
0.9

0.3

~ )
-




Electrical steels
(Soft Magnetic Materials)
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0 Eddy current loss (Fig. 17.1)

o An currentin the primary coil causes an alternating magnetic
flux in core = induces in the secondary coil an alternating V,

see (14.7) and (15.9)
V, o _@: —Ad—B (17.1)
dt dt

a This emf gives rise to the eddy current, /,(Fig.17.1(a))

Larger eddy current-> the larger i ( B=u,u-H ) 2 the larger
conductivity o of core material >the higher the applied
frequency—-> the larger the cross-section A4

o Skin effect

At high frequency, the eddy current shields the interior of the
core from the magnetic field, so that only a thin exterior layer
of the core contributes to the flux multiplication.



0 To minimize eddy current
o Decreasing o
o Ferrite core
o Insulating coated Fe core

-The decrease in o is a large
decrease in u

o Decreasing lamination
thickness . (Fig. 17.1(b))

o The cross-section (A) is
reduced, Decrease U,

—>additionally reduces
losses (skin effect)

o These losses, however, less
than 1% of the total energy
transferred.

Electrical steels
(Soft Magnetic Materials) BERREAE

A

/
L/,’)

/ 7/
///

gl N
I
- |
= |
i T-J ' ’
- |

(a) (b)

Figure 17.1. (a) Solid transformer core with eddy current, I,, in a cross-sectional area
A. Note the magnetic flux lines ¢. (b) Cross section of a laminated transformer core,
The area A" is smaller than area A n (a).
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4
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»« Electrical steels

(Soft Magnetic Materials) LB B

O Hysteresis loss

o Hysteresis losses are encountered when the magnetic
core is subjected to a complete hysteresis cycle (Fig. 15.6)

o The work thus dissipated into heat is proportional to the
area enclosed by a B/H loop.

o Proper materials selection and rolling of the materials with
subsequent heat treatment greatly reduces the area of a
hysteresis loop.



2. Grain Orientation

O The permeability of electrical
steel can be increased and
hysteresis losses can be
decreased by making use of
favorable grain orientations in
the material.

0 Magnetic anisotropy

- Magnetic properties depend on
the crystallographic direction in
which an external field is applied.

- Magnetization curves of iron
(Fig.17.2(a) )

Electrical steels
(Soft Magnetic Materials)

<100~

it

<111>

N N RN RN

[111]

[100]

[110]

(a) (b)

Figyre 17.2. (a) Schematic magnetization curves for rod-shaped iron single crystals
having different orientations (virgin curves). The magnetic field was applied in three
different crystallographic directions. (Compare with Fig. 15.6, which refers to poly-
crystalline material). (b) Reminder of the indices which identify directions in space.

(See also Footnote 14 in Section 5.6)

= Easy direction : Saturated direction is achieved with the smallest
possible field strength. (Nickel-> easy direction<111>, hard direction

<100>)

» The spontaneous orientation of the spin magnetic moments in the

demagnetized state.

= They are aligned in the easy directions.




» Electrical steels
(Soft Magnetic Materials) LB B

O Grain-oriented electrical steel Process-lron (Fig. 15.9)

;4/"’

ey
S

S

DIn pure iron the spins are aligned along the <100> directions.
(2External field is applied parallel to an easy direction.

(3The domains already having favorable alignment grow.
(@The crystal contains one single domain.

= The energy consumed during this process is used to move the
domain walls through the crystal.

(®Metal sheets possess a texture. > a preferred orientation of the
grain.

®In a-iron and «a-iron alloys the <100> direction is parallel to the
rolling direction.

@ Utilizing electrical steel.

(®During the rolling, the grains are elongated and their orientation is
altered.

@The sheets are recrystallized, whereby some crystals grow in size
at the expense of others.

Summary

o The magnetic properties of grain-oriented steels are best in the
direction parallel to the direction of rolling.



, Electrical steels
(Soft Magnetic Materials)

3. Composition of Core Materials

O Low carbon steel (0.05%C)
o Low u, high core losses (Table 17.1)
o Low cost
o Purification ofiron > 1 7, o (eddy current)?, cost 1

N N RN RN



= Electrical steels
- (Soft Magnetic Materials) LB B

3. Composition of Core Materials
O Iron-silicon alloys (1.4-3.5%Si)
o Higher U, lower o (than low carbon steel)
o 7-loop (phase diagram)
o The core losses decrease with increasing silicon content
a

For silicon concentrations above 4 or 5 wt%, material becomes
too brittle to allow rolling.

o Other contents in Iron-silicon alloy

o Al, Mn (less than 1%) 2influence on the grain structure -
reduce hysteresis losses.

o Grain-oriented silicon “steel”
o Highly efficient-high flux multiplying core applications.
0 Multi-component Ni-based alloys
o Highest permeability
o Permalloy, Supermalloy, Mumetal (Table 17.1)
o Shield electronic equipment
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Electrical steels
(Soft Magnetic Materials) LB B

4. Amorphous Ferromagnets
0 Amorphous metals

Q

Q

o O O O

Consisting of Fe, Ni, or Co with B, Si, or phosphorus metals.

A higher (1 and a lower H_than grain-oriented silicon-iron (Table
17.1)

A large electrical resistivity.

Small eddy current losses.

Low saturation induction.

Core losses increase rapidly at higher flux densities (above 1.4T).

O The application of metallic glasses

Q

Small flux densities (low currents)
o Transformers.
o Magnetic sensors.
o Magnetostrictive transducers.



Permanent Magnets
(Hard Magnetic Materials) LB L I

0 Hard magnetic materials B
o Alarge remanence B, (or M).
o A relatively large coercivity H..

o A large area within the hysteresis
loop.

——eo By

|

|

|

|

|

|

° ° I

0 Demagnetization curve !
BH

|
|
I
I
|
|
|
|
|
[
|
H

o A part of a hysteresis loop. /e d (BH) gy
o Btimes His zero at the intercepts of (@) (b)
the demagnetization curve. Figure 17.3. (a) Demagnetization curve for a ferromagnetic material. (Second quad-

rant in a B—H diagram.) (b) Energy product, BH, as a function of induction, B.

0 Maximum energy product (BH)

max
o the area within the hysteresis loop.

o the energy product peaks
somewhere between these extreme
values.

Depending on the shape and size of the
hysteresis curve (Fig. 17.3)



Permanent Magnets
(Hard Magnetic Materials)
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O Hard magnetic materials

the values of B, H,, and (BH) ., for some materials which are used as

permanent magnets are listed in Table 17.2

Table 17.2. Properties of Materials Used for Permanent Magnets.

Remanence B,

Coercivity H.

Maximum energy
product (BH),.. per
Volume

Material Composition (mass %) (kG) (T) (Oe) (A/m) (MGOe) (kJ/m?)

Steel Fe-1% C 9 0.9 51 4 % 103 0.2 1.6

36 Co steel 36 Co, 3.75 W, 5.75 9.6 0.96 228 1.8 x 104 0.93 74
Cr,08C

Alnico 2 12 Al, 26 Ni, 3 Cu, 7 0.7 650 5.2:% 1P 1.7 13
63 Fe

Alnico 5 8 Al 15 Ni, 24 Co, 12 12 720 5.7 x 10* 5.0 40
3 Cu, 50 Fe

Alnico 5 DG same as above 13.1 1.3 700 5.6 x 10* 6.5 52

Ba-ferrite (Ceramic 5) BaO - 6 Fe, 04 3.95 0.4 2,400 1.9 x 10 3.5 28

PtCo 77 Pt, 24 Co 6.45 0.6 4,300 3.4 x 10° 9.5 76

Remalloy 12 Co, 17 Mo, 71 Fe 10 1 230 1.8 x 10% 1.1 8.7

Vicalloy 2 13V, 52 Co, 35 Fe 10 | 450 3.6 x 10* 3.0 24

Cobalt-Samarium CosSm 9 0.9 8,700 6.9 x 10° 20 159

Iron-Neodymium-Boron Fe4Nd) B, 13 155 14,000 1.1 x 108 40 318




Permanent Magnhets
(Hard Magnetic Materials)
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0 Hard magnetic materials

o The remanence B, : the maximal
residual induction. \

0 Demagnetizing field

o All permanent magnets need to have
exposed poles.

o The exposed poles create a
demagnetizing field, A ,> reduces
the B,

= The demagnetizing field depends on the
shape, size, and gap length of magnet.

. Figure 17.4. Fringing and leak
o A reduced value for the residual R B e e,

induction-> B, (Fig. 17.3)

Q0 Fringing and leakage (fig. 17.4)



Tp= Permanent Magnets
- (Hard Magnetic Materials)
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O Alnico alloys (Table 17.2)
o Based on Co-addition to Fe,NiAl
(minor constituents such as Cu and Ti).
o Improvement

o Alnico 2 : homogenization at 1250 C, fast cooling, and
tempering at 600 T
o Alnico 5 : cooling the alloys in a magnetic field.
o Alnico 5-DG : A preferred orientation
-long columnar grains with a preferred<100>axis (heat flow)
-a magnetic field parallel to the <100> yields
-shape anisotropy: parallel to the <100> directions
o Neodymium-boron-iron
o A superior coercivity, a larger (BH)

max
o Disadvantage : low curie temperature of about 300 C
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Permanent Magnets

(Hard Magnetic Materials) LB B B

0 Ceramic ferrite magnets

Q

Q

Q

BaO -6Fe, O, or SrO - 6Fe,0;(MO - 6Fe,0,)
Brittle and relatively inexpensive.

Crystallized plates of hexagonal c-axis (easy axis) perpendicular
to the plates

The flat plates arrange parallel during pressing and sintering
—->Some preferred orientation

Application : in the gaskets of refrigerator doors

O High carbon steel magnets

Q

Q

With or without Co, W, or Cr are only of historic interest.

The permanent magnetization of quenched steel stems from the
martensite-induced internal stress, which impedes the domain
walls from moving through the crystal.



9= Permanent Magnets
- (Hard Magnetic Materials)
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0 The goal of research on permanent magnetic materials

o To improve corrosion resistance, price, remanence, corecivity,
magnetic ordering temperature, and processing procedures.

o Carbon and nitrogen are increasingly used as the metalloid in
iron/rare earth magnets such as in Fe-Nd-C or in Fe,,Sm,N,.

o Nitrogen treatment of sintered Fe,,Nd,B raises the T, by more
than 100K.

o Corrosion of the Fe-Nd-B sintered magnets is a serious problem.

o The corrosion resistance can be improved by utilizing inter-
metallic compounds such as Fe-Nd-Al or Fe-Nd-Ga, or by applying
a moisture-impervious coating.



T+ Magnetic Recording and
Magnetic Memories

0 Magnetic recording tapes, disks, drums, or magnetic strips on credit
cards consist of small, needlelike oxide particles about 0.1 X 0.5 um,

N N RN RN

O The particles are too small to sustain a domain wall

—>a single magnetic domain which is magnetized to saturation along the
major axis (shape anisotropy).

O The elongated particles are aligned by field during manufacturing.
o Ferrimagnetic 7-Fe,O;: H_=20-28 kA/m(250-3500e¢), T, =600C
o Ferromagnetic CrO, : H,=40-80kA/m(500-10000e), T, =128 C

Qd High H, and high B, prevent self-demagnetization and accidental erasure.
- provide strong signals, and permit thinner coatings.
o A high H_-tape duplication by “contact printing”

d Video tape (Co-doped 7 -Fe,0;) : higher T_ and a A_ of 48kA/m(600 Oe).
O Most recently, iron particles have been utilized (H, =120kA/m).



Magnetic Recording and
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Magnetic Memories

O Recording head

Q

The recording head of a tape machine consist of a laminated
electromagnet made of permalloy or soft ferrite (Table 17.1) which has
air gap about 0.3un wide (Fig. 17.5)

The tape is passed along this electromagnet, whose fringing field
redirects the spin moments of the particles in a certain pattern
proportional to the current. ?

This leaves permanent
record of the signal. _,
the moving tape induces L _
an alternating emf in the coil s~ Y i o
The emf- T, s
amplified, filterd, and fed to
a loudspeaker.

Tape motion

Figure 17.5. Schematic arrangement of a recording (playback) head and a magnetic

tape. (Recording mode.) The gap width is exaggerated. The plastic substrate is about
25 um thick.
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0 Recording head

Q

Q

Q

Senust : gap surfaces are coated with a micrometer-thick metal
layer composed of Al, Fe, and Si.

Metal-in-gap (M-I-G) technology
—>the superior high-frequency behavior and good wear properties
of ferrites with the higher coercivity of ferromagnetic metals.

Thus, high fields are necessary to record efficiently on high
density media.

For ultrahigh recording densities (extremely small bit sizes) the
signal strength produced in the reading heads diminishes.

The lastest head technology—> a thin magneto-resistive element.

—>senses the slight variation in resistance (about 2%) that occurs
as the angle of magnetization is changed when the magnetized
data bits pass beneath the head.—>1.8Mbits/mm?2

Inductive head : low-speed applications (credit cards)
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0 Magneto-resistance

o In magnetic field a conductor is perpendicular to an electric field,
the Lorentz force causes the paths of the drifting electrons to
bend in near circular form. (Hall effect)

o This bending leads to a decrease of the electron mobility, .
1
GO:Ne.ﬂe.e - - (172)
0
o Conductivity, 0, , decreases and the resistivity, p,, increases.
(N, is the free electron concentration and e is the charge of an

electron). The relative change in resistivity,

Ap
= (pu ,AB)’ (17.3)
P o
is proportional to the square of the variation in magnetic field
strength, AB

o The magneto-resistive head senses this change in magnetic field
strength and thus, yields a resistance change.
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0 GMR (MnFe, MnNi, NiO)

o Giant magneto-resistive materials

o A resistance response of about 20%
0 CMR (lanthanum manganate, etc.)

o Colossal magneto-resistive materials

o 50% resistance changes, allowing a further increase in areal
densities.

O Ferrite-core memories
o The dominant devices for random-access storage in computers.

o A nearly square-shaped hysteresis loop and a low coercivity, is
threaded with a wire (Fig. 17.6(a))

o A sufficiently high current pulse—-> the core becomes magnetically
saturated.

o An opposite-directed current pulse> magnetizes the ferrite core
counterclockwise.



Magnetic Recording and
Magnetic Memories

N N RN RN

O Ferrite-core memories
o Two magnetization directions constitute the two possible values
(0 and 1) in the binary system.

a Memory system (Fig.17.6(c)) LT
>switch the X,/Y,core from 0 to 1. 5 La[ff?” ' dw\w N
>a current < H_/2 /'JF/TE PN
—>current is sent through each of the ; Y

X1 and the Y2 wire (Fig.17.6(b)). et
~>the X/Y,core with the necessary 8, | M
field for switching. _Z____WJ s
\—"1” State
o Requirement (@) (b) (©
hlgh welght / bit ratio Figure 17.6. (a) Single ferrite core which is magnetized by a current-induced mag-

netic field; (b) square-shaped hysteresis loop of a soft ferrite memory core: and (c) one
plane of a “coincident-current core memory device.”
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0 Bubble domain memory

o Form in thin crystals of “canted” anti-ferromagnetic oxides,
amorphous alloyed films, or in ferri-magnetic materials.

o The domains can be visibly observed and optically read by the way in
which they rotate the plane of polarization of polarized light( Faraday
effect, or Kerr effect).

o Each such domain constitutes one bit of stored information.

N N RN RN

0 Thin magnetic films

o Consisting of Co-Ni-Pt or Co-Cr-Ta or Co,.-Cr,;-Pt,, in hard-disk
devices.

H,: 60-120kA/m (750-15000¢)
Easily fabricated —vapor deposition, sputtering, electroplating.
Switched rapidly, a small unit size.

A density of 1.8 Mbits/mm2 with a track separation of 3 um and a bit
length of 150nm.

o O O O



Magnetic Recording and

Magnetic Memories TERRRR
rni:%net
0 Magneto-optical memories wroroe: | AATA[ATATA ATV ATATATAA

o No mechanical contact between Polycarbonate |
medium and beam. (Snsetns)

o A polycarbonate disk is covered by a Lons [ |
certain magnetic material.

o Their spins are initially vertically . e e

aligned ,see Fig. 17.7(a).

o Laser beam heat-> cooling in
magnetic field-> delivers the
information to be stored

=>the spins in the magnetic domain re-
orient according to the strength and
direction of magnetic field.

o The newly oriented magnetic domain

Polarizer

has been rotated (Fig. 17.7(b)) (b)
o Spin up is a “one” and spin down is a detoctor
“zero”. Sunke (i), (1) Fbash-apb e 6 soamttls sptial v (Bolistade

nalyzer are identical devices.
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O Magneto-optical memories

o Magneto-optical disks have a one thousand times larger storage
density than common floppy disks and a ten times faster access
time.

O Magnetic disks (for random access) or tapes (mainly for music
recordings, etc.) are the choices for long-term, large-scale
information storage, particularly since no electric energy is needed
to retain the information.

0 Tapes and floppy disks make direct contact with the recording (and
playback) head.

O Hard drive system utilize a “flying head” that hovers a few
micrometers or less above the recording medium on an air cushion,
caused by the high speed of the disk.
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Part V. Thermal Proéperties of Materials

Chap. 18. Introductioné
_Chap. 19. Fundamentals of Thermal Properties
Chap. 20. Heat Capacity%
Chap. 21. Thermal Concé:luction
Chap. 22. Thermal Expaémsion



|ntroduction

N N RN RN

Sic
Wood, Rubber, Fe G
Sulfur pghestos Cork M0 Glass, NaCl Si0, i Ge Si ' Ag Diamond
1 I yon c“l Mot l l Ly |
| [ ! | | |
102 e 1 10! 102 103
W
kLaicd
- phonon conductors -

Phonons: lattice vibration quanta which are thought to be created in large
numbers in the hot part of a solid and partially eliminated in the cold part

Specific heat capacity Cv classical theory

el R R e e R T —

Molar heat capacity

Debye RN
mod’:’al ~z Einstein model

e

— —
—
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» Fundamental Concepts and Definitions

- heat, work, energy

1st law of thermodynamics AE=Q0+W

Unit: joule (J) in SI, 1 cal =4.184 J (1J = 0.239 cal)
- heat capacity, C’, [J/K]:

The amount of heat, d@Q, which needs to be transferred to a
substance to raise its temperature by a certain temperature
interval, a7

- heat capacity at constant volume, C,
heat capacity at constant pressure, C];

(25 2
ar ), \aor ), dT ),

2
1 1 T
c,-c, =2

(&)
— | H=E+PV
or ),

small for solids

K
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» Fundamental concepts and definitions
- specific heat capacity- materials constant

C
C=— [J/g . K] temperature dependent
m

- without work AE =0 =mATc,

Table 19.1. Experimental Thermal Parameters of Various Substances at
Room Temperature and Ambient Pressure.

Specific heat Molar Molar heat Molar heat
capacity (¢,) (atomic) mass capacity (Cp) capacity {Cy)
J g J J
Substance (g -K ) (E) (mo! - K') mol - K
Al 0.897 27.0 24.25 23.01
Fe 0.449 55.8 25.15 24.68
Ni 0.456 58.7 26.8 24.68
Cu 0.385 63.5 24,48 23.43
Pb 0.129 207.2 26.85 24.68
Ag 0.235 107.9 25.36 24.27
C (graphite) | 0.904 12.0 10.9 9.20
Water 4.184 18.0 753
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» Fundamental concepts and definitions

- molar heat capacity

c, =5 e .M [imol-K]

n

M: molar mass, n=1 N, : Avogadro's number

N,’
- C~ 25 J/mol K (6 cal/mol K) for most solids tapc 19.2. Debye

Temperatures of Some

- Dulonqg Petit law Materials.

_________________________________________________ _ Substance fp (K)
— constant~3R - -

Au 170

A 230

Debye temp, 6, W 270

Cu 340

Carbon 0 . F 360

96% of final value ke 360

Si 650

| | C 1850

GaA 204

100 200 300 400 500 o 162

T [K]
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» Classical theory of heat capacity
- interpret Dulong and Petit law using atomistic concept
- atom- harmonic oscillator
average energy of the oscillator: F =k T
in 3-D, average energy per atom: £ =3k T
based on kinetic theory of gases
Kinetic energy: E,. = %kBT potential energy: £,, = %kBT

E=2-3k,T =3k,T
- total internal energy per mole
E =3N ,k,T
- molar heat capacity . .

c, :(5_'?) _3N k, — 3R
or ),
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» Quantum mechanical- Einstein model
- overcome of shortcoming in Dulong and Petit law
- energies of classical oscillator quantized
only certain vibrational modes are allowed
lattice vibration quanta- phonons
- phonon- particle-wave duality

E=hw, p=hk

elastic wave (longitudinal and/or transverse)
acoustic and optical bands
density of vibrational modes, D(w)
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w. vibrational frequency

2y

[E‘C(T +____)] 5 Optical phonon branch - - -
e _\1"”"””"* density of vibration mode, D(w)

=il 12 3VW2
(2CIM,) D W —
() 2722\/3

Acoustical
phonon branch

v_ . sound velocity

Iﬂ o

K

Figure 7 Optical and acoustical branches of the
dispersion relation for a diatomic linear lattice,
showing the limiting frequencies at K =0 and
K = K,,.. = mla. The lattice constant is a.

Kittel, Introduction to Solid State Physics
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» Quantum mechanical- Einstein model
- assumption: independent oscillator (one frequency)
allowed energies of a single oscillator
E =nhw
- phonon- not conserved
follow Bose and Einstein statistics
average number of phonons,

1

Nph —

n=3

n=2

hw )
exp(—) -1 he
p(kT)

n=1

I'Hw n=0 1

L (a) (b)
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» Quantum mechanical- Einstein model
- average energy of an isolated oscillator

_ 7 :
EOSC — hWNph — id
exp(’ ) -1
kT
- total energy of a solid
E=3N,— ’ o/t
h_w _ Omar, Elementary Solid State Physics
exp(kT) 1

- molar heat capacity let 7iw = k0,

aw

0
2 exp(—) 2 exp(—)
E i
E = (a_j —3N &, | — KT _ 3R ( O j T
oT ), kT ) T )

hw 7
5 (exp(—) -1) (exp(—) - 1)
kT T
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» Quantum mechanical- Einstein model

- in high temp limit ol :1+(9_E)+1(0_E)2 .
1+ 6, r- 27
c =3rey HT =3R
I a4 %2 )2
T

-in low temp range 7T <<4,

9 eQE/T 9 eﬁE/T
C, =3R(-£)* =3R(-£)’
v ( T ) (eﬁE/T _1)2 ( T ) (eHE/T)Z

_ BR(%)ZQ_QE/T _ B(T)e—é?E/T

approaches zero exponentially
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> Quantum mechanical- Einstein model

- one adjustable parameter: 6, (or w,)

For Cu, 6, = 240K
w, =k0,/h=25x10"s" infrared region

C, cal/g-mol, °K
0o == N W AW =

100 200 300 T.°K

Omar, Elementary Solid State Physics
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» Quantum mechanical- Debye model
- assumption
i) collective lattice modes (oscillate interdependently)
O<w<w,
i) continuous medium
v, =wl k: constant
lower limit: w=0

upper limit (Debye frequency, wg) — total number of
modes included are equal to the number of
degrees of freedom for the entire solid (3N,)

E:_[E (0)D(w)dw = SV I:)D he dw

2 3 el kT
% 27TV |

A
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» Quantum mechanical- Debye model
3V hZ ij a)4eha}/kT
> (

2.3 2 hol kT 2
v, kT e’ 1)

dow

OFE
C j— — ju—
% (aT)V 2

3 4 x
R — | [ g x=holkT k6, =ho
0,) "° (e"-1)

J-oo x'e” " 4"
o (e =1)° 15

TV ar* 122°R (TY
C =9R il
g9, ) 15 R

at high temp, 7 >> 60, x ~smalle” =1+ x

3 3 2
c =9r| = | P dw = 9R| - E(Q—Dj =3R
6, ) 4o 6,) 3\ T

at low temp, 7' << 60,
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» Quantum mechanical- Debye model
e £)
| A
- 4 o Cu, 343°K |
g 3= ® Ag, 226°K :
27 = Pb, 102°K | wp
85 2— X C, 1860°K |
© |
1= // I
RN TR WA NN O NN NN N B - |
0 0.5 ! L 1y
/8y, 6o 1 2 3 4 5
Omar, Elementary Solid State Physics w, 10"® rad/s

Debye model’s limitations Omar, Elementary Solid State Physics

- continuous medium-linear dispersion relation
- optical mode

" 0, ZQD(T)

- actual density of states of the lattice



/r“k

=

»* Heat Capacity

< N N RN RN

» Electronic contribution to heat capacity
- electron contribution - small compared to that of the
phonons
- metal and alloys- free electrons
only those electrons which lie within an energy interval
kg T of the Fermi energy contribute (dN=N(E)kgT)
- excited electron behaves like a monoatomic gas

3 3 E N=N(Eg) kT fﬁ
Eyy =2 kyTdN =~ kTN (E YT -

. (OE |
Cy = (8—Tl =3k.TN(E,) ;

NED o
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» Electronic contribution to heat capacity

N(EF) = ﬂ N* . # of electron whose energy less than E
2F,
*72 2 *72 2
T T o T
2 E, 2 E. 2 T.

assume one free electron per atom

C;,:ﬂz NAkgT:zzRT
2 E, 2 T

F

- C,~T dependence
- at room temp: less than 1%
- appreciable contributions: at low temp
above Debye temp
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» Electronic contribution to heat capacity
C" =C"+C" =yT+ BT° y=3k.N(E,)

Ctotal

Y =y 4 BT? _
T s effective thermal mass

intercept y — N(E,) m, ¥,

mo ?/ cal
Cy Table 20.1. Calculated and Observed Values for the Constant y, see
T (20.31).
y, observed y, calculated

slope 6 J J m},

Substance (mo] . Kz) (mol- Kz) my

Ag 0.646 x 1073 0.645 x 1073 1.0
Al 1.35 x 1073 0.912 x 1073 1.48
v { Au 0.729 x 103 0.642 x 1073 1.14
Na 1.3 x 1073 0.992 x 1073 1.31

T2 Fe 4.98 x 103 — —

Ni 7.02 x 1073 — —
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» Thermal conductivity, K :
- transfer of thermalenergy  ; _ dar K[J/s-m-K = :é—,i\
- heat flux ~ temp. gradient 0 dx i ! ! o

- the energy E,, per unit time and unit area, of the electrons that
dirft from the left into the sample volume
= number of electrons, z, times the energy of the electrons

3 dT’, n,v3 dT
E =z—k,(T +I(-——)=—"2——k,(T-1—
=2k (1410 = Pk (T =15) I :
1 N - temperature gradient in x-direction, dT/
(rz==nv, n,=—) dx
0 4 - consider the volume of unit area and length of 2/
n,v 3 dT _ -
Ey = ?Ekg (T+1 E) [- mean free path between two consecutive collision
heat flux J - the larger heat conductivity, K, the more electrons, 7,
Jy=E,—E = —MEkB (21 ﬂ) = —MkBl A the larger their velocity, v, the larger mean free path, /
6 2 dx 2 dx , , el
- relationship between K and (7
n.v, dl’ dT kinetic energy of all clectrons per unit volume
J,=—"—kyl—., J,=—K— |
) 2 dx - dx ; [ dE \
. E=n. kT, C’=|—| =n.3k,
LK n, vkl 2 dr ), 2
- 1

K ==Chi
-
D
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» Coefficient of linear expansion, o,

- the amount by which each unit length of a material changes
when the temperature of the material changes by one degree

AL volume expansion coefficient, ¢,
— = AT : :
L AV AT a, ~ 3a, for isotropic
Vo oo solid

» Temperature dependence of o

- similar to the temperature dependence of C,=7(7)

- for dielectric materials
o, approaches a constant value for T > 0
vanishesas T3forT> 0

- for metals,
o, ~T at very low temp
o, ~ depends on the sum of heat capacities of phonon
and electron in other temperature regions
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