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Three approaches to understand electronic 
properties of materials

- Continuum theory : consider only macroscopic quantities,
interrelate experimental data
ex) Ohm’s law, Maxwell equations, Newton’s law,

and Hagen-Rubens equation

- Classical electron theory : postulate that free electrons in metals drift 
as a response to an external force and interact with 
certain lattice atoms
ex) Drude equations

- Quantum theory : explain important experimental observations 
which could not be readily interpreted by classical means
ex) Schrödinger Equation

1. Introduction



1. Introduction

Basic equations
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2. The Wave-Particle Duality

Light : electromagnetic wave
light quantum (called a photon)

Energy

Planck constant

1924 yr de Broglie

“Wave nature of electrons” “Matter wave”

For a general wave

“Wave number”
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2. The Wave-Particle Duality

Description of electron wave
- The simplest waveform : harmonic wave

- A wave function (time- and space-dependent)

Electron wave : a combination of several wave trains
Assuming two waves,
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2. The Wave-Particle Duality

Description of electron wave

Supposition of two waves:

Modulated amplitude sine wave
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2. The Wave-Particle Duality

The extreme conditions

(a) No variation in angular frequency and wave number : 
monochromatic wave



2. The Wave-Particle Duality
The extreme conditions
(b) Very large variation in angular frequency and wave 

number
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Phase velocity : 

velocity of a matter wave

Group velocity: 

velocity of a pulse wave 

(i.e., a moving particle) 



2. The Wave-Particle Duality

The extreme conditions
(b) Very large variation in angular frequency and wave 

number

hxp ≥Δ⋅Δ

τddxdydz ** ΨΨ=ΨΨ

Heisenberg’s Uncertainty principle

Probability of finding a particle

at a certain location



Q&A

1. Plank constant  h = 6.63×10-34 J·sec
2. Traveling wave

3. Phase velocity versus Group velocity

4. Prove υg = υ (velocity of particle)? 
E = hv = ħω and  k = p/ħ → dω = dE/ħ and  dk =  dp/ħ
υg =  dω/dk = dE/dp
Since E = mυ2/2 and p = mυ, dE/dp = υ

Relativistic expressions:  E = mc2, E = hv and p = mυ
υg =  dω/dk = dω/dυ/dk/ /dυ = υ
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Q&A

- Why is the wave nature of matter not more apparent to us in our daily 
observation?

- Can the de Bloglie wavelength of a particle be smaller than a linear 
dimension of the particle? Larger? Is there necessarily any relation between 
such quantities?

- Is the frequency of a de Broglie wave given by E/h? Is the velocity given by 
υ? Is the velocity equal to c? Explain



Q&A
Mathematical description of traveling waves

Consider a string stretched along the x axis whose vibrations are in the y direction
Assuming simple harmonic motion,

At t = 0, y = Asin2πvt
where A is the amplitude of the vibrations

If t is replaced by , then y = Asin2πv(           )   : Wave Formula

where υ is the wave speed

Since the wave speed is given by υ = vλ, we have
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3. The Schrödinger Equation

3.1 The Time-Independent Schrödinger Equation

- Time-independent Schrödinger equation: a vibration equation

where, m = the (rest) mass of the electron,
E  = the total energy of the system, 
Ekin = kinetic energy,  
V = the potential energy (or potential barrier)

- Applicable to the calculation of the properties of atomic systems in 
stationary conditions
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3. The Schrödinger Equation

3.2 The Time-Dependent Schrödinger Equation

Time-dependent Schrödinger equation: a wave equation

Since

and

Then

Applying differential operators to the wave function  
(Hamiltonian operators)

hων == hE

022
2

2 =
∂
Ψ∂

−Ψ−Ψ∇
t

mimV
hh

tiezyxtzyx ωψ ⋅=Ψ ),,(),,,(

ωωψ ω iei
t

ti Ψ==
∂
Ψ∂

0)(2
2

2 =−+∇ ψψ VEm
h

022
2

2 =
∂
Ψ∂

−Ψ−Ψ∇
t

mimV
hh

t
iE
∂
∂

−= h ∇−= ihp

V
m

pEEE potkintotal +=+=
2

2

Ψ+Ψ∇=
∂
Ψ∂

− V
m
i

t
i 2

22

2
h

h



3. The Schrödinger Equation

3.3 Special Properties of Vibrational Problems

- When boundary conditions are imposed, only certain vibrational
forms are possible. ex) a vibrating string

- Vibration problems determined by boundary conditions :
Boundary (or eigenvalue) problems
A pecularity of these problems : not all frequency values are 
possible and therefore, not all values for the energy are allowed 
because of

The allowed values : eigenvalues
The function belonging to the eigenvalues as a solution of the 

vibration equation : eigenfunctions
The normalized eigenfunction: 
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4. Solution of Schrödinger Equation

4.1 Free Electrons
Suppose electrons propagating freely (i.e., in a potential-free space) to the 

positive x-direction.
Then V = 0 and thus

The solution for the above differential equation for an undamped vibration with 
spatial periodicity, (see Appendix 1)

where

Thus

“energy continuum”

0)(2
2

2 =−+∇ ψψ VEm
h

xiAex αψ =)(

Em
2

2
h

=α

tixi eAex ωα ⋅=Ψ )(
2

2

2
α

m
E h
=

kpEm
====

λ
πα 22

2 hh

2
2

2
k

m
E h
=

λ
π2

=k



4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)
Consider an electron bound to its atomic nucleus. 
Suppose the electron can move freely between two infinitely high potential barriers

At first, treat 1-dim propagation along the x-axis inside the potential well

The solution where
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)
Applying boundary conditions,

x = 0,
x = a

With Euler equation,

Finally,

“energy quantization”
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)

Now discuss the wave function
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4. Solution of Schrödinger Equation

4.2 Electron in a Potential Well (Bound Electron)

For a hydrogen atom,
Coulombic potential

In 3-dim potential

The same energy but different quantum numbers: “degenerate” states 
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential 
barrier V0 (>  total energy of electron, E)

- Region (I)  x < 0
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- Region (II) x > 0
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

Since E – V0 is negative,                                    becomes imaginary.

To prevent this, define a new parameter,

Thus,                                    , and 

Determination of C or D by B.C. For x→∞

Since Ψ Ψ* can never be lager than 1,        →∞ is no solution, and thus , 
which reveals Ψ-function decreases in Region II
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Using (A.27) + (4.39) in textbook, the damped wave becomes
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by 
electron wave : Tunneling

* For the complete solution,

(1) At x = 0                        : continuity of the functionIII ψψ =
xixixi DeBeAe γαα =+ −

(2) At x = 0 : continuity of the slope of the function

With x = 0                                                    

Consequently,
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4. Solution of Schrödinger Equation

4.3 Finite Potential Barrier (Tunnel Effect)



4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)
The behavior of an electron in a crystal → A motion through periodic repetition 
of potential well

well length : a

barrier height : V0

barrier width : b

Region (I)

Region (II)
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(Continued) For abbreviation

The solution of this type equation (not simple but complicate)

Where, u(x) is a periodic function which possesses the periodicity of the lattice 
in the x-direction

The final solution of the Schrödinger equations;

where
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

Mathematical treatment for the solution : Bloch function

Differentiating the Bloch function twice with respect to x

Insert 4.49 into 4.44 and 4.45 and take into account the abbreviation
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(Continued)  From continuity of the function 

du/dx values for equations (I) & (II)  are identical at x = 0

Further,Ψ and u is continuous at x = a + b→ Eq. (I) at x = 0 must be equal to 
Eq. (II) at x = a + b, Similarly, Eq. (I) at x = a is equal to Eq. (II) at x = b

Finally, du/dx is periodic in a + b

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and 
using some Euler eq.(see Appendix 2)
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

If V0 is very large, then E in 4.47 is very small compared to V0 so that

Since V0b has to remain finite and b→ 0, γb becomes very small. 

For a small γb, we obtain (see tables of the hyperbolic function)

Finally, neglect α2 compared to γ2 and, b compared to a so that 4.61 reads as follow

Let ,  then
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy 
certain allowed energy zone”



4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

The size of the allowed and forbidden 
energy bands varies with P.

For special cases

(a) If the potential barrier strength, V0b
is large, P is also large and the 
curve on Fig 4.11 steeper. The 
allowed band are narrow.

(b) V0b and P are small, the allowed 
band becomes wider.

(c) If  V0b goes 0, thus, P → 0
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4. Solution of Schrödinger Equation

4.4 Electron in a Periodic Field of Crystal (the Solid State)

(d) If the  V0b is very large, P→∞
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5. Energy Bands in Crystals

5.1 One-Dimensional Zone Schemes

For free electrons, the wave number in 1-dim
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5. Energy Bands in Crystals

2/1
2

22 Em
a

nkx
h

=+
π

,...,3,2 1,      , ±±±== nnakx π
a

nkx
π
⋅=

1cos ±=akx

If an electron propagates in  a periodic potential, discontinuities of the electron energies 
are observed when coskxa has a maximum or a minimum, i.e., when

E is a periodic function of      with 
the periodicity of a/2π

kx

5.1 One-Dimensional Zone Schemes

or

At these singularities, a deviation from the parabolic E vs kx occurs and the branches 
of the individual parabolas merge into the neighboring ones (see Fig.5.3)



5. Energy Bands in Crystals

The electrons in a crystal behave 
like free electrons for most kx value 
except kx→ nπ/a

periodic zone scheme (see Fig 5.3)

reduced zone scheme (see Fig 5.4)
π/a ≤ kx≤ π/a

5.1 One-Dimensional Zone Schemes



extended zone scheme (see Fig 5.5)

Deviations from the free electron 
parabola at the critical points kx = n∙π/a  
are particularly easy to identify.

free electron bands (see Fig 5.6)
Free electrons in a reduced zone scheme 
from

5. Energy Bands in Crystals
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5. Energy Bands in Crystals
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By inserting different n-values, one can calculate the shape of branches of the 
free electron bands

5.1 One-Dimensional Zone Schemes



5. Energy Bands in Crystals

5.2 One- and Two-Dimensional Brillouin Zones

1-d Brillouin Zone

The first Brillouin Zone (BZ) :

π/a ≤ kx≤ π/a : n-Band

The second Brillouin Zone (BZ):
π/a ≤ kx≤ 2π/a, -π/a ≤ kx≤-2π/a : m-band

- Individual branches in an extended zone
scheme (Fig. 5.5) can be shifted by 2π/a to left or to  right. 
Shift the branches of 2nd BZ to the positive side of E- kx diagram by 2π/a to the left, and 
likewise the left band by 2π/a to the right  → The result is shown in Fig. 5.4 

(a reduced zone scheme)

- The same can be done in 3rd BZ and all BZ (because of the 2π/a periodicity)  →
relevant information of all BZ can be contained in the 1st BZ (a reduced zone scheme)



5. Energy Bands in Crystals

2-d Brillouin Zone
Description for the movement of an electron in the potential of 2-d lattice

- Wave vector k = (kx, ky) : 2-d reciprocal lattice (Fig 5.7)
- A 2-d field of allowed energy regions which correspond to the allowed  energy band → 2-d BZ
- 1st zone in 2-d: the area enclosed by four “Bragg planes” having four shortest lattice vectors, G1: 

bisectors on the lattice vectors
- For the following zone, construct the bisectors of the next shortest lattice vectors, G2, G3…
- For the zone of higher order the extended limiting lines of the zones of lower order are used as 
additional limiting lines.

5.2 One- and Two-Dimensional Brillouin Zones



Example: in 2-d lattice, an electron travels at 45o to kx-axis, then the boundary 

of the BZ is reached, according to Fig 5.8, for

“Usefulness of BZ”
- energy bands of solids (discussed in later section)
- the behavior of electrons which travel in a specific direction in reciprocal space

5. Energy Bands in Crystals
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the largest energy of electrons moving parallel to kx or ky axis

5.2 One- and Two-Dimensional Brillouin Zones



5. Energy Bands in Crystals

- Once the maximal energy has been reached, the electron waves (those of the incident 
and the Bragg-reflected electrons) form standing waves  (the electrons are reflected 
back into the BZ.)

- Overlapping of energy bands:  bands are drawn in different directions 
in k-space (Fig 5.9)  : 
the consequence of
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5. Energy Bands in Crystals

A different illustration of the occurrence
of critical energies at  which a reflection 
of the electron wave takes place :  

Bragg relation

Sinceλ = 2π/k

For a perpendicular incidence, θ = 90o,

If θ = 45o, 

For increasing electron energies, a critical k-value is finally reached for which 
“reflection” of the electron wave at the lattice plane occurs. 
At        ,  the transmission of electron beam through the lattice is prevented.
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5.2 One- and Two-Dimensional Brillouin Zones



5. Energy Bands in Crystals

5.3 Three-Dimensional Brillouin Zones

- In previous section, it was shown that at the boundaries of the
zones the electron waves are Bragg-reflected by the crystal.

- The wave vector, |k| = 2π/λ, was seen to have the unit of 
reciprocal length and thus is defined in the reciprocal lattice.

- The construction of 3-d Brillouin zones for two important crystal 
structures of face centered cubic (FCC) and body centered cubic
(BCC) : important features in common with “Wigner- Seitz cells”



5. Energy Bands in Crystals

5.4 Wigner - Seitz Cells

Crystals have symmetrical properties
- An accumulation of “unit cell”
- Smallest possible cell “primitive cell”

(consist of 1 atom)
- BCC, FCC : conventional non-primitive
unit cells

- Wigner-Seitz cell : a special type of 
primitive unit cell that shows the cubic symmetry of cubic cells

- W-S cell construction: bisects the vectors from a given atom to its nearest 
neighbors and place a plane perpendicular to these vectors at the bisecting 
points. For BCC (Fig 5.11) & FCC (Fig. 5. 13)



5. Energy Bands in Crystals

5.4 Wigner - Seitz Cells

- The atomic arrangement of FCC:
corners and faces of cube, 
or center points of the edges and the 
center of the cell (Fig 5.12)
-The W-S cell for FCC shown 
in Fig 5.13



5. Energy Bands in Crystals

5.5 Translation Vectors and the Reciprocal Lattice

Fundamental vectors or primitive vectors :  t1, t2, t3   

Translation vectors, R : combination of primitive vectors

where n1, n2, and n3 are integers.

Three vectors for the reciprocal lattice: b1, b2, b3

a translation vector for the reciprocal lattice, G

where h1,h2, and h3 is integer
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5. Energy Bands in Crystals

The relation between real and reciprocal lattices

By definition,
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5.5 Translation Vectors and the Reciprocal Lattice



5. Energy Bands in Crystals

Calculation for the reciprocal lattice of a BCC crystal
Real crystal
a: lattice constant ,         t1, t2, t3 : primitive lattice vectors, 

i, j, l : unit vectors in the x, y, z coordinate system (see Fig. 5.14(b))

Abbreviated,
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5. Energy Bands in Crystals

(continued)
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5.5 Translation Vectors and the Reciprocal Lattice



Periodicity of E(k) → all information of electron contained in the 1st Brillouin
Zone (BZ)

Ek' for k' for outside 1st BZ → Ek with in 1st BZ with a suitable translation vector G

“Energy bands are not alike in different directions in k-space”

for the demonstration, “free electron band” is used (Fig 5.6 ).

In 3-D, from (5.7)

5. Energy Bands in Crystals

5.6 Free electron Bands
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5. Energy Bands in Crystals

In Fig 5.17,  three important directions

[100] from       (origin) to point H :

[110] from        to N :

[111] from        to P :

Fig 5.18 calculated by using the following eqn.

Γ
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5.6 Free electron Bands



5. Energy Bands in Crystals

band calculation  for BCC direction  ]100[   H−Γ

xkk ≡−Γ    Η

For this direction (5.35) becomes

2
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Where x may take values between 0 and 1. to start with, let G = 0, then

where

this curve is labeled (000) in Fig 5. 18 since h1,h2,h3 = 0,0,0   for G=0

between 0 and 2π/a (boundary of BZ)
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5. Energy Bands in Crystals

For the case of h1,h2,h3 = 0,-1,0

combined (5.36) and (5.38)
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Similarly, For FCC, see

Figs. 5.19 & 5. 20
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Band structure of actual solids:
Figs. 5.21-24
(results of extensive,
computer-aided 
calculations)

Directions in k-space

[100] : 

[110] :

[111]:

5. Energy Bands in Crystals

5.7 Band Structures for Some Metals and Semiconductors

X−Γ
K−Γ
L−Γ

Band diagram for aluminum
- parabola-shaped band: free- electron like



5. Energy Bands in Crystals

Band diagram for copper

- Lower half of the diagram closely 
spaced and flat running bands (due to 
3d-bands of Cu)

Band diagram for silicon

- Band gap : near 0~ 1eV →
“semiconductor properties”

5.7 Band Structures for Some Metals and Semiconductors



5. Energy Bands in Crystals

Band diagram gallium arsenide:

so called III – IV semiconductor 

Important for “optoelectronic devices”

5.7 Band Structures for Some Metals and Semiconductors



5. Energy Bands in Crystals

5.8 Curves and Planes of Equal Energy

Energy vs. wave vector, k

Fig 5.25: curves of equal energy for free electrons

Fig 5.26: near boundary of BZ- deviation from a 
circular form (2-d)

Fig 5.27: 3-d BZ for Cu



Q&A2

Brillouin Zone in 2-d

From Solid State Physics, N.W. Aschcroft & N. 
D. Mermin, Holt, Rinehart and Winston
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Part I Fundamentals
Electron Theory : Matter Waves

Chap. 1 Introduction

Chap. 2 The Wave-Particle Duality

Chap. 3 The Schördinger Equation

Chap. 4 Solution of the Schördinger Equation for

Four Specific Problems

Chap. 5 Energy Bands in Crystals

Chap. 6 Electrons in a Crystal

Electromagnetic Theory : Maxwell Equations

Chap. 4 Light Waves 

(Electrons in Solids, 3rd Ed., R. H. Bube) 



6. Electrons in a Crystal

6.1 Fermi Energy and Fermi Surface

The Fermi energy, EF: 

- An important part of an electron band diagram

- Defined as “the highest energy that the electrons assume at T = 0 K”

- Fermi energy for Al and Cu : see Fig 5.21, 5.22

Fermi energy for semiconductor: 

- The above definition can occasionally be misleading, particularly

when dealing with semiconductors

- Fermi function at EF, F(EF) = ½ : see Section 6.2 for more accurate 

definition 

Fermi surface (in 3-d k-space) for Cu : see Fig 5.27



6. Electrons in a Crystal

6.2 Fermi Distribution Function

Fermi function, F(E) : The probability that           
a certain energy level is occupied by 
electrons

Fermi distribution for T = 0  K (Fig 6.1)

and for higher T (T≠ 0 K)  (Fig 6.2)

At high energy (E >> EF), F(E) is
approximated by classical Boltzmann
distribution
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at room temp.



6. Electrons in a Crystal

6.3 Density of States
“How energy levels are distributed over a band?”

Assume free electrons are confined in a square potential well of crystal.

Similar to the case in Sec. 4.2,  by using B.C., the solution of the 

Schrödinger equation

where nx.ny,nz are principal quantum numbers, 

a is the length of the crystal
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6. Electron in a Crystal

6.3 Density of States

A specific energy level, En for each set of nx.ny,nz , called “ energy state”

- Equal values of the energy, En lie on the surface of sphere with radius n

- All points within the sphere represent quantum states with energy 
smaller 

than En

- The  # of quantum state, η, with an energy equal to or smaller than En, is 

proportional to the volume of the sphere 

(n values can be defined in positive octant of the n-space)

In a one-eighth of the volume of the sphere with radius n 
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3 2
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6. Electrons in a Crystal

6.3 Density of States

Density of state, Z(E) : # of energy states 
per unit energy in the energy interval dE

(a3 =  volume that the electrons can 
occupy)

Z(E) : differentiation of η with respect to 
the energy, E
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6. Electrons in a Crystal

6.4 Population Density

Pauli principle : each energy state can be occupied by one electron of 
positive spin and one of negative spin

Population density

For T→ 0 and E < EF→ N(E) = 2∙Z(E),  F(E) =1

For T≠0, E≈ EF, → the Fermi distribution 

function causes a smearing out of N(E)

(Fig 6.5)

)()(2)( EFEZEN ⋅⋅=

1exp

12
2

)( 21
23

22

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛=

Tk
EE

EmVEN

B

Fhπ



6. Electrons in a Crystal

6.4 Population Density

# of electrons N*, that have an energy equal to or smaller than the energy
En (The area within the curve in Fig 6.5) For an energy interval between E
and   E + dE

From (6.8) and (6.9) and consider simple case T→ 0 and E < EF  ,F(E) = 1

If we define # of electrons per unit volume as N’ = N*/V,
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6. Electrons in a Crystal

6.5 Complete Density of States Function Within a Band

E vs. Z(E) in actual crystals

- Low energy : free-electronlike

- Higher energy : fewer energy 
state available (Fig 5.26)

→ Z(E) decrease with increasing 
E

- The corners of the BZ : Z(E) 
dropped to zero



6. Electrons in a Crystal

6.6  Consequences of the Band Model

Insulators : solids in which the 
highest filled band is completely 
occupied by electron

Alkali metal: the valence band is 
essentially half-filled,  electrons 
can drift under external field

Bivalent metals: upper band partially overlapped ; weak binding forces of 
the valence electrons on atom

Semiconductors: valence band is completely filled with electron; relatively 
narrow band gap (intrinsic semiconductors); a sufficiently large energy can 
excite electron from valence band to conduction band → some electron 
conduction



6. Electrons in a Crystal

6.7 Effective Mass

Effective mass (of electron), m*

experimentally determined electron mass

- Deviation of m* from free electron mass m0 : usually attributed to 
interaction between drifting electrons and atoms in a crystal

- For example,

Electron accelerated in an electric field might be slowed down slightly 
due to “collisions” with some atom → ratio m*/m0 >1

The electron wave in another crystal might have just the right phase in 
order that the response to an external electric field is enhanced→
m*/m0 <1

- Derivation of effective mass

group velocity (2.10) dk
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g
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6. Electron in a Crystal

6.7 Effective Mass

(continued)
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6. Electron in a Crystal

6.7 Effective Mass

Effective mass is inversely proportional to 
the curvature of and electron band.

1

2

2
2

−

∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dk
Edm h

In Fig 6.8, m* is small and positive 
near the center of BZ

Negative m* (upper part of the band 
in Fig 6.8 ) : “particle travels in the 
opposite direction to an applied 
electric force ( and opposite to an 
electron”; called “electron hole”

cf) exciton : an electron/hole pair



Part II Electrical Properties of 
Materials

Chap. 7 Electrical Conduction in Metals and Alloys

Chap. 8 Semiconductors

Chap. 9 Electrical Properties of Polymers, Ceramics,

Dielectrics, and Amorphous Materials



7.1 Introduction

Observations of electrical phenomena

- BC 600 : Thales discovered “a piece of amber, having been rubbed with a 
piece of cloth, attracted feathers and other light particles”

Electricity was from the Greek word elektron meaning amber

- In early 1700s : Stephen Gray found “some substances conduct electricity 

whereas others do not”

- In 1733 : DuFray postulated “the existence of two types of electricity –
glass electricity and amber electricity dependent on which material was 

rubbed”

- From then on, scientists contributed to our knowledge of electrical 

phenomena: Coulomb, Galvani, Volta, Oersted, Ampère, Ohm, Seebeck, 
Faraday, Henry, Maxwell, Thomson,

- At the turn of 20th century: Drude achieved “a satisfactory understanding 
of electrical phenomena on an atomistic basis”



7.2 Survey

Conductivity, σ : ability to conduct electrical current

span over 25 orders of magnitude (see Fig. 7.1)

over 40 orders of magnitude if a superconductor is included

Classification of materials by their electrical properties :

conductors, semiconductors, nonconductors (insulators, dielectrics) 



RIV =

A
Ij =

L
VE =

eNj υ=

A
LR ρ

=

σ
ρ 1
=

Ohm’s law or 

potential difference , V (in volt), electrical current, I (in amp), and 
electrical resistance, R (in ohms, i.e. Ω)

: current density (A/cm2), σ : conductivity (1/Ωcm)

: electrical field strength (V/cm)

σEj =

N : number of electrons per unit volume, v: velocity, e: charge

: specific resistance, or resistivity (Ωcm)

L : length of conductor, A : cross-sectional area

7.2 Survey



7.3 Conductivity – Classical Electron Theory

Drude’s postulation : a free “electron gas” or “plasma”, consisting of  
valence electrons of the individual atoms in a crystal

M
NN a
δ0=

number of atoms per cubic centimeter for a monovalent metal 
such as Na, where, N0 is Avogadro constant, δ the density, M
the atomic mass of the element, assuming one electron from 
each atom  

(            1022  to 1023 free electrons per cm3)
eE

dt
dm =
υ

Equation of electron motion, where e is charge, m mass

An electron, accelerated by an electric field, increase its drift velocity until it 
encounters a collision. Electron motion counteracted by a friction forceγυ
which opposes electric force eE. 

Suppose the resistance in metals is due to interactions of the drifting 
electrons with lattice atoms (i.e., essentially with imperfections in the 
crystal lattice)

eE
dt
dm =+γυυ

where γ is constant

=aN



At υ = υF (a final drift velocity), dυ/dt = 0  (steady state)

eEF =γυ
F

eE
υ

γ =

To obtain complete equation for the drifting elections under electric 
filed force and friction (or damping) force

The solution,

A relaxation time is defined by
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7.3 Conductivity – Classical Electron Theory



Current density j is proportional to the velocity of the drifting 
electrons and number of free electrons, Nf

Combining the above equation with

mean free path is defined by

EeNj συ == ff

m
eN τσ

2
f=

υτ=l

eE
m Fυτ =

7.3 Conductivity – Classical Electron Theory



7.4 Quantum Mechanical Consideration

- Visualize the velocity of electrons in a velocity space (Fig 7.3) with 
and without electric field

- The maximum velocity that electrons are able to assume is the 
Fermi velocity vF

- Only specific electrons participate in conduction : these electrons 
drift with a high velocity which is approximately the Fermi velocity vF



A large number of electrons possess EF energy since the density of 
states and thus the population density is highest around EF (Fig 7.4)

∆E : a little extra energy needed to raise a substantial number of 
electrons from the Fermi level into slightly higher states 

Consequently, energy (or velocity) of electrons accelerated by the 
electric field E is only slightly larger than EF  (or VF) so that mean 
velocity ~ VF

7.4 Quantum Mechanical Consideration



Calculation of the conductivity by quantum mechanics

The velocity of electron responsible for electron conduction: VF

The number of electrons displaced by electric field E : N’
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(continued) eE
dt
dk

dt
dp

dt
md

dt
dmF ===== h

)( υυkp h=

dteEdk
h

= or τ
hh
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kEeNj FF Δ= h)(2υ τυ EENej FF )(22=
(EF : Fermi energy , E: electric field)

If electric field vector points negative v(k)x direction, only the 
projections of VF on the positive v(k)x –axis contribute to the current 
(see Fig. 7.5)

and

7.4 Quantum Mechanical Consideration



Thus,  sum up all contribution of the velocities in the 1st and 4th

quadrants in Fig 7.5
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22 )(
3
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FF EENej τυ=

(continued) Similar calculation for a spherical Fermi surface

Thus, the conductivity, with

Conductivity depends on

Fermi velocity, the relaxation time,

And population density

)(
3
1 22

FF ENe τυσ =

Ej /=σ

7.4 Quantum Mechanical Consideration



7.5 Experimental Results and Their 
Interpretation

7.5.1 Pure metals

- Resistivity of a metal decreases linearly with decreasing 
temperature until it reaches a finite value (Fig 7.7)

- The empirical equation

α is the linear temperature coefficient of resistivity

[ ])(1 1212 TT −+= αρρ



7.5.1 Pure metals

- Matthiessen’s rule: the resistivity arises from independent scattering 
processes which are additive 

resthdefimpth ρρρρρρ +=++=

Thermally induced part of the resistivity :   ideal resistivity

Resistivity by impurities          and defects            :   residual resistivity

- Compare thermally induced change in conductivity in the light of the 
quantum mechanical and classical model

Consider the temperature dependence of each parameters of these 
equations
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7.5 Experimental Results and Their 
Interpretation



7.5.2 Alloys
The resistivity of alloys increases with increasing amount of solute content.  
However, the slope of ρ vs. T lines remain constant.

Several mechanisms for the resistivity increase following Matthiessen’s
rule
- atoms of different size cause electron scattering

- atoms having different valences introduce a local charge difference 
→increase scattering probability
- different electron concentration alter position of Fermi energy→changes 

the population density N(E) (eqn. (6.8)) and conductivity (eqn. (7.26))

7.5 Experimental Results and Their 
Interpretation



7.5.2 Alloys

Linde’s rules : the resistivity of dilute single-phase alloys increase with 
the square of the valence differences solute and solvent constitutions (Fig. 
7.8)

Nordheim’s rule : true for alloys containing a transition metal (Fig. 7.9)

C : materials constant

Kondo effect : some alloys show a minimum in the resistivity at low 
temperature. It is due to additional scattering of electrons by magnetic 
moments of the solutes and is a deviation from the Matthiessen rule

BABBAA ΧΧ+Χ+Χ= Cρρρ

Max. at     ~ 50% 
solute content

ρ

7.5 Experimental Results and Their 
Interpretation



7.5.3 ordering

Long range ordering
- the solute atoms are periodically arranged in the matrix

- for example, in a 50/50 alloy the A and B atoms alternately occupy 
successive lattice sites, then electron waves are coherently scattered, 
which causes a decrease in resistivity (Fig. 7.9)
- Cu3Au, CuAu Au3Mn

Short  range ordering
- small domains in which the atoms are arranged in an ordered fashion
- α copper-aluminum : much smaller resistance decrease

7.5 Experimental Results and Their 
Interpretation



7.6 Superconductivity

Superconductors are materials whose resistivites become 
immeasurably small or actually zero below a critical 
temperature, TC



As T decrease below Tc→ transition into the superconducting 
state

for pure and structurally perfect elements : sharp transition

Transition temperature, Tc often varies 
with the atomic mass, ma

where α is materials constant

: Isotope effect

.constTm ca =⋅α

7.6 Superconductivity



The critical magnetic field strength HC :a magnetic field above 
which  superconductivity is destroyed
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Similar way, another limiting 
parameter exist: 
The critical current IC , above 
which  superconductivity is 
destroyed

7.6 Superconductivity



Two classes of superconducting materials

- Type I : transition between superconducting and normal state 
(destruction of superconducting state by magnetic field) occurs 
sharply; HC is relatively low.

- Type II : the elimination superconducting state by magnetic field is 
gradual ; HC1 and HC2 exist

7.6 Superconductivity



Type II superconductor : the interval between HC1 and HC2, superconducting 
and normal conducting areas are mixed in the solid, called vortex state

Vortices, or fluxoids : small circular regions in the normal state, which 

carry the smallest possible unit of a magnetic flux, called a flux quantum
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215
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h

⋅×== −φ

- current flows perpendicular to 
these fluxoids → “Lorentz force
on the fluxoids”

- moving fluxoids become 
obstacles for drifting electrons

“Fluxoid pinning” by 
microstructural
inhomogeneities in the matrix

7.6 Superconductivity



High-temperature Superconductor

(or High-Tc Superconductor)

Ceramic superconductor : RBa2Cu3O7-x

Characterized by two-dimensional sheets of 

atoms : Cu-O

Tetragonal : oxygen deficient, non-

superconducting

Orthorhombic : superconducting

7.6 Superconductivity



7.7 Thermoelectric Phenomena

Fig. 7.19, Potential difference, ∆V, between two thermocouple is 
observed, which is essentially proportional to the temperature 
difference, ∆T : thermoelectric power, or Seebeck coefficient

S
T
V
=

Δ
Δ

Cu - 45%Ni : 43 μV/K

For higher temperature

- 90% Ni-10% Cr 

- 95%Ni-2% Mn-2%Al

- Pt-13%Rh



Peltier effect : A reverse of the Seebeck effect, A direct electric 
current that flows through junctions made of different materials causes 
one junction to be cooled and the other to heat up (depending on the 
direction of the current)

“Thermoelectric refrigerators”

7.7 Thermoelectric Phenomena



Part II Electrical Properties of 
Materials

Chap. 7 Electrical Conduction in Metals and Alloys

Chap. 8 Semiconductors

Chap. 9 Electrical Properties of Polymers, Ceramics,

Dielectrics, and Amorphous Materials



8.1 band Structure

Material characterization by 
band structure

- Metal: partially filled 
valence bands with electrons

- Insulator: completely filled 
valence bands and a large 
energy gap up to unfilled 
conduction band

- Semiconductor: in low temperature, completely filled valence 
band and a narrow gap between this and the next higher, unfilled
conduction band

Because of band overlapping, the valence band as well as the 
conduction band consist of hybrid (mixed) s- and p-state → the eight 
highest s + p states(2 s- and 6 p- states split into two separate (s + p) 
bands) (Fig. 8.1)



Fig. 8.2: calculated band structure of 
Si

The valence band can accommodate 
4Na electrons: one lowest s-state and 
three p-states (4 sp- hybrids) and 
empty conduction band of 4 sp-
hybrids

Gap energy, Eg for group IV elements 
(Table 8.1)

Temperature dependence of gap energy 

(empirical equation)

Eg0 is the band gap energy at T = 0 K,
D

ggT T
TEE
θ

ξ
+

−=
2

0

KeV /105 4−×≈ξ re temperatuDebye: Dθ

8.1 band Structure



8.2 Intrinsic Semiconductors

The conduction mechanism is predominated by the properties of 
the pure crystal

(i) Electron excitation from the valence band into conduction 
band, usually by thermal energy (interband transition)

(ii) Electron holes left behind in the valence band can also 
contribute to the conduction

- Fermi energy in semiconductor: 

Energy for which the Fermi 

distribution function, F(E) = 1/2 

EF = - Eg/2



Number of electrons in the conduction band

N* : number of electrons that have an energy equal to or smaller than 
a given energy En

For an energy interval between E and E + dE,

Where the population density

Density of state Z(E) (see eqn. (6.5))
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Because E - EF is about 0.5eV and kBT at R.T. is of the order of 10-

2eV, the exponential factor is large compared to 1
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Integration over all available electrons that have energies larger 
than the energy at the bottom of the conduction band (E = 0)
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Introducing EF = -Eg/2 and effective mass ratio m*
e/m0

Ne = N*/V : number of conduction band electrons per unit volume
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- The number of electrons in the conduction band per cm3 is a function of Eg
and T. A numerical evaluation of Ne per cm3 in Si at RT ~ 109 : only one in 
1013 atoms contributes an electron to the conduction 

- “The number of electrons in the conduction band” = “the number of holes 
in the valence band”. Thus equation for Ne can be written for the holes by  
assuming m*

e= m*
h
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- Conductivity of an intrinsic 
semiconductor is determined by 
number of current carriers (electrons 
and holes) and also by their mobility

The mobility of the current carriers μ :

E
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8.3 Extrinsic Semiconductors

8.3.1 Donors and Acceptors

Extrinsic semicondutors: in most semiconductor devices, a considerably  
higher number of charge carriers are introduced by doping,i.e., by adding 
small amount of impurities (dopants) to the semiconductor materials 

- n-type semiconductor: dopants (donor, element of group V : P,As,Sb) 

→major carrier :donor electrons (negative carrier) 

- p-type semiconductor: dopants (acceptor, elements of group III : 
B,Al,Ga,In)

→major carrier: holes (positive carriers)



8.3.2 Band Structure

With increasing temperature,

- n-type: the donor electrons overcome small potential barrier (Fig 8.7) : 
excite from the donor levels into the conduction band. → Ne deviation from 
intrinsic way. Once all electron in donor levels have been excited into 
conduction band, further temperature increase does not create additional 
electron (Fig8.8)

- p-type : electrons excite from valence band into the acceptor levels, 
creating positive charge carriers (holes).

8.3.3 Temperature Dependence of the Number of Carriers

8.3 Extrinsic Semiconductors



8.3.4 Conductivity

edeeN μσ = where Nde : number of donor electrons 

: mobility of the donor electrons eμ

- For low doping and at low temperature, the conductivity decreases 
with increasing temperature : lattice vibration → decrease mobility

Nde ,           : two competing effects on conductivity of semiconductorseμ

At higher temperature: 
conductivity increase : intrinsic 
effects  → increase number of 
carriers

- For high doping : temperature 
dependence on conductivity is less 
pronounced due to the already 
higher number of carrier

8.3 Extrinsic Semiconductors



8.3.5 Fermi Energy

EF level position

- n-type semiconductor

: between donor level 
and   

conduction band

- p-type semiconductor

: between acceptor level  

and valence band

With increasing temperature, EF of both type semiconductors 
approach the value for intrinsic semiconductors, i.e., - Eg/2

8.3 Extrinsic Semiconductors



8.4 Effective Mass, m*

Evaluation of the effective mass of the charge carriers in 
semiconductors

m* is inversely proportional to the curvature of an electron band.

Consider the upper portion of the valence bands and the lower portion of the 
conduction bands for Si

Curvature: convex 
downward -> a 
negative effective 
mass, implying this 
band is populated by 
electron holes.

2 heavy holes : 
smaller curvature

1 light hole : larger 
curvature

Curvature : 
convex upward -> 
populated by 
electrons

In 3-d, a spheroid 
shape:

Longitudinal mass 
ml*

Transverse mass mt*



8.5 Hall Effect

“Number and type of charge carriers can be measured by making 
use of Hall effect”

Consider n-type semiconductor

Suppose electric current density j 
flow in the positive x direction and 
magnetic field is applied z
direction

Lorentz force, FL on electrons: 

The electron accumulate on one 
side of the slap → cause Hall field 
FH, thus Hall force

yH eEF =

eBF zxL υ=



(continued) In equilibrium  FL + FH = 0

zxy BE υ=
eNj xx υ−=

y

zx

eE
BjN −=

Ne
RH

1
−=

yzx eEeB =υ

Combining the two, yields for the number of conduction 
electrons per unit volume

variables on the right side of this equation can 
be measured and thus N can be obtained.

- Hall constant is defined as

which is inversely proportional to the density of charge carriers, N. 

- negative (positive) RH  : major charge carrier are electrons (holes)

8.5 Hall Effect



Additional Materials

(Chap. 19 in Materials Science & Engineering, 
An Introduction,  4th Ed., W.D. Callister Jr.)



Intrinsic Semiconductor

III. Semiconductivity(4)

Atomic bonding model

Band  model



n-type semiconduction
- Addition of 5 valence electrons to Si:

P, As, Sb
(group VA in periodic table)



p-type semiconduction
-Addition of 3 valence electrons    
to Si, Ge: B, Al
(group IIIA in periodic table) 



Part II Electrical Properties of 
Materials

Chap. 7 Electrical Conduction in Metals and Alloys

Chap. 8 Semiconductors

Chap. 9 Electrical Properties of Polymers, Ceramics,

Dielectrics, and Amorphous Materials



8.6 Compound Semiconductors

GaAs (III-V compound)

- larger band gap compared to Si

- larger electron mobility due to smaller electron effective mass (Fig 5.24)

- direct band gap (chap 12) : optical properties 

Applications

- High-frequency devices

- Laser / light-emitting diodes (LED)



Other compound semiconductors
(applications: optoelectronic devices)

Group III-V elements
- GaP, GaN, InP, InAs, InSb, AlSb

Group II-VI elements
- ZnO, ZnS, ZnSe, CdS, CdTe, HgS

Group IV-VI
- PbS, PbSe, and PbTe

Ternary or quaternary alloys
- AlxGa1-xAs, AlxGa1-xAsySb1-y, GaAs1-xPx: LEDs
GaAs1-xAs also used in modulation-doped field-effect transistors 

(MODFET)

Silicon carbide: Group IV-IV 
- band gap 3eV, very high temperature(700oC) device
- Emit light in the blue end of the visible spectrum

8.6 Compound Semiconductors



8.7 Semiconductor Devices

8.7.1 Metal-Semiconductor Contacts

Types of contacts in 
semiconductor/metal

rectifying contact (8.7.2)

widely utilized in electronic 
devices to convert 
alternating current into 
direct current

ohmic contact

electron can flow in both 
ways and obeys Ohm’s law

Band diagram for n-type and p-type semiconductors (Fig 8.12)

n- type : surface negatively charged → repelling force on electron band edge 
→ bent upward , depletion layer (space-charge region)

p-type: band edge bent downward



8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

Work function, φ : the energy difference between the Fermi energy and the 
ionization energy which is necessary to transport an electron from EF to 
infinity

Metal / n-type semiconductor, φM > φS : After contact (Fig 8.13b), electrons 
flow from semiconductor “down” to metal until Fermi energies of both solids 
are equal → the metal will be charged negatively and potential barrier is 
formed just as shown in Fig 8.12

In equilibrium state, 
electrons from both sides 
cross the potential barrier. 
This electron flow constitutes 
the so-called diffusion 
current

8.7 Semiconductor Devices



8.7.2 Rectifying Contacts (Schottky Barrier Contacts)
Metal / p-type semiconductor, φM< φS

Electrons diffuse from metal into the semiconductor, thus charging the metal 
and, therefore, the surface of the semiconductor positively. Consequently a 
downward potential barrier is formed.

Contact potential:
the potential height for an electron diffusing from the semiconductor into 
metal: φM- φS height of the potential barrier from metal side : φM- χ, where χ
electron affinity

8.7 Semiconductor Devices



8.7.2 Rectifying Contacts (Schottky Barrier Contacts)
Net current flow in metal / n-type semiconductor by d.c biasing

- Reverse bias (when metal is connected to the negative terminal) : metal is 
charged even more negatively → the electron in the semiconductor are 
repelled even more → the potential barrier is increased  and depletion layer 
becomes wider (Fig 8.15a) 

Both barrier are relatively high, the diffusion currents in both directions are 
negligible, voltage independent small drift current from metal into the 
semiconductor

- Forward Bias (semiconductor is 
connected to negative terminal)

The potential barrier reduced. the 
depletion layer is narrow

: a large electron flow from 
semiconductor into metal

8.7 Semiconductor Devices



8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

The voltage current characteristic (Fig 8.16a)

Rectifier : convert alternating current into direct current (Fig 8.16b)

The current that flows from the metal into semiconductor
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where, A is the area of contact (see Fig. 
8.13) and C is a constant
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The net current Inet = ISM - IMS consists of namely, the saturation current

and voltage-dependent term. The net current is obtained  by combining the 
last two equation

8.7.2 Rectifying Contacts (Schottky Barrier Contacts)

Forward bias (positive V) the net current increase exponentially 
with V
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8.7.3 Ohmic Contacts (Metallization)
Ohmic contact: no barrier exists for the flow of electrons in either diction (Fig 
8.17c)

For the case of metal / n-type semiconductor contact, and φM< φS , electron 
flow from metal to semiconductor, charging metal positively.(cf, another case 
: metal / n-type semiconductor contact, and φM> φS )

The band of semiconductor bend “downward” and no barrier

8.7 Semiconductor Devices



8.7.4 p-n Rectifier (Diode)
After p-n contact : electron flow from higher level (n-type) “down” into p-
type so that p-slide is negatively charged

Conduction band: electron in the p-region diffuse “down” into n -region, in 
equilibrium state the number of electrons crossing the junction in both 
directions is identical

8.7 Semiconductor Devices



8.7.4 p-n Rectifier (Diode)

“ quasi-Fermi levels” (Fig 8.19a)

Electron density varies in the 
junction from the n-side to the p-
side by many orders of magnitude, 
while electron current is almost 
constant. Consequently, the EF is 
almost constant over depletion 
layer
External potential applied (Fig 
8.19)

- Reverse bias (connecting positive 
terminal to n-side): depletion layer 
becomes wider and potential 
barrier grows higher

- Forward bias: barrier decreases 
in height, a large net electron flow 
occurs from n-type to p-type region

8.7 Semiconductor Devices



8.7.4 p-n Rectifier (Diode)

while        is the lifetime of electrons in the p-type region before these 
electrons are annihilated by recombination with holes

e
Tk

D Bep
ep

μ
=

epepep τ⋅= DL

epτ

The saturation current, IS in reverse bias, Shockley equation (ideal diode 
law)
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The diffusion constant is connected with the mobility (Einstein relation)

Chn: equilibrium  concentration of the holes in n-region, Cep :concentration of 
electron in the p-region, D: diffusion constant, L: diffusion length

The minority carrier diffusion length is given by a reinterpretation of a well 
known equation of thermodynamics,
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8.7 Semiconductor Devices

8.7.5 Zener Diode

- Breakdown: when the reverse voltage is 
increased above a critical value, high 
electric filed causes some electrons to 
become accelerated  with a velocity at 
which impact  ionization occurs →
avalanching process

- Zener breakdown (Tunneling): another 
breakdown process; when the doping is 
heavy and thus the barrier width 
becomes very thin (< 10nm), applying 
high enough reverse voltage causes the 
bands to shift  to the degree that some 
electron in the valence band of p-side are 
apposite to empty states in the 
conduction band of n-side and these 
electron can tunnel through the depletion 
layer (Fig 8.20b) ;   a circuit protection 
device (Fig 8.20d)



8.7.6 Solar Cell (Photodiode)
: a p-n junction diode

1. Light of high energy fall on or 
near the depleted area 

2. Electron are lifted from the 
valence band into the 
conduction band, leaving holes 
in the valence band

3. The electron in the depleted area immediately “roll down” into the n-region, 
whereas the holes are swept into the p-region

→ The carriers can be measured in an external circuit (photographic 
exposure meter) or used to generate electrical energy

In order to increase the effective area of the junction (Fig 8.21)

- extremely thin p-type region (1 μm) :light radiation through p-region

- narrow metal electrode (in the form of strips)

8.7 Semiconductor Devices



Semiconductors

8.7 Semiconductor Devices
8.7.6 Solar Cell (Photodiode)

- The closer a carrier was created to 
the p-n boundary, the larger is its 
change of contributing to the 
current. (the electron - hole created 
some distance away from the 
depleted region, do not separated 
by junction field and eventually 
recombine; do not contribute to the 
electric current) : see Fig 8.22 
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+
−
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- Quantum efficiency

W, L: the width and length of depletion region

α: a parameter that determines the degree of 
photon absorption by the electrons
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8.7 Semiconductor Devices

*8.7.7 Avalanche Photodiode

- A p-n photodiode that is operated in a high reverse bias 
mode, i.e. at near-breakdown voltage

1. Electron and holes created by transition from the valence 
band into the conduction band by the incident light, are 
accelerated through the depleted area with high velocity →
which, in turn, ionize the lattice atom and generate secondary 
hole-electron pairs, thus generate even more hole-electron 
pairs  → photo current gain

2. Low light-level application, detectors in long-distance, fiber 
optics telecommunication system



Semiconductors

8.7 Semiconductor Devices
*8.7.8 Tunnel Diode

A p-n junction diode - depleted 
area is very narrow ; → heavy 
doping Fermi energy extends 
into the valence band of p-type 
semiconductor

energy band diagram and I-V 
characteristic : Fig 8.24

- The voltage is increase to 100mV 
(in Fig 8.24d), the potential barrier 
might be decreased do much that, 
opposite to the filled n-conduction 
state, no tunneling take place; 
current decreases with increasing 
forward voltage: “negative current-
voltage characteristic” : c-d region



Semiconductors

8.7 Semiconductor Devices
8.7.9 Transistors

Bipolar Junction Transistor
n-p-n transistor (n-p diode back to back 
with p-n diode) ; three connections of the 
transistor are called emitter(E), base(B), 
and collector(C)

- For the amplification of a signal, the “diode” consisting of emitter and base 
is forward biased, whereas the base-collector ”diode” is strongly reverse 
biased (Fig 8.26a)

1.The electrons injected into the emitter needed to have enough energy to 
be able to “climb” the potential barrier into the base region.

2.The electron diffuse through the base area until they heave reached the 
depletion region between base and collector. 

3.The electrons are accelerated in the strong electric field produced by the 
collector voltage → this acceleration case amplification of the input a.c
signal
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8.7 Semiconductor Devices
8.7.9 Transistors

Bipolar Junction Transistor

The electron flow from emitter to 
collector can be controlled by the 
bias voltage on the base

- A large positive (forward) bias
decreases the potential barrier 
and the width of the depleted 
region  between emit

→ The electron injection into the p-area is relatively high

- A small, but still positive base voltage results in a comparatively larger 
barrier height and in a wider depletion area, which causes a smaller 
electron injection from the emitter into the base area.

- the strong collector signal mimics the waveform of the input signal

: this feature is utilized for the amplification of music or voice, etc  
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8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

- A field-effect transistor consists of 
a channel through which the charge 
carriers need to pass on their way 
from a source (S) to the drain (D)

- The electrons that flow from the 
source to the drain can be 
controlled by an electric field which 
is established by applying a voltage 
to the so-called gate (G)

- The gate electrode is electrically 
insulated from the channel by a thin 
oxide layer which prevent a d.c
current to flow from gate to channel



8.7 Semiconductor Devices
8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

Semiconductors

Two types of MOSFETs are common: 

1. Depletion-type MOSFET or “normally on” MOSFET

- Consists of high-doped source and drain regions and a low 
doped channel, all of the same polarity (e.g. n-type): Fig8.28a

- The channel width is controlled by the voltage between gate and
body

- A negative charge on the gate drives the channel electrons away
from the gate and towards the substrate; the conductive region 
of the channel becomes narrowed by a negative gate voltage. 

- The more negative voltage (VG), the smaller the current through 
the channel from source to drain until eventually the current is
pinched off (Fig 8.28c)



8.7 Semiconductor Devices
8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

2. Enhancement-type MOSFET or 
“normally-off” MOSFET

- No built-in channel for electron 
conduction at least as long as no 
gate voltage is applied.

- If large enough positive voltage is 
applied to the gate, most of the holes 
immediately below the gate oxide 
are repelled, i.e., they are driven into 
the substrate, thus removing 
possible recombination sites and

Semiconductors

negative charge carriers are attracted into this channel; a path for the  
electrons between source and drain can be created by a positive gate 
voltage 

- Usages: memories, microcomputers, logic circuits, amplifiers, analog 
switches and operational amplifiers



8.7 Semiconductor Devices
8.7.9 Transistors
Metal-Oxide-Semiconductor Field-Effect Transistor

Semiconductors

CMOSFET: complementary MOSFET

- Both an n-channel and a p-channel 
device are integrated on one chip and 
wired in series

- This tandem device has become the 
dominant technology for information 
processing, because of its low 
operating voltage (0.1V), low powder 
consumption, and short channel length 
with accompanying high speed

http://www.plexoft.com/SBF/images/tokuyasu-mirror/cmos-
trans.gif



8.7 Semiconductor Devices
8.7.10. Quantum Semiconductor Devices

-To explain the nature of a quantum 
device: recall “the behavior of one 
electron in a potential well (Sec 4.2)”

- Size quantization : dimensions of the 
crystalline solid are reduced to the size of 
the wavelength of electron (e.g., 20nm for 
GaAs ;  → density of state, Z(E) is 
quantized

- A small-band gap material is sandwiched 
between two layers of a “wide-band gap 
material (Fig 8.33a,b): the configuration 
for which all three dimensions of the 
center materials have values near the 
electron wavelength, is called quantum 
dot (quantum wire for 2-d, quantum well
for 1-d confinement) → potential barrier 
between two GaAs region

Semiconductors



8.7 Semiconductor Devices
8.7.10. Quantum Semiconductor Devices

- Fig 8.34: If a large voltage is 
applied to the device, the 
conduction band of the n-doped 
GaAs is raised to a level at which 
its conduction electrons are at the 
same height as an empty energy 
state of the center GaAs region.  

→ At this point, the electrons are 
capable of tunneling though the 
potential barrier formed by the 
AlGaAs region and thus reach one 
of these discrete energy state

Semiconductors



8.7 Semiconductor Devices
8.7.10. Quantum Semiconductor Devices

Semiconductors

- If a slightly higher voltage is 
applied, the electrons of the n-
doped GaAs are no longer at 
par with an empty energy level 
and tunneling comes to a near 
standstill a I-V characteristic 
with negative differential 
resistance (Fig 8.35)

- An array of a multitude of quantum wells stacked on top of each other 
: The periodic arrangement of wide-band gap and narrow band gap 
materials is called supperlattice

- Quantum devices are about one-hundredth of the size of presently 
known FETs

- The major problems have still to be overcome concerning 
interconnections, device architecture, and fabrication of three-
terminal devices



8.7 Semiconductor Devices

8.7.11. Semiconductor Device Fabrication

(Text reading p.146-155) 

Techniques for single-crystal growth

1.Czochralski

2. Float-zone technique

3. Bridgman tech

Once the rods have been obtained,

They are sliced, lapped, etched, and 

polished to obtain 0.3-0.4mm thick 

wafers

Semiconductors



8.7 Semiconductor Devices

8.7.11. Semiconductor Device
Fabrication

Semiconductors

Device fabrication on the wafers

- Surface oxidation,

- Photolithography

- Oxide Etch 

- Photoresist Strip

- Doping

- Metallization

- Packaging
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Electrical Properties of Polymers, Ceramics, 
Dielectrics, and Amorphous Materials

9.1 Conducting Polymers and Organic Metals

Polymers consist of 
(macro)molecules which are long and 
chainlike. Several atoms combine 
and form a specific building block, 
called a monomer, and thousands of 
monomer combine to a polymer. (see 
Fig. 9.1)
The binding force between 
individual atoms within a chain: 
usually covalent and sometimes 
ionic in nature

The binding force between 
macromolecules: a weak Van der
Walls type
Degree of order or degree of periodicity of the atoms in polymers: 
dependent on the length of the molecules and on the regularity of
molecular structure. Certain heat treatment affects some structural 
parameters; e.g. slow cooling yield, for certain polymer, a crystalline 
structure (Fig. 9.2)
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9.1 Conducting Polymers and Organic Metals
A high degree of crystallinity and a 
relatively high conductivity have been 
found in polyacetylene, a simplest 
conjugated organic polymer; the 
prototype of a conducting polymer

A conjugated polymer has alternating 
single and double bonds between the 
carbons (see Fig. 9.3)

Two principle isomers: trans, cis

trans : the hydrogen atoms are 
alternately bound to opposite sides of 
the carbon

cis : the hydrogen atoms are situated 
on the same side of the double-bond 
carbons

Trans-polyacetylene is obtained as 
silvery flexible film that has a 
conductivity comparable to that of 
silicon (Fig. 9.4)  
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9.1 Conducting Polymers and Organic Metals

assuming different distances between 
the carbon atoms

- Fig 9.5(a) all carbon length are equal, 
the resulting band in the highest is 
partially filled : metal behavior ; the 
electrons in the double bond of a 
conjugated polymer (calledπ-electron) 
are loosely bound to the neighboring 
carbon atoms, thus one of these 
electron is easily dissociated from 
carbon atom by a small energy   →
contribute to electrical conduction
- Fig 9.5(b),(c) : Real case; the distance between the carbon atoms alternate 
because of single and double bonds. The width of band gap near the Fermi 
level depends mainly on the extent of alternating bond lengths : semiconductor 
or insulator. In order to improve the conductivity of (CH)x : decrease the 
disparity in the carbon-carbon bond lengths, thus approaching uniform bond 
length.

Calculated band structure  for trans-(CH)x
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9.1 Conducting Polymers and Organic Metals
Conductivity increase by doping in polymer-
based semiconductor : Fig 9.4 and Fig 9.6

- The dopant molecules diffuse between the 
(CH)x chains and provide a charge transfer 
between the polymer and the dopant

- Doping level in polymer “20 ~ 40 %”

Conduction mechanism in polyacetylene :

“soliton” is a structural distortion in a 
conjugated polymer and is generated when a 
single bond meets another single bond as 
shown in Fig 9.7. 

At the distortion point a localized nonbonding 
electron state is generated in the center of 
forbidden band.

Near the center of a soliton, the bond lengths 
are equal : uniform bond length constitute a 
metal.

When many solitons have been formed and 
their sphere of influence overlap, a metal-like 
conductor would result.



Electrical Properties of Polymers, Ceramics, 
Dielectrics, and Amorphous Materials

9.1 Conducting Polymers and Organic Metals

Other conductive polymers: polyanilines, polypyrroles, 
polythiophenes, polyphenylenes, polypphenylene vinylene, and 
their derivatives

Charge-transfer complexes : the conduction is increased by producing 
a mixture of easily ionized electron donors and electron acceptors, The 
charge is shared between the donors and acceptors: graphite, AsF5-doped 
graphite (higher conductivity)

Charge-transfer salts :a donor molecule, such as tetrathiafulvalene
(TTF), transfer electrons to an acceptor molecule, like 
tetracyanoquinodimethane (TCNQ) : the planar molecules stack on top of 
each other in sheets, thus allowing an overlap of wave functions and a 
formation of conduction bands that are partially filled with electron due to 
the charge transfer ; doped complexes of C60 (so called Buckyball) which 
exhibits superconductivity at low temperature.
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9.2 Ionic Conduction

The ionic conduction is caused 
by the movement of some 
charged ions which hop from 
lattice site to lattice site under 
the influence of electric field.

This ionic conductivity,

ionionion eμNσ =
Nion : number of ions per unit volume that can change their position under 
the influence of an electric filed 

μion : the mobility of ions

The conditions for ions  to move in a crystalline solid

1. They must have sufficient energy to pass over an energy barrier. (Fig. 9.8)

2. The lattice site next to a conducting ion must be empty. → Nion depends 
on the vacancy concentration in the crystal (i.e., on the number of Schotty
defects)
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9.2 Ionic Conduction

Diffusion theory links the mobility of ions with the diffusion coefficient, D
through Einstein relation

Arrhenius equation
,

Q is the activation energy, D0 is a pre-exponential factor that depends
on the vibrational frequency of atoms and some structural parameter.

Combining  with                                       yieldsionionion eμNσ =
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- From the slopes of the straight lines in Arrhenius plots, the activation 
energy Q is  calculated. 

- In Fig. 9.9, two different activation barriers. 

- Extrinsic region  at low temperature: 
Activation energy is small.
The thermal energy is just sufficient to allow the hopping of ions 
already existing vacancy

- Intrinsic region at higher temperature:
The thermal energy is large enough to create additional vacancies.   
The related activation energy is thus the sum of the activation 
energies for vacancy creation and ion movement.
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9.2 Ionic Conduction

Whenever vacant lattice site is created, 
an overall charge neutrality needs to be 
maintained.

- Both a cation and anion are removed 
from a lattice (Schottky defect)

- Formation of vacancy- interstitial pair 
(Frenkel defect) 

- Vacancies creation by differently charged impurities : By replacing a 
monovalent metal atom with a divalent atom a positively charged vacancy 
needs to be introduced.

(Examples) 

1. Mg2+ ion substitutitution for a monovalent Na+ ion: extra Na+ ion has to be 
removed to restore charge neutrality (Fig.9.10). 
2. Calcia(CaO)-stabilized Zirconia(ZrO2): Ca2+ ions substitute for Zr4+ ions, 
and then an anion vacancy needs to be created to maintain charge
neutrality.
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9.3 Conduction in Metal Oxides

Metal oxide can be insulating, have metallic conduction properties, or be 
semiconducting : For understanding the mechanisms involved in metal 
oxides, their electronic configuration in the orbital (or band structure) 
should be considered. (Appendix 3. p.409)

1. TiO2 (O :1s2 2s22p4 ,  Ti: 3d24s2)

- Noble gas configuration, insulator

- Oxygen have four 2p-electrons in its outermost shell. Two more electrons 
will bring O2- into the closed-shell configuration and four electrons are 
obviously needed to accomplish the same for two oxygen ions: 4 electrons 
are provided from Ti 3d- and 4s-shells.

- Since ionic bonds are involved, any attempted removal of electrons would 
require a considerable amount of thermal energy : insulator with wide 
band gap.
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9.3 Conduction in Metal Oxides

3. ZnO (O :1s2 2s22p4 , Zn: 3p104s2)

- Insulator for stoichiometric : a filled 2p-band and an empty zinc 4s-band 
employing a gap energy of 3.3 eV

- n-type semiconductor for non-stoichiometric :  if interstitial Zn atoms (or 
oxygen vacancy) are introduced into the lattice, then the valence electrons 
of  these Zn interstitials are loosely bound to their nuclei ;  first ionization 
energy is 0.05 eV (act as a donor)

2. TiO (O :1s2 2s22p4 ,  Ti: 3d24s2 )

- Metallic

- Only two titanium valence electrons are needed to fill the 2p-shell of one 
oxygen ion, two more titanium electrons are free to serve as conduction 
electron
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9.3 Conduction in Metal Oxides

4. SnO2 (some times doped with In2O3)

- Transparent in the visible region and a reasonable conductor in the 1 Ω-

1cm-1 range 

- Optoelectronics to provide electrical contacts without blocking the light 
from reaching a device: indium-tin-oxide (ITO)

5. NiO (O :1s2 2s22p4 ,Ni: 3p84s2)

- Insulator for stoichiometric : a filled oxygen 2p-band and empty nickel 
4s-band ; deep-lying localized electron states in the forbidden band close 
to the upper edge of the valence band are observed

- p-type semiconductor for nonstoichiometric; obtained by removing 
some nickel atoms, thus creating vacancies.
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9.4 Amorphous Materials (Metallic Glasses)

Structural features of amorphous materials

- Random arrangement of atoms

- Short range order

- Diffraction patterns consist of diffuse rings

- Positional disorder (in case of pure materials), compositional disorder 
(more than one element): the individual species are randomly distributed 

Many elements and compounds that are generally known to be crystalline 
under equilibrium conditions can also be obtained in the nonequilibrium
amorphous state by applying rapid solidification techniques: fast 
quenching, melt spinning, vapor deposition, sputtering, radiation damage, 
filamentary casting in continuous operation, spark-processing, etc.

The degree of amorphousness (or, the degree of short range order) can be 
varied by the severity of quench

ex) metallic glasses or glassy metals,  amorphous semiconductor
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9.4 Amorphous Materials (Metallic Glasses)
Atomic structure of 
amorphous metals and alloy

- Dense random packing of 
hard spheres model  (Fig. 9.11)     
(Bernal model) : ideal

The atoms in amorphous 
semiconductors : no close 
packing

- In transition metal-metalloid 
compounds (such as Ni-P) it is 
thought that the small 
metalloid atoms occupy the 
holes which occur as a 
consequence of this packing 
(Bern-Polk model)

- Atoms of group IV elements (covalent bond):  Often arranged in a continuous random 
network with ordering up to the third or fourth nearest neighbors (Fig 9.12b,c)

- Amorphous pure silicon contains numerous dangling bonds similar to those found in 
the crystalline silicon in the presence of vacancies (Fig 9.12a)
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9.4 Amorphous Materials (Metallic Glasses)

The calculation of electronic structure 
for amorphous metals and alloys: 
cluster model approach

e.g.) Fig 9.13 : the electronic structure 
of amorphous Zr-Cu 

- A series of clusters were assumed 
which exhibit the symmetry of closed-
packed lattice fcc (as Cu) and hcp (as 
for Zr)

- Partially filled electron states: metal-like conduction, Z(E) near EF  is small, 
which suggest relatively small values for conductivity. (σ for Cu-Zr = 5ⅹ
103 / Ω cm)

- The electrical resistivity of many metallic glasses (such as Pd80Si20 or 
Fe32Ni36Cr14P12B16) stays constant over a wide temperature range : 
resistance standards
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9.4 Amorphous Materials (Metallic Glasses)
The energy level diagram and 
density of states curves for 
amorphous semiconductors

- stronger binding forces between 
the atoms in covalently bound 
materials, the valence electrons 
are tightly bound, or localized  →
the density of state for localized 
state extends into the ”band gap”
(Fig 9.14)

Electrical conductivity for amorphous semiconductors

AAA eN μσ =

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Tk
TQ

B

A )(exp0A σσ

Density of carriers (NA) in amorphous semiconductor is 
extremely small ; electrons are localized, mobility of 
charge carriers is small – incoherent scattering (absence 
of periodic lattice)

Temperature-dependent activation process; 
activation energy QA
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9.4. Amorphous Materials 
(Amorphous Semiconductor)
9.4.1. Xerography or 
electrophotography

- An important application of 
amorphous semiconductor : 
selenium, silicon

- When deposited on a 
cylindrically shaped metallic 
substrate, constitutes the 
photoreceptor drum 
(Fig. 9.15)

Before copying, the photoreceptor is charged by corona wire to which a 
high voltage is applied. 2. Light which have been reflected from the 
document to be copied fall on the photoreceptor, electron hall pair formed 
causing photoreceptor to become conducting. This step discharge the 
affected parts on the drum, creating a latent image on the photoreceptor. 3. 
Toner develop ; 4. Toner transfer to papers ; 5. Heat (toner is fused)
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Capacitance, C : the ability to 
store an electric charge, q
per unit applied voltage, V.

V
qC =

Area, A of the plate,  the 
distance, L between electrodes

L
AC 0εε=

vacC
C

=εwhere

and

Determine the magnitude of the added storage capability;
ε : dielectric constant (unitless), or relative permittivity, εr 

ε0 : permittivity of empty space , 8.85 ⅹ 10-12 F/m
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9.5 Dielectric Properties

Electric dipole moment

xqp ⋅=

-

+

x is the separation 
between the positive 
and negative charge 
(Fig 9.17c)

- The dipole moment  is a vector pointing from the negative to charge.

Polarization : the process of dipole formation (or alignment of already existing 
dipoles) under the influence of an external electric field that has an electric 
field strength, E
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9.5 Dielectric Properties
- Dipole formation of all 
involved atoms within a 
dielectric material cause a 
charge redistribution so 
that the surface nearest to 
the positive capacitor 
plate is negatively charge 
(and vice versa): Fig. 9.18a

- Electric field lines within 
a dielectric material are 
weakened due to 
polarization: Fig 9.18b

ε
vacEE =

A
qED == 0εε

PED += 0ε

Dielectric displacement, D or surface charge density

Dielectric polarization P , the induced electric dipole moment 
per unit volume (Fig 9.18 c and d)

Units for D and P are C m-2
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The mechanism of polarization

- Electric polarization (Fig 9.17)

- Ionic polarization: cations and 
anions are somewhat displaced 
from the equilibrium positions 
under the influence of an 
external field and thus give rise 
to a net dipole moment

- Orientation polarization: permanent dipole align to the external electric 
filed; molecular polarization

How quickly do the dipoles to reorient or to align under a rapidly changing 
electric filed (in alternating circuit)

Polarization mechanisms which can respond equally quick to an alternating 
electric field (Fig. 9.19)
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9.5 Ferroelectricity, Piezoelectricity, and Electrostriction

Ferroelectric materials

- A spontaneous polarization 
without the presence of an 
external electric field : 
suitable for the manufacturing 
of small sized, highly efficient 
capacitors

- Hysteresis loop (Fig. 9.20)

PS : saturation polarization 
Pr : remanent polarization
EC  : coercive filed

- A critical temperature  (called, Curie temperature) exists, above which 
the ferroelectric effect are destroyed and the material becomes 
paraelectric (a kind of dielectric)
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Why do certain material possess 
spontaneous polarization?

- Tetragonal BaTiO3 : the negatively 
charged oxygen ions and the 
positively charged Ti4+ ion are 
slightly displaced from their 
symmetrical position (Fig 9.21)

- A large number of such dipole 
moment line up in a clusters (also 
called domains)

- In virgin state, the polarization 
directions of the individual domains are 
randomly oriented: no net polarization

- An external field orients the dipoles of 
favorably oriented domains parallel to 
E: those domains in which the dipoles 
are already nearly parallel to E at the 
expense of unfavorably oriented 
domains
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- Piezoelectricity : If pressure is applied to a ferroelectric material, such as 
BaTiO3, a change in the polarization occur, which results in a small voltage 
across the sample 

Transducers : convert mechanical strain onto electricity ; strain gages, 
microphones, sonar detectors, and phonograph pickups

- Electrostriction : inverse mechanism of piezoelectricity; an electric field 
produce a change on dimensions in a ferroelectric material 

An earphone, quartz crystal resonator (which is used in electronic devices 
as a frequency selective element)



Polarization P

Definition

P is defined by the electric dipole moment per unit 

volume of material : P   = Np

where N = number of dipoles/unit volume, p = avg. 

dipole moment.

 P also represents the surface charge density of the 

bound charge

The total charge Q

Q = CoV (= Qf : free charge) 

     +  (C - Co)V (= Qb : bound charge)

The total charge density D

D = Q/A = Qf/A + Qb/A = εE

where Qf/A = εoE (Gauss Law) 

and  P  = Qbd/volume of the dielectric material 

( p = Qbd)   = Qb/A 

Then   D = εoE + P = εE = εrεoE since εr = C/Co = ε/εo

P = εE εoE



Dielectric Constant ε

material property determining the capacitance C

The charge on a capacitor, 

Q  = CV 

where C [Farad (F)] , Q [Coulomb (C)], V [Volt (V)].

Since Q = AD = AεE, C = AεE/V = 
 ε

    C = 
 Co = εrCo

Co (capacitance in vacuum) = εo

εo : permittivity (dielectric constant) of a vacuum,

εr : relative permittivity (dielectric constant) 

εr = C/Co = ε/εo

 Also

P = (ε εo)E = εo(εr 1)E

χ= εr 1 =


Qf = 
  (free charge) 

Qf = 

 (bound charge)



Dielectric Loss Factor tanδ

represents the relative expenditure of energy to obtain a 

given amount of charge storage

With a sinusoidal voltage V = Voexpiωt, since Q =, 

I = dQ/dt = C
 .

Then, a charging current Ic is given by 

Ic = iωCV = ωCVoexp [i(ωt +  π/2)] 

90° advanced in phase compared with V in the ideal 

dielectric. 

For real dielectrics, (90° δ) advanced in phase occurs 

due to a loss.

E = V/d, E = Eoexp(iωt) and D = Doexp(iωt δ)

Since D = εE = εEoexp(iωt)

ε = (Do/Eo)exp(-δ) = εsexp(-δ) = εs(cosδ isinδ) 

where εs is the static dielectric constant. In terms of a 

complex dielectric constant

εr = εr'  iεr'' =  (ε'  iε'')/εo

εr' = εscosδ, εr'' = εssinδ

 The loss tangent, tanδ = εr'/εr'' = ε'/ε''



Then the total current I in terms of εr,

dQ/dt = C  = iωCV = εrCoiωV

εr'  iεr'' CoiωV

iωεr'CoV + ωεr''CoV

Ic(charging current) = iωεr'CoV= iωCV = iωε'E

Il(loss current) = ωεr''CoV = ωε"CV 

    =  ωε"E = Ictanδ = σE   

where σ is the dielectric conductivity

The corresponding energy loss W at the max. voltage Vo

W = 2πε' tanδ  per cycle

   = 2πfε' tanδ  per second

- Dielectric Strength: The ability to withstand large field 

strengths without electrical breakdown.



Ferroelectricity

    The spontaneous alignment of electrical dipoles by their 
mutual interaction (spontaneous polarization Ps)

    Since the average dipole moment p of the charged 
particles is proportional to the local electric field E',

p = αE'

Then P = NαE' = 


since E' = E + 
  (Mosotti field)

χ = εr 1 =
  =  

  

(Clausius-Mosotti equation)

Therefore, when Nα/3εo 1, the P, χ and εr must go 

to infinity.

    As the local fields E' is proportional to the 
polarization P, spontaneous polarization is expected at 
some low temperature at which the randomizing effect of 
thermal energy is overcome and all the electric dipoles 
line up in parallel arrays.

   

If the orientation polarizability is much larger than that 



for the electronic and ionic portions,

αo= C/kBT where C is Curie constant.

At Tc (Curie temp),

Tc = NC/3kBεo = NαoT/3εo

Consequently,

Below Tc, spontaneous polarization occurs

Above Tc, χ= εr 1 =
ε

 =  

Curie-Weiss Law

Characteristics of Ferroelectrics

Appearance of very high dielectric constants

A hysteresis loop for polarization

The existence of ferroelectric domains



Electromagnetic Theory : Maxwell Equations

Light Waves

(Electrons in Solids, 3rd Ed., R. H. Bube) 
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Light Waves

Properties of electric and magnetic fields

Wave equations for 
EM waves: 

Maxwell’s equations



Light Waves

The First Maxwell Equation : in SI unit

From coulomb’s Law: the force on a charge q due to another charge 
q' separated by distance r

If we define the electric field generated from q is Eq, the force on a 
charge q' in free space is given by F =  q' Eq

Electric field due to charge q in the dielectric material with dielectric 
constant εr

2
04 r

qqF
πε

′
=

ρ=•∇ D

2
04 rr

q επε
qE =

2
04 r

qEq πε
=



Light Waves

Polarization, P : dielectric dipole moment per unit volume induced 
by the electric field  

dpP ∗== NqN
Where N is the volume density of dipoles, p is the dipole 
moment, and q* is the charge involved in the dipole moment, 
with positive and negative charges separated by distance d

E0ε=D E0εε rD =



Light Waves

The polarization is proportional to electric field
Proportional constant, χ: dielectric susceptibility

Since the electric displacement, D is defined by

Since there are a number of possible mechanism contributing the 
dielectric susceptibility (depending on frequency of EM waves) 

For the displacement of atoms in the lattice χL and that of electrons 
in an atom, χe

EP χε 0=

EPED rεεε 00 =+= χε +=1r

∑+= iir χε 1

eLr(lo) 1 χχε ++= er(hi) 1 χε +=

The following relation is a good indication of the relative degree of 
ionic binding for materials

]/[]}1[]1{[ r(lo)r(hi)Lr(lo)r(hi) εεχεε =−

Thus



Light Waves

Consider charge q with spherical symmetry and Eq(r) at a distance r

2
04 r

qE
r

q επε
=

0r

2

εε
4 qEr q =π

0εε r

qdS =⋅∫E ∫ ∫=⋅∇ dVdV
r 0εε
ρE

Divergence theorem

By writing ,

φ−∇=E where Ф the is called electrostatic potential

ED rεε0= ρ=•∇ D

0
2

2

εε
ρφ

rx
−=

∂
∂

dVdS
VA

FF ⋅∇=⋅ ∫∫∫∫∫

The first Maxwell Equation for an isotropic and homogeneous material.

Poisson’s 
Equation



Light Waves

The Second Maxwell Equation

“Isolated magnetic poles do not exist”

Only magnetic dipoles exist. A line of force starting on a “North”
pole is terminated on a “South pole”. No divergence of magnetic 
field line.

When we apply a magnetic field to a material, the magnetization M

Where ĸ is the magnetic susceptibility

A quantity B is conserved at an interface even when magnetization 
is present

HM κ=

  4 MHB π+=MHB 00 μμ +=
πκμ 41+=rκμ +=1r

unit) cgs(in  

0=•∇ B

unit) SI(in  



Light Waves

The Third Maxwell Equation

When a wire is moved into or out of the pole of magnet. The wire will 
be subjected to a changing magnetic flux

A potential difference Ф has been induced in the wire with a value 
which can be given simply by 

Ф : a line integral of electric field E

∫ •=Φ∂Φ∂ SB d  with  ,/ t

t∂
Φ∂

−=φ

∫ ∫ ⋅
∂
Β∂

−=⋅ dSdlE
t t∂

∂
−=×∇

BE
By Stoke’s Theorem

SFlF dd
AC

⋅×∇=⋅ ∫∫∫

t∂
∂

−=×∇
BE
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The Fourth Maxwell Equation

“ A continuous electrical current  I or a displacement current ( )  
gives rise to a magnetic field”

Consider the attempt to measure a magnetic field around a wire 
carrying a current. At distance r from a wire direct current I

rπ2
IH =

∫ ∫ +⋅
∂
∂

=⋅ IdSDdlH
t

displacement current
t∂

∂D

JDH +
∂
∂

=×∇
t

By Stoke’s Theorem and 

where J is electrical current density

∫ •= SJI d

EJ σ=

JDH +
∂
∂

=×∇
t

t∂
∂D
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Dielectric Relaxation Time

Suppose that a charge is placed on a neutral material. The length of 
time it takes for this charge to relax either to a uniform charge 
density if the material is electrically isolated, or to zero, restoring the 
neutral state, by the excess charge leaking off to ground: dielectric 
relaxation time,

JD
•∇+

∂
•∇∂

=
t

)(0

0=×∇•∇ A

0=×∇•∇ H EJ σ=

0εε
σρρ

rt
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A is any vector: applied to the 4th Maxwell 
Equation
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1st Maxwell equation
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Light Waves

Electromagnetic wave equation

Deviation of wave equation from Maxwell Equation
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(3rd Maxwell equation)
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We can neglect the first term on the right of the equation if we are 
interested in the steady-state condition after the decay of any such 
space charge

If we calculate                           ,  rather than

We obtain the same form of equations for the magnetic field H

E

Light Waves

Electromagnetic wave equation (continued)
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Light Waves

Electromagnetic wave equation: the case of no absorption
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In the absence of all absorption processes: a first time derivative 
term of the EM equation equal to zero: then EM equation →
“Harmonic wave”

Solution of these equations have the form

In the form of EM wave equation, we can conclude immediately the
phase velocity of the electromagnetic waves is given by
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The Divergence Theorem: Because of the definition of the 
divergence, it can be shown that

Thus converting a volume integral of the divergence of A into 
surface integral of the scalar product of A with the vector n, the 
outward drawn unit vector normal to dS

Stoke’s Theorem: It follows from the properties of the curl that

thus converting a surface integral of the curl F to a line integral of 
F over a closed path on the surface

∫∫ •=•∇
VV

dSdV nAA

sFFn d)( •=×∇• ∫∫ dS
s

Appendix: The Divergence Theorem and Stoke’s Theorem
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Introduction

The  interactions of light with the valence electrons of a material 
is postulated to be responsible for the optical properties.

Light comprises only extremely small segment of the entire 
electromagnetic spectrum (Fig 10.1)

Optical methods are among the most important tools for 
elucidating the electron structure of matter

Optical devices : lasers, photodetectors, waveguides, light-
emitting diodes, flat-panel displays

Applications for communication : fiber optics, medical 
diagnostics, night viewing, solar applications, optical computing 
and etc..

Traditional utilizations: widows, antireflection coating; lenses, 
mirrors, etc..

cf) BBR (black body radiation)



Interactions between light and matter
Refraction
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Transmission
Absorption
Luminescence
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Light
Speed: c~3x1010 cm/s in vacuum
Ray: geometric optics such as lens, mirror
Electromagnetic wave: refraction, reflection, interference, 
diffraction, hologram, etc.
A stream of photons: absorption and emission

Spectrum (wavelength) of light
γ-ray (10-2 Å) ~ X-ray (1 Å) ~ UV(100 nm) 
~  visible (400nm (blue) ~ 700nm (red)) 
~ IR (~10 μm) ~ microwave (GHz) ~ radio (MHz-KHz)

What is light?

Introduction



Introduction



Introduction

:Travels to the +x direction

Periodic displacement in time and position

)sin(),( tkxAtx ωψ −=
)sin(),( tkxAtx ωψ += :Travels to the -x direction

Electromagnetic Wave



Introduction

Electromagnetic Wave
E = A cos(kx - ωt + φ),
E = A/2 [exp{i(kx - ωt+ φ)} + cc],
E = Re [A exp{i(kx - ωt+ φ)}],
E = Aexp{i(kx - ωt + φ)} for convenience:  

This, of course, is not strictly correct; when it happens, it is always 
understood that what is meant by this equation is the real part of 
Aexp{i(kx-wt)}. This representation is OK for linear mathematical 
operations, such as differentiation, integration, and summation, are 
concerned. The exception is the product or power.

E: electric field

A: amplitude,     I=E•E*
k: wavenumber, wavevector (=2π/λ)
ω: angular frequency (=2πν)
φ: phase



Introduction

Electromagnetic Wave

• Polarization state specified by the electric field vector, E(r,t)

• Assuming propagation in the z-direction
– Transverse wave lies in xy-plane
– Two mutually independent components are

– Ax, Ay are independent positive amplitudes
– δx, δy are independent phases

• These correspond to elliptic polarization with relative phase 
δ=δy-δx.

)cos( xxx kztAE δω +−=

)cos( yyy kztAE δω +−=



Introduction

Electromagnetic Wave

δ=δy-δx=±π/2,  Ay = Ax

Right(-hand) circularly polarized
(look back at the source)

2
πδ −=

)cos( xxx kztAE δω +−=

)cos( yyy kztAE δω +−=

Polarization of light-circular polarization



Introduction

Electromagnetic Wave
Polarization of light-circular polarization

Beam of light is circularly polarized if the electric field vector undergoes 
uniform rotation in the xy-plane

Ay = Ax

Beam of light is right-hand circularly polarized when δ=- π/2 which 
corresponds to counter-clockwise rotation of the E field vector in xy-plane
Beam of light is left-hand circularly polarized when δ=+π/2 which 
corresponds to clockwise rotation of the E field vector in xy-plane.
A linear polarized wave can be synthesized from two oppositely polarized 
circular or elliptic waves of equal amplitude. 

/2- xy πδδδ ±==
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Dispersion: the property that the magnitude of the refractive index, n
depends on the wavelength of the incident light. In metals, n also 
varies with 

When light passes from vacuum into a medium, its velocity as well as 
its wavelength decreases in order to keep the frequency constant.

The Optical Constants

10.2 Index of Refraction, n
Snell’s law : refractive power of a 
material

n
n
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sin

c
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β
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c
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med
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The index of refraction
of vacuum, nvac is 
arbitrarily set to be 
unity

light passes from vacuum 
into a medium

thus

α



The Optical Constants

10.3 Damping Constant, k

Consider a plane-polarized wave propagating along the positive z-
axis and which vibrates in the x-direction. (Fig.10.3) We neglect 
possible magnetic effects. The electromagnetic wave equation may
be written as

t
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z
Ec xxx

∂
∂
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0
2

2

2

2
2

ε
σε

Where Ex is the x-component of the electric field strength, ε is the 
dielectric constant,σ is the (a.c.) conductivity and ε0 is a constant, 
called permittivity of empty space

The solution to the above wave equation
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⎡
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⎞

⎜
⎝
⎛ −=

c
zntiEEx ωexp0

E0 is the maximal value of the 
electric field strength and ω = 2πν
is the angular frequency

See (A. 26) in Appendix 1
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10.3 Damping Constant, k
Differentiating the above equation once with respect to time and
twice with respect to time and z, and inserting these values into the 
wave equation yields
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n2 is often denoted by k and then (10.7) written as

21ˆ innn −=

n2 or k is the damping constant (sometimes called, absorption 
constant, attenuation index, or extinction coefficient ).
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The Optical Constants

10.3 Damping Constant, k

ε1 , ε2 : The real and  the imaginary parts of the complex dielectric constant

ε2 : absorption (product) 

For insulator (σ ≈ 0) it follows from (10.11) that k ≈ 0. then (10.10) reduces to 
ε = n2 (Maxwell relation).
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The Optical Constants

10.3 Damping Constant, k

Return to (10.5) ⎥
⎦

⎤
⎢
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⎛ −=

c
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Replace the index of refraction by complex index of refraction (10.8)
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damped undamped

Damping constant, k determines how much the amplitude 
decreases : the degree of damping of the light wave 

At high frequencies the electromagnetic wave are conducted only 
on the outer surface of wire : skin effect



The Optical Constants

10.4 Characteristic Penetration Depth, W, and Absorbance,α

The damping term in (10.18)
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We define a characteristic penetration depth, W, as that 
distance at which the intensity of the light wave, which travels
through a material, has decreased to 1/e of its original value
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The inverse of W is called attenuation or the absorbance

By making use of (10.21), (10.14), and (10,11)
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The Optical Constants

10.5 Reflectivity, R, and Transmittance T

reflectivity
0I

IR R= IR reflected intensity 

I0 incoming intensity

IT transmitted intensity
transmissivity, or transmittance

0I
IT T=

Experiments have shown that for insulators, R depends solely on 
the index of refraction. For perpendicular incidence one finds. 
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equations

n is generally a complex quantity. R should be real. Thus, R becomes
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The Optical Constants

10.5 Reflectivity, R, and Transmittance T

The reflectivity is also a function of ε1 , ε2
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Inserting (1) and (2) into (10.26)



The Optical Constants

10.6 Hagen-Ruben Relation

To find relationship between reflectivity and conductivity

For small frequency (i.e ν < 1013s-1), the ratioσ/2πε0ν for metals is 
very large σ/2πε0ν ≈1017 s-1. with ε≈10 we obtain

ε
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σ
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2

By combing the slightly modified equation (10.26) with (10.31)
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The Optical Constants

10.6 Hagen-Ruben Relation

If 2n + 1 is neglected as small compared to 2n2 (which can be done 
only for small frequencies for which n is much larger than 1), then 
(10.32) reduces by using (10.31) to

04121 πε
σ
ν

−=−=
n

R

Set σ =σ0 (d.c. conductivity) which is again only permissible for 
small frequencies, i.e., in the infrared region of the spectrum . 
This yields the Hagen-Ruben equation,

0
0

41 πε
σ
ν

−=R

The Hagen-Ruben relation is only valid at frequencies below 1013 s-1, 
or equivalently, at wavelength larger than about 30μm.
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Introduction

The  interactions of light with the valence electrons of a material 
is postulated to be responsible for the optical properties.

Light comprises only extremely small segment of the entire 
electromagnetic spectrum (Fig 10.1)

Optical methods are among the most important tools for 
elucidating the electron structure of matter

Optical devices : lasers, photodetectors, waveguides, light-
emitting diodes, flat-panel displays

Applications for communication : fiber optics, medical 
diagnostics, night viewing, solar applications, optical computing 
and etc..

Traditional utilizations: widows, antireflection coating; lenses, 
mirrors, etc..

cf) BBR (black body radiation)
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Light
Speed: c~3x1010 cm/s in vacuum
Ray: geometric optics such as lens, mirror
Electromagnetic wave: refraction, reflection, interference, 
diffraction, hollogram, etc.
A stream of photons: absorption and emission

Spectrum (wavelength) of light
γ-ray (10-2 Å) ~ X-ray (1 Å) ~ UV(100 nm) 
~  visible (400nm (blue) ~ 700nm (red)) 
~ IR (~10 μm) ~ microwave (GHz) ~ radio (MHz-KHz)

What is light?

Introduction



Introduction



Introduction

:Travels to the +x direction

Periodic displacement in time and position

)sin(),( tkxAtx ωψ −=
)sin(),( tkxAtx ωψ += :Travels to the -x direction

Electromagnetic Wave



Introduction

Electromagnetic Wave
E = A cos(kx - ωt + φ),
E = A/2 [exp{i(kx - ωt+ φ)} + cc],
E = Re [A exp{i(kx - ωt+ φ)}],
E = Aexp{i(kx - ωt + φ)} for convienence:  

This, of course, is not strictly correct; when it happens, it is always 
understood that what is meant by this equation is the real part of 
Aexp{i(kx-wt)}. This representation is OK for linear mathematical 
operations, such as differentiation, integration, and summation, are 
concerned. The exception is the product or power.

E: electric field

A: amplitude,     I=E•E*
k: wavenumber, wavevector (=2π/λ)
ω: angular frequency (=2πν)
φ: phase



Introduction

Electromagnetic Wave

• Polarization state specified by the electric field vector, E(r,t)

• Assuming propagation in the z-direction
– Transverse wave lies in xy-plane
– Two mutually independent components are

– Ax, Ay are independent positive amplitudes
– δx, δy are independent phases

• These correspond to elliptic polarization with relative phase 
δ=δy-δx.

)cos( xxx kztAE δω +−=

)cos( yyy kztAE δω +−=



Introduction

Electromagnetic Wave

δ=δy-δx=±π/2,  Ay = Ax

Right(-hand) circularly polarized
(look back at the source)

2
πδ −=

)cos( xxx kztAE δω +−=

)cos( yyy kztAE δω +−=

Polarization of light-circular polarization



Introduction

Electromagnetic Wave
Polarization of light-circular polarization

Beam of light is circularly polarized if the electric field vector undergoes 
uniform rotation in the xy-plane

Ay = Ax

Beam of light is right-hand circularly polarized when δ=- π/2 which 
corresponds to counter-clockwise rotation of the E field vector in xy-plane
Beam of light is left-hand circularly polarized when δ=+π/2 which 
corresponds to clockwise rotation of the E field vector in xy-plane.
A linear polarized wave can be synthesized from two oppositely polarized 
circular or elliptic waves of equal amplitude. 

/2- xy πδδδ ±==
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Dispersion: the property that the magnitude of the refractive index, n
depends on the wavelength of the incident light. In metals, n also 
varies with 

When light passes from vacuum into a medium, its velocity as well as 
its wavelength decreases in order to keep the frequency constant.

The Optical Constants

10.2 Index of Refraction, n
Snell’s law : refractive power of a 
material

n
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The index of refraction
of vacuum, nvac is 
arbitrarily set to be 
unity

light passes from vacuum 
into a medium

thus

α



The Optical Constants

10.3 Damping Constant, k

Consider a plane-polarized wave propagating along the positive z-
axis and which vibrates in the x-direction. (Fig.10.3) We neglect 
possible magnetic effects. The electromagnetic wave equation may
be written as
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z
Ec xxx

∂
∂

+
∂
∂

=
∂
∂

0
2

2

2

2
2

ε
σε

Where Ex is the x-component of the electric field strength, ε is the 
dielectric constant,σ is the (a.c.) conductivity and ε0 is a constant, 
called permittivity of empty space

The solution to the above wave equation
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E0 is the maximal value of the 
electric field strength and ω = 2πν
is the angular frequency

See (A. 26) in Appendix 1
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10.3 Damping Constant, k
Differentiating the above equation once with respect to time and
twice with respect to time and z, and inserting these values into the 
wave equation yields
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n2 is often denoted by k and then (10.7) written as

21ˆ innn −=

n2 or k is the damping constant (sometimes called, absorption 
constant, attenuation index, or extinction coefficient ).

22 kn −=ε νπεσ nk04=

and

Then

21
222 ˆ2ˆ εεε inikknn −=≡−−=

22
1 kn −=ε

And

νπε
σε

0
2 2

2 == nk



The Optical Constants

10.3 Damping Constant, k

ε1 , ε2 : The real and  the imaginary parts of the complex dielectric constant

ε2 : absorption (product) 

For insulator (σ ≈ 0) it follows from (10.11) that k ≈ 0. then (10.10) reduces to 
ε = n2 (Maxwell relation).

)(
2
1

22
1

1
2
2

2
1

2

0

22 εεεε
νπε

σε ++=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=n

)(
2
1

22
1

1
2
2

2
1

2

0

22 εεεε
νπε

σε −+=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=k



The Optical Constants

10.3 Damping Constant, k

Return to (10.5) ⎥
⎦
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Replace the index of refraction by complex index of refraction (10.8)
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damped undamped

Damping constant, k determines how much the amplitude 
decreases : the degree of damping of the light wave 

At high frequencies the electromagnetic wave are conducted only 
on the outer surface of wire : skin effect
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10.4 Characteristic Penetration Depth, W, and Absorbance,α

The damping term in (10.18)
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We define a characteristic penetration depth, W, as that 
distance at which the intensity of the light wave, which travels
through a material, has decreased to 1/e of its original value
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The inverse of W is called attenuation or the absorbance

By making use of (10.21), (10.14), and (10,11)
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10.5 Reflectivity, R, and Transmittance T

Determination for the reflectivity
0I

IR R= IR the reflected intensity 

I0 incoming intensity

transmissivity, or transmittance
0I

IT T=

Experiments have shown that for insulators, R depends solely on 
the index of refraction. For perpendicular incidence one finds. 
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The Optical Constants

10.5 Reflectivity, R, and Transmittance T

The reflectivity is also a function of ε1 , ε2
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Inserting (1) and (2) into (10.26)
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10.6 Hagen-Ruben Relation

To find relationship between reflectivity and conductivity

For small frequency (i.e ν < 1013s-1) the ratioσ/2πε0ν for metals is 
very large σ/2πε0ν ≈1017 s-1. with ε≈10 we obtain
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By combing the slightly modified equation (10.26) with (10.31)
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The Optical Constants

10.6 Hagen-Ruben Relation

If 2n+1 is neglected as small compared to 2n2 (which can be done 
only for small frequencies for which n is much larger than 1), then 
(10.32) reduces by using (10.31) to

02121 πε
σ
ν

−=−=
n

R

Set σ =σ0 which is again only permissible for small frequencies, 
i.e., in the infrared region of the spectrum . This yields the Hagen-
Ruben equation

0
0

21 πε
σ
ν

−=R

The Hagen-Ruben relation is only valid at frequencies below 1013 

s-1, or equivalently, at wavelength larger than about 30μm
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Atomistic Theory of the Optical Properties

11.1 Survey

- Hagen-Rubens equations (Fig 11.1(a))

The validity of equations derived from continuum theory, considering only 
macroscopic quantities and interrelating experimental data, are often 
limited to frequencies for which the atomistic structure of solids does not 
play a major role.

- Drude model (Fig 11.1(a))

In the visible and near IR region, an atomistic model needs to be 
considered to explain the optical behavior of metals. Moving electrons 
collide with certain metal atoms in a nonideal lattice. Absorption band  
cannot be explained by the Drude theory. 

- Lorentz postulations (Fig 11.1(a))

The electrons are considered to be bound to their nuclei, and an external 
electric field displaces the positive charge of an atomic nuleus against 
the negative charge of its electron cloud: “harmonic oscillator”



An oscillator absorbs a 
maximal amount of 
energy when excited 
near its resonance 
frequency.     (Fig 11.1b)

11.1 Survey
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11.2 Free Electrons Without Damping

Let’s consider the interaction of a plane-polarized light with the electrons.        
The field strength of the plane-polarized light wave is given by

)exp(0 tiEE ω=

)exp(02

2

tieΕeE
dt

xdm ω==

224 νπm
eEx −=

The stationary solution of this vibrational equation is obtained by forming 
the second derivative of the trial solution

This yields

The vibrating electrons carries an electric dipole moment. 

)exp(0 tixx

where  ω (= 2πν ) is the angular frequency

ω=

fexΝP = where Nf is free electrons per cubic centimeter
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11.2 Free Electrons Without Damping

The dielectric constant
E

P

0

1
ε

ε +=

2
0

2
f

2

m4
1ˆ

νεπ
ε Ne

−=Inserting (11.3) and (11.4) into this equation

The dielectric constant equals the square of the index of refraction, n

2
0

2

2
2

m4
1ˆ

νεπ
fΝe

n −=

We consider two special cases as follows,

(a) For small frequencies, the term                      is larger than one. 

Then       is negative and imaginary. An imaginary       means that    
the real part of      disappears. Eq.(10.25) becomes, for n = 0

2
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kn
knR i.e., the reflectivity is 100 

% (Fig 11.3)
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11.2 Free Electrons Without Damping

(b) For large frequency (UV light), the term                   becomes 
smaller than one. Thus      is positive and             real. The reflectivity 
for real values of        , i.e., for k = 0, becomes 

2
0

2

2

m4 νεπ
fΝe

2n̂ nn =ˆ
n̂

2

2

)1(
)1(

+
−

=
n
nR The material is essentially transparent for 

these wavelengths (Fig 11.3)
We define a characteristic frequency, ν1 often called plasma 
frequency, which separates the reflective region from the 
transparent region. (Fig 11.3) The plasma frequency can also be 
deduced from (11.6) or (11.7). In these equations               must have 
the unity of the square of a frequency, 
which we define to be ν1

2
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2

2

m4 νεπ
fΝe
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0
2

2
2
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11.2 Free Electrons Without Damping

In Table 11.1, the calculated and the observed values for ν1 are only 
identical for sodium : sodium does exactly one free electron per atom 
contribute to the electron pas.

For other metals “effective number of free electrons” is commonly 
introduced, which is defined to be the ratio between the observed and 
calculated ν1 values

effΝ=
)calculated(
)observed(

2
1

2
1

ν
ν

2
0

2222

eff
4)1(

e
mknN επν+−

=

The alkali metals are 
transparent near UV and 
reflect the light in the visible 
region (Table 11.1) : the s -
electrons of the outer shell 
of the alkali metals can be 
considered to be free.

Neff can be obtained by measuring n and 
k in the red or IR spectrum
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11.3 Free Electrons With Damping

)exp(02

2

tieEeE
dt
dxγ

dt
xdm ω==+

02

2

=
dt

xd υ′==
dt
dx

γ
eE

To take account of the damping, we add to the vibration equation (11.2)   a 
damping term                    , which is proportional to the velocity 

We determine first the damping factor, 

The damping is depicted to be a friction force which counteracts the 
electron motion  

)/( dtdxγ

γ
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,

Thus (11.11) becomes,

(11.11)
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11.3 Free Electrons With Damping

The stationary solution of eqn.

obtained by differentiating the trial solution                   by time
and inserting the second derivatives into the equation, which yields
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11.3 Free Electrons With Damping

The term                       in (11.22) has the unity of a frequency. We define a 
damping frequency

0
2

10 /2 σνπε
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where      is identical to ,

Table 11.2 lists values for ν2 which were calculated using experimental ρ0 and 
ν1 values. Now (11.22) becomes ,

ε̂ 2n̂
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11.3 Free Electrons With Damping

Multiplying the numerator and 
denominator of the fraction in 
(11.25) by the complex 
conjugate of the denominator 
allows us to equate individually 
real and imaginary parts. 

This provides the Drude
equations for the optical 
constants
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11.4 Special Cases

For the UV, visible, and near IR regions, the frequency varies between 
1014 and 1015 s-1. The average damping frequency, ν2 is 5ⅹ1012 s-1

(Table 11.2). Thus, ν2 >> ν2
2. Equation (11.27) then reduced to

With  ν ≈ ν1 (Table 11.1) We obtain 

For very small frequencies ν2 << ν2
2 , we may neglect ν2 in the 

denominator of (11.27). This yields, with (11.23)

Thus, in the far IR the a.c. conductivity, σ and the d.c. conductivity σ0 

may be considered to be identical
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11.5 Reflectivity

The reflectivity of metal is calculated using (10.29) in conjunction with 
(11.26) and (11.27).
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11.6 Bound Electrons (Classical Electron Theory of Dielectric Materials)

“At higher frequency, the 
light is absorbed and 

reflected by metal as well as 
by nonmetals in a narrow 
frequency band” →

It can be interpreted by 
Lorentz model: He assumed 
that under the influence of 

and external electric field, 
the positively charged 
electron cloud are displaced 

with respect to each other 
(Fig 11.7)  →
“harmonic oscillator”
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11.6 Bound Electrons

Under the influence of and alternating electric field (i.e. by light), the electron 
is thought to perform forced vibrations

)exp(0 tieEeE ω=
)exp(02

2

tieEkx
dt
dxγ

dt
xdm ω=+′+

[ ])(exp
)( 22222

0
2

0 φω
ωωω

ε
−

′+−
= ti
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== 00 2πνω

The vibration equation:

kx : restoring force (x is displacement, k is the spring constant), γ’ : damping 
parameter

The stationary solution for week damping (see Appendix 1)

where                                    is resonance frequency of the oscillator,Φ is the 
phase 

difference between forced vibration and the excitation force of the light 
wave (see Appendix 1)
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11.6 Bound Electrons
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which yield (11.5)                       and (10.12)

Inserting (11.33) yields
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11.6 Bound Electrons

The trigonometric terms in (11.42) are replaced, using (11.35), as follows

22222
0

2

22
0

2 )(
)(

tan1
1cos

ωωω
ωω

φ
φ

γm
m

′+−

−
=

+
=

22222
0

22 )(tan1
tansin

ωωω
ω

φ
φφ

γm
γ

′+−

′
=

+
=

separating the real and imaginary parts in (11.42) finally provides the optical 
constants

that is,
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11.6 Bound Electrons
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11.7* Discussion of the Lorentz Equation for Special Cases

Small Damping : γ’ is very small, equation (11.45) reduced to
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11.7* Discussion of the Lorentz Equation for Special Cases

Absorption near ν0 : Electrons absorb most energy from light at the 
resonance frequency, i.e., ε2 has a maximum near ν0. For small damping, 
the absorption band becomes an absorption line (Fig 11.12)

00

2

2 2 νγ
Ne a

′
=

πε
ε

More than One Oscillator

∑ ′+−
−

+=−=
i ii

ia

νγννm
ννfmNekn 22222

0
22

22
0

0

2
22

1 )(4
)(1

πε
ε

∑ ′+−
′

+==
i ii

iia

νγννm
γfNenk 22222

0
22

0

2

2 )(42
12

π
ν

πε
ε

Atomistic Theory of the Optical Properties



11.8 Contribution of Free Electrons and Harmonic Oscillators to 
the Optical Constants

The optical properties of metals may be described by postulating a certain 
number of free electrons and a certain number of harmonic oscillators. 
Both the free electrons and the oscillators contribute to the polarization.

Thus, the equations for the optical constants may be rewritten, by 
combining (11.26), (11.27),(11.49), and(11.50)
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Quantum Mechanical Treatment of the 
Optical Properties

12.1 Introduction

- From the classical point of view, it is not evident why the electrons 
should behave freely at low frequencies and respond as if they would 

be bound at higher frequencies.

- An unconstrained interpretation for this is only possible by applying 

wave mechanics. This will be done in the present chapter.

12.2 Absorption of Light by Interband and Intraband Transitions

- For optical frequencies, the momentum of a photon, and thus its wave 

vector kphot= p/ is much smaller than that of an electron:  kphot is much 

smaller than the diameter of the Brillouin zone (Fig.12.1)

Direct interband transition: electron transitions at which k remains 

constant (vertical transition) 

Indirect interband transition: absorption of a light quantum under 

participation of a phonon; excess momentum is transferred to lattice.

h





12.2 Absorption of Light by Interband and Intraband Transitions

An example for interband transition: 
Cu

The interband transition having the 
smallest possible energy difference 
is shown to occur between the upper 
d-band and the Fermi energy. This 
smallest energy is called, “threshold 
energy for interband transition” (or 
the fundamental edge” : marked in 
Fig 12.3 by a solid arrow.

Photon energy for this transition : 2.2 eV → the red color of Cu

At slightly higher photon energies, a second transition take place, which 
originates from the Fermi energy : marked a dashed line

Quantum Mechanical Treatment of the 
Optical Properties



12.2 Absorption of Light by Interband and Intraband Transitions

Interband transition: under certain conditions photons may excite electrons 
into a higher energy level within the same band. This occurs with 
participation of a phonon, i.e. a lattice vibration quantum (Fig 12.4)

Interband transitions are 
mainly observed in metals 
because metals have 
unfilled electron bands.

Quantum Mechanical Treatment of the 
Optical Properties



12.3 Optical Spectra of Materials

- Optical spectra are the principal means to obtain experimentally the 
band gap and energies for interband transition.

- For isolated atoms and ions, the absorption and emission spectra are 
known to be extremely sharp. 

- Plain reflection spectra of solids are not to useful for deduction of 
transition energies, mainly because R is a rather involved function of ε1
and ε2 : Thus ε2 (i.e. absorption) spectra are often utilized instead.

- Modulated optical spectra  (Sec 13.1.3) separate the small 
contributions stemming from points of high symmetry (such as the
centers and edges of the Brillouin zone) from the general much larger 
background.

Quantum Mechanical Treatment of the 
Optical Properties



*12.4 Dispersion

The alternating electric field of the light which impinges on the solid 
perturbs the potential field of the lattice periodically. Thus, we need to 
add to the potential energy a correction term, the so-called 
perturbation potential, V’
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Time dependent Schrödinger equation
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This equation is the sought-after relation for the optical properties of solids, 
obtained by wave mechanics

Empirically introduced oscillator strength fi :

hνni is that energy which an electron absorbs when it is exited from the n-
band into the i-band. Thus, the resonance frequency, νoi , of the i th
oscillator in Sec 11.17.4 is replaced in wave mechanics by a frequency νni , 
that corresponds to an allowed electron transition from the nth into the ith
band.

*12.4 Dispersion

Our goal is to calculate the optical constant from the polarization

The classical polarization                            is replaced in wave 

mechanics by  
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▶H represents a magnetic force generated in a volume of the space due to a 
change in magnetic energy of that of the space. 

Examples of the magnetic force 
- A force on a current-carrying conductor 
- A torque on a magnetic dipole 
- A reorientation of spins on electrons within atoms

▶H is fundamentally generated by an electrical charge in motion. 
Earth (~ 0.7Oe) 
Bulk magnets (~ 5,000Oe) 
Current-carrying conductors (~30,000Oe) 
Superconductors (>100,000Oe) 
(ref. Table 1.1 in David Jiles) 

▶ Unit 
mks or SI(Systeme Interrnational): [A/m]
cgs: [Oe] 1 Oe =           A/m (~79.6 A/m)

Magnetic Field, H

4π
1000



Basic Concepts in Magnetism

F :
F=

(See Fig. 14.1) Diamagnetic materials are expelled from the field, 
whereas para-, ferro-, antiferro-, and ferrimagnetic materials are 
attracted in different degrees.

F : force

V : the volume of the sample

: susceptibility

H : magnetic field 

: the change of the magnetic field strength H in the x-direction 

dx
dHHVF 0χμ=

χ

dx
dH

(14.1)



▶ B is the response of a medium to an applied magnetic field H

▶ B is defined by

B is the magnetic flux, Φ [Wb] passing through a unit cross-sectional area. 

Magnetic flux, Φ?

- Generated by the presence of a magnetic field in a medium.

- By Lentz law, the voltage V is induced as Φ changes 

called, "electromagnetic induction"

If  Φf = 0, Φi = 1 Wb
(1Wb = 1 volt•sec)

Maxwell's equation (Gauss's law) 

▽•B = 0 :   Always form a closed path! 

▶ Unit: [G], [T] 
1 Tesla = 1 Wb/m2 ( = 1 volt•sec/m2) 
A force of 1 N/m on a conductor carrying 1 A perpendicular to the direction of  B

Magnetic Induction, B

dt
dBNA

dt
dNV −=
Φ

−=

A
B Φ
=

Relation between B and H

B = μH , where μ is permeability(투자율) 

μ = μo in free space

=  4π × 10-7 H/m (or Wb/A) 

Relative permeability μr = μ/μo

μr = 1 in a perfect vacuum(free space) 

dt
volt if Φ−Φ

−= )1(1



Basic Concepts in Magnetism

H : the field strength

I : current

n : the number of the windings

L : the length of the solenoid

B : magnetic induction or magnetic flux 
density (tesla; T)

μ : permeability or relative 
permeability(μr ) 

(unitless)

)/( mA
L
InH =

HB 0μμ=

(14.2)

(14.3)



▶ Definitions : 
m = pl in a bar magnet 
m = iA in a conductor loop 

▶ Unit SI cgs
[Am2] [emu] 
[Wbm] [erg/Oe] 

1 Wbm =           1010Gcm3

▶Measurements of m
i) Torque measurement: τ = μom × H = m × B
τ = τmax if m is perpendicupar to H (or B), and then 
m = τmax/μoH
Since m = pl and p = Φ/μo in the Sommerfeld conversion 
m = Φl/μo
ii) Magnetization measurement 
m = MV

Magnetic Moment, m



▶M is the total magnetic moment m per unit volume (m per unit mass = specific magnetization σ) 
M = m/V (cf. σ = M/ρ [emu/g]), where ρ is density 

Since m = Φl/μo , V = Al
M = Φ/μoA = B/μo
Therefore, B = μoM when H = 0 

▶ Saturation Magnetization 
Mo : complete saturation, where all atomic moments are aligned parallel to Ha

Ms : technical saturation, where multiple-domains become single domain 

▶Relation between M and H
M = χH , where χ is susceptibility(자화율) ↔ B = μH (μ is permeability(투자율)) 
μ and χ are not useful for ferromagnets. 
Need differential values: μ' = dB/dH, χ' = dM/dH

▶Relationship between H, B, and M
A universal relationship  

B = μo(H + M) :  SI(Sommerfeld) 
= μoH + I :  SI(Kennelly) 
= H + 4πM :  cgs(Gaussian) 

B = μo(H + M) = μo(H +χH) = μo(1 + χ)H
Since B = μH = μoμrH,    μμrr = 1 + = 1 + χχ
μr and χ are different ways of describing the response of a material to magnetic fields. 

Magnetization, M



Basic Concepts in Magnetism

- For empty space and, for all practical purpose, also for air, 

χ= 0  and thus μ = 1                    

- For diamagnetic materials, 

χ is small and negative. → μ is slightly less than 1

- For para- and antiferromagnetic materials, 

χis small and positive.  → μ is slightly larger than 1

- For ferro- and ferrimagnetic materials,

χ and  μ are large and positive. 

⇒ The magnetic constants are temperature-dependent, expect 
diamagnetic materials. The susceptibility for ferromagnetic 
materials depends on the field strength, H. 

χμ +=1 (See Table 14.1)(14.4)
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Basic Concepts in Magnetism

φ

MHB 00 μμ += in free space (14.5)

M : magnetization HM χ= (14.6)

BA=φ
: magnetic flux

B : magnetic flux density

(14.7)

HA0μφ =
in free space (M=0)

(14.7a)

V
M mμ=

: magnetic momentmμ

(14.8)



SI unit VS cgs unit

Units

MHB 00 μμ +=

HB 0μμ=

χμ +=1
magnetic field strength, H (Oersted)
magnetic induction, B (Gauss)

In some European countries, and in 
many international scientific journals

(14.5)

(14.3)

(14.4)

MHB π4+=

HB μ=

πχμ 41+=

magnetic field strength, H (A/m)
magnetic induction, B (Tesla)

The scientific and technical literature on
magnetism, particularly in the USA

(14.9)

(14.10)

(14.11)



Overview –Types of Magnetism

Diamagnetism

Lenz’s Law : a current is induced in a 
wire loop whenever a bar magnet is 
moved toward (or from) the loop. 
The current induces a magnetic 
moment opposite to the bar magnet 
(Fig.15.1(a)

The external field (Hex) accelerates or 
decelerates the orbiting electrons, 
in order that their magnetic moment 
is in opposite direction from Hex

Lamor precession: Precessions of 
electron orbits about the magnetic 
field direction (Fig.15 1(b))



Diamagnetism

Diamagnetism in superconducting materials (Sec. 7.6)

- Meissner effect : Superconductors expel the magnetic flux lines in the 
superconducting state. Inside superconductor B is zero. (Fig. 14.2(d))

H = - M

- Perfect diamagnetism: Magnetization is equal and opposite to the 
external magnetic field.

Susceptibility,  χ = M / H = -1

Usage of strong diamagnetism of superconductor
- Frictionless bearing: support of loads by a repelling magnetic field
- Levitation: magnet hovers above a superconducting materials

- Suspension effect: a chip of superconducting material hangs beneath a 
magnet

Overview –Types of Magnetism



Paramagnetism

Overview –Types of Magnetism

-- An external field turns 
randomly oriented magnetic 
moments into the field 
direction

□□ Spin paramagnetism : net 
magnetic moment results from 
electrons which spin around 

Largely due to electron spin 
motion. An additional source 
stems from orbiting motion.

their own axis (Fig.15.2(a))           

□□ Electron-orbit paramagnetism : net magnetic moment stems from 

magnetic moments of orbiting electrons (Fig.15.2(b))   

• Free atoms (dilute gases), rare earth elements and their salts and oxides

• Observed in some metal and salts of transition elements     



Paramagnetism

Curie law : susceptibility, χ, is 
inversely proportional to the   
absolute temperature T     

χ = C/T (15.1) 

where, C is Curie constant

Temperature dependence of paramagnetism

Curie-Weiss law : a more general relationship

χ = C / (T-θ) (15.2)

where θ is another constant that has same unit as the T
• Ni (above Curie temperature), Fe and β-Co, rare earth elements, salts  

of transition elements (e.g., the carbonate, chlorides, and sulfates of 
Fe, Co, Cr, Mn obey Curie-Weiss law)

Overview –Types of Magnetism



Paramagnetism

- Why only spin paramagnetism is observed in most solids?
In crystals, the electron orbits are essentially coupled to the lattice, which 
prevents the orbital magnetic moments from turning into the field 
direction (“orbital quenched”).

- Exception of “orbital quenched” elements: Rear earth elements and their 
derivatives having “deep-lying 4f-electrons”. The latter ones are shielded 
by the outer electrons from the crystalline field of the neighboring ions , 
and thus orbital magnetic moments of the f-electrons may turn into the 
external magnetic field and contributed to electron-orbit paramagnetism

- The g-factor : the friction of total magnetic moment contributed by orbital 
motion versus by spin motion

- Hund’s rule and Pauli principle
- Bohr magneton : the smallest unit (or quantum) of the magnetic moment 

μB = eh/(4πm) = 9.274ⅹ10-24 J/T ≡ (A·m2)      (15.3)

Overview –Types of Magnetism



Ferromagnetism
A ring shaped solenoid (Fig.15.5)

By increasing current external field is 
increased, then the magnetization, M, 
rises showing a hysteresis loop (Fig 15.6)

• Ms : saturation magnetization

• Mr : remanance

• Hc : coercive field

Hard (soft) magnetic materials:

a large (small) Mr and HC

Overview –Types of Magnetism



Ferromagnetism
T dependence of  Ms (Fig.15.7(a))

Above the Curie Temperature, TC 

ferromagnetics become paramagnetic.
A small difference between TC and 
θ (in Curie-Weiss law) is due to 

a gradual transition from ferromagnetism 

to paramagnetism (Fig. 15.7(b))

• Magnetic short-range transition: 
Small clusters of spins are still aligned 
slightly above TC→ gradual transition

(Fig. 15.7(b))
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Ferromagnetism

Piezomagnetism : the 
magnetization of 
ferromagnetics is stress 
dependent (Fig 15.8) 

Ex) a compressive stress 
increases M for Ni, while 
tensile stress reduces M. 

Magnetostriction : inverse of piezomagnetism

• magnetic field causes a change in dimension of a ferromagnetic substance

• also observed in ferrimagnetic or antiferromagetic materials

• terbium-dysprosium-iron display magnetostriction about 3 orders of 

magnitude larger than iron-nickel alloys
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Ferromagnetism
Explanation of 
Ferromagnetism

- Spontaneous magnetization:

• the spins of unfilled d-band        
spontaneously aligned parallel 
to each other below TC within 
magnetic domains without the 
presence of external magnetic 

Overview –Types of Magnetism

field (Fig 15.9)

• exchange energy causes adjacent spins to align parallel to each other

Magnetic Domain structure
• Energetically favorable by a reduction in magnetostatic energy
→ Spontaneous division into many individual domains in which all spins   

are aligned in the same direction
• Closure domain structure: most favorable in the point of magnetostatic

energy Fig. 15.9 (c)



Ferromagnetism

Overview –Types of Magnetism

Magnetic Domain

• The individual domains are magnetized to saturation.
• The spin direction in each domain is different so that as a whole it 

cancels each other and thus the net magnetization is zero.

• An external magnetic field causes to grow the domain whose spins are 
parallel or nearly parallel to the external field.

• At the technical saturation magnetization, MS, the entire crystal 

contains one single domain, having all spins aligned parallel to 
external field.

• Domain wall:  the region between individual domains in which the spins 

rotate from one direction into the next.
• Barkhausen effect : a discontinuous domain wall movement by 

external field



Antiferromagnetism
- Spontaneous alignment of moment

below critical Temp. (Néel Temp.) 

- Aligned in antiparallel (Fig 15.10)

- No net magnetism

- Néel Temperature, TN

- Modified Curie-Weiss law for antiferromangtics

χ = C/ (T-(-θ)) = C/ (T+θ) (15.4)

the extrapolation of paramagetic (above TN) line to 1/ χ = 0 yield a negative θ

Overview –Types of Magnetism



Ferrimagnetism
- Exhibit spontaneous magnetic

moment and hysteresis below 
a Curie temperature, similarly 

as ferromagntics
- Aligned in antiparallel, but

magnetic moment remain
uncanceled. 

- Ceramic (oxide) materials,
poor electrical conductor

Overview –Types of Magnetism

- Nickel ferrite NiO·Fe2O3 (Fig 15.12)

• Two uncanceled spins, 2μB per formula unit

- The small discrepancy between experiment and calculation (Table 15.3) is 
caused by some contribution of orbital effects to the overall magnetic moment. 



Ferrimagnetism

Cubic ferrite (Spinel structure) 

(Fig.15.13)

• MO·Fe2O3, where M = Mn, Ni, Fe, 

Co, Mg, etc. 

• In the unit cell, total 56 ions (8 M2+ ions,

16 Fe3+ ions, 32 O2
- ions) 

64 tetrahedral A site / 8 = 8 
32 octahedral B site / 2 = 16 

• Normal Spinel :

8 M2+ in A, 16 Fe3+ in B

• Inverse Spinel : 

8 Fe3+ in A, 8 M2+ + 8 Fe3+ in B 

Temperature dependence of 
ferrimagnetics (Fig.15.14)

Overview –Types of Magnetism



Langevin Theory of Diamagnetism

Magnetic moment μm, created by a current I, passing through a loop-
shaped wire of area A

22/

2 evr
r
revA

vs
eA

t
eAIm ====⋅=

π
πμ (15.5)

Where, e = electron charge, r = radius of the orbit, s = 2πr = length of orbit, 
v = velocity of the orbiting electron, t = orbiting time

Electrostatic force |F| on the orbiting electron 

F = ma = Ee (15.6)

where, E is the electric field and m is mass of the electron

Acceleration of the electron

a = dv/dt = Ee/m (15.7)

E = Ve/L

where, Ve = induced voltage(or emf), L= orbit length



Langevin Theory of Diamagnetism

A change in an external magnetic flux,φ, induces in loop-shaped wire an 
emf which opposes, according to Lentz’s law, the change in flux:

dtHAddtdVe /)(/ 0μφ =−= (15.9)

By, combining (15.7) – (15.9)
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A change in the magnetic field strength from 0 to H yields a change in the 
velocity of the electron

∫∫ −=
Hv

v
dH

m
erdv

0
0

2
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μ
(15.11)
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2
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This change in electron velocity yields in turn a change in magnetic 
moment as we see by combining (15.5) with (15.12):

m
Hrevre

m 42
0

22 μμ −=
Δ

=Δ (15.13)

So far we assumed that magnetic field is perpendicular to the plane of the 
orbiting electron. In reality the orbit plane varies constantly in direction 
with respect to the external field. Thus we have to find a average value for 
Δμm

m
Hre

m 6
0

22 μμ −=Δ (15.14)

If you take all Z electron, Z = atomic number , and        is the average radius 
of all electronic orbits, 

m
HrZe

m 6
0

22 μμ −=Δ (15.15)

r
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The magnetization caused by this change of magnetic moment:

mV
HrZeVM m 6

/ 0

22 μμ −== (15.16)
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This finally yields, together with (14.6), the diamagnetic susceptibility,

(15.17)

Where, N0δ/W is the number of atoms per unit volume, N0 = Avogadro 
constant, δ = density, W = atomic mass

The quantities in (15.17) are essentially temperature-independent.

Langevin Theory of Diamagnetism



Langevin Theory of (Electron Orbit) 
Paramagnetism

Langevin postulated that the 
magnetic moment of the orbiting 
electron are responsible for 
paramangetism. 

When magnetic moment, μm is aligned 
by an external magnetic field, the 
potential energy is:

αμμ cos0HE mp −= (15.18)

Where α is the angle between field direction and μm

The probability of an electron to have the energy Ep is proportional to exp(-
Ep/kBT), where kB is the Boltzmann constant, T is the absolute temperature.



Assume the electrons to be situated at 
the center of  a sphere. The vectors, 
representing their magnetic moment, 
may point in all possible direction (Fig 
15.16)
This infinitesimal number dn of magnetic 
moments per unit vol. which have the 
energy Ep is:

dn = const.dA exp(-Ep/kBT)        (15.19)

dA =2πR2sinαdα (15.20)

where R =1 is the radius of the unit sphere. Combining (15.18) –(15.20)  

)cosexp(sin2. 0 αμμααπ
Tk

Hdconstdn
B

m⋅= (15.21)

For abbreviation
Tk

H

B

m 0μμζ = (15.22)

Langevin Theory of (Electron Orbit) 
Paramagnetism



Integrating (15.21)
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Total magnetization is the sum of all individual magnetic moments

dnM
n
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cosαμ (15.25)
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with (15.21)

with (15.24)
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This function can be brought into a standard form by setting x = cosα, and 
dx = - sinαdα

)
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53
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ζζζμ

ζ
ζμ mm nnM (15.28)

Where the expression in parenthesis is called Langevin funtion L(ζ).
The term ζ=μmμ0H/kBT is usually much smaller than one, so that:
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Which yield, for the susceptibility (14.6) at  not-too-high field strength,
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This is Curie’s law (15.1), which express that the susceptibility is inversely
proportional to the temperature. The Curie constant is:

B

m

k
nC

3
0

2μμ
= (15.31)
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Discussion of the Langevin
theory

- The magnetization, M is a 
linear function of H for a 
given temperature and for 
small fields (Fig 15.17), 
(Eq.15.29)

- For large fields H, the magnetization reaches Ms at which all magnetic 
moment aligned to their maximum value.

- Langevin theory can explain the Curie law. 

- Refinement of Langevin function by applying quantum theory 
-> Brillouin function 

Langevin Theory of (Electron Orbit) 
Paramagnetism



Molecular Field Theory

Weiss postulation: Total magnetic moment Ht is thought to be composed 
of two parts, external field He and molecular filed Hm

Ht = He + Hm (15.32)

where, Hm = γM (γ = molecular field constant)   (15.33) 
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Finally, we obtain
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Weiss postulated that the above-introduced internal or molecular field is 
responsible for this parallel alignment of spins, and considered
ferromagnetics to be essentially paramagnetics having a very large 
molecular field. In the quantum theory, the Hm is essentially the exchange 
force (Sec 16.2).



Molecular Field Theory

Let us consider the case for no external 
magnetic field. Then the spins are only 
subjected to the molecular filed Hm. This 
yields for the Langevin variable ζ (see 
(15.22)) with (15.33) 

Tk
M

Tk
H

B

m

B

m γμμμμζ 00 == (15.37)

And provides for the magnetization by rearranging (15.37):

ζ
γμμ 0m

BTkM = (15.38)

The magnetization is linear function of ζ with the temperature as a 
proportionality factor (Fig.15.18)

The intersection I of a given temperature line with the Langevin function L(ζ )
represents the finite spontaneous magnetization, MI, at this temperature



In Fig.15.18

• T < TC : With increasing temperature, slope is increased, the point of 
intercept, I, is decreased, and therefore the value for the spontaneous 
magnetization is decreased.

• At Curie temperature, TC : no intercept, and hence no spontaneous 
magnetization

The slope kB/(μmμ0 γ) in (15.38) is identical to the slope of the L(ζ ) near the 
origin, which is n μm/3 =M/3. This yields, for TC

30

MTk

m

B =
γμμ (15.39)

Molecular filed constant, γ, calculated by measuring TC and inserting TC into 
Eq.(15.39)
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This yield, for the molecular magnetic field strength (15.33)
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Molecular Field Theory

(~ 107 Oe !!!)



Paramagnetism and Diamagnetism

1. Paramagnetism
- Magnetic moment of the spinning electrons: dominant contribution to 

paramagnetism

- Susceptibilities for paramagnetic metals based on the energy theory

Fig16.1. Schematic representation of the effect of an external 
magnetic field on the electron distribution in a partially filled 
electron band    (a) Without magnetic field (b) and (c) with 
magnetic field. 



The density of states of the two half-bands (Fig. 16.2). We can observe a 
relatively large Z(E) near EF. Thus, a small change in energy may cause a 
large number of electrons to switch to the opposite spin direction. 

The susceptibility ( χspin, para ) of paramagnetism

ΔE is larger - the larger the external magnetic field strength |H|,and the 
larger the magnetic moment of the spinning electrons |μms|

msHE μμ0=Δ (16.1)

Paramagnetism and Diamagnetism



The number of electrons , ΔN (transferred from spin down to up) 
depends on the density of states at the Fermi energy, Z(EF)

The magnetization |M| is

)()( 0 FmsF EZHEEZN μμ=Δ=Δ

V
M mμ

=

(16.2)

(16.3)

1

The magnetization is larger, the more electrons are transferred from spin 
down into spin up states. 

Paramagnetism and Diamagnetism
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The spin magnetic moment of one electron equals one Bohr magneton, 
μB
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2. Diamagnetism
Susceptibility (χ ) of metals might 

be positive or negative depending on  
which of the two components 
(paramagnetism, diamagnetism) 
predominates.

Example of diamagnetism 
1(beryllium) 

- Be is a bivalent metal having a filled
2s-shell in its atomic state. However, 
in the crystalline state, band 
overlapping can be found, which 
causes some of the 2s-electrons to 
spill over into the 2p-band. 2s-
electrons populate the very bottom of 
2p band. (see Fig. 16.3) 

Fig16.3. Overlapping of 2s-and 2p-bands in Be and the 
density of states curve for the 2p-band.

Thus, the density of states at the Fermi level, and consequently, χpara, is very 
small.→ Diamagnetic susceptibility predominates, which makes Be 
diamagnetic.

Paramagnetism and Diamagnetism
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Example of diamagnetism 2 ( copper )

Fig 5. 22. Band structure of copper (fcc). Adapted from 
B.Segal, Phys. Rev. 125, 109 (1962). The calculation was 
made using the l-dependent potential. 

The Fermi energy of copper is 
close to the band edge. (see Fig. 
5. 22). Thus, the density of states 
near EF, and the paramagnetic 
susceptibility are relatively small 
compared with diamagnetic 
susceptibility. 

mV
Zre

dia 6
0

22 μχ −=

Diamagnetic susceptibility

Copper has about ten 3d-
electrons, which makes Z~10.

The radius of d-shells is fairly 
large.

Thus, for copper, χdia is large    
compared with χpara

(16.7)
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Quantum theory of magnetic materials
3. Quantum-mechanical point of view of magnetic moment of an   
orbiting electron

The orbital motion of an electron induces a magnetic moment, μm.

Recall μm from a current passing through a loop-shaped wire. 
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Ferromagnetism and Antiferromagnetism

1

Fig 16.5. Schematic representation of the density of 
states for 4s-and 3d-bands the Fermi energies for iron, 
cobalt, nickel, and copper. The population of the bonds 
by the ten nickel (3d+4s)-electrons is indicated by the 
shaded area. 

Characterization of ferromagnet
(unfilled d-bands): d - band diagram of 
Fe,Co,Ni (Fig 16.5) 

- d-bands overlap the next higher s-band. d-
band can accommodate up to ten electrons, so  
that the density of states for a d-band is 
relatively large

- For instance, the density of states of Ni near 
Fermi   energy are comparatively large, one 
needs only a relatively small amount of energy 
to transfer a considerable number of electrons 
from spin down into spin up configurations.

- only minimum energy is needed to change 
spin direction in the ferromagnetic metals. 

Difference between para- and 
ferromagnet

- paramagnet: external magnetic field is 
needed for spin alignment, no magnetic 
domain

- ferromagnet: spontaneous spin alignment, 
magnetic domain formation



1
Explanation of exchange energy

- Two ferromagnetic atoms: two identical pendula interconnected by a spring. 

- The spring represents the interactions of electrical and magnetic fields

Exchange energy

“Set free” when equal atomic system are closely coupled, and in this way 
exchange their energy

Fig16.6. Amplitude modulation resulting from the coupling of two
pendula. The vibrational pattern shows beats, Similarly as known 
for two oscillators that have almost identical pitch. 

- One pendulum deflect → its amplitude decrease, with energy transferring 
to 2nd pendulum, which in turn transfer its energy back to the 1st one.

- The amplitudes of two pendula decrease and increase periodically with 
time. (Fig16.6)

Ferromagnetism and Antiferromagnetism
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The mathematical expression for two pendula
pattern
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Equation (16.15) provides two frequencies, 
2
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The difference of frequencies is larger, the stronger the coupling.
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If the two pendula vibrate in a parallel fashing, the restoring force, kx, 
is small. As a result, the frequency is smaller than for independent 
vibration

m
k

π
ν

2
1

0 = (16.16)

This equation shows that two coupled and systemically vibrating 
systems have a lower E two individual systems.

Ferromagnetism and Antiferromagnetism
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Fig 16.7. Exchange integral, Iex, versus the ratio 
of inter atomic distance, rab, and the radius of an 
unfilled d-shell. The position of the rare earth 
elements (which have unfilled f-shells) are also 
shown for completeness. 

By solving the appropriate 
Schrodinger equation for two atoms 
only, ferromagnetism can be quantum 
mechanically explained. 
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- Iex is positive → parallel spins are 
energetically more favorable than 
antiparallel spins. (vice versa)

(16.17)

- Iex becomes positive for a small distance r12 between the electrons, i.e., a 
small radius of the d-orbit, rd. Similarly, Iex becomes positive for a large 
distance between the nuclei and neighboring electrons ra2 and rb1.

- Iex vs. rab/rd (Fig 16.7)
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Bohr magneton of Ni

- Band overlapping is found between 3d and 4s
band, so that combined ten (3d+4s)-electrons 
occupy the lower s-band and fill, almost 
completely, the 3d-band. 

→ Nickel 3d-band : filled by 9.4 electrons 
(experimentally) . 

- Hund’s rule : the electrons in a solid occupy the 
available electron states in a manner which 
maximizes the imbalance of spin moments. 

- For Ni : 5 electrons are spin up and an average 
of 4.4 electrons are spin down. As a result, we 
can obtain a spin imbalance of  0.6 μB per atom. 

Ferromagnetism and Antiferromagnetism
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Magnetic behavior of Nickel-based alloys 

(Fig 16.8)

Ni  :  1s2 2s2 2p6 3s2 3p6 3d8 4s2

Cu : 1s2 2s2 2p6 3s2 3p6 3d10 4s1

- For Cu, no “unfilled d- or f-band”, the condition 
for ferromagnetism.

- If copper is alloyed to nickel, the extra copper 
electrons progressively fill the d-band and 
compensate some of the unsaturated spins of 
nickel → the magnetic moment per atom of this 
alloy is reduced.

Fig16.8. Magnetic moment per nickel atom 
as a function of solute concentration

- The 3d - band of Ni is filled by only 9.4 electrons (0.6 electron lacks per 
atom). Thus, about 60% copper atoms are needed until the magnetic 
moment of Ni has reached a zero value. 

Ferromagnetism and Antiferromagnetism
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The production of ferro- and ferrimagnetic materials is large-
scale operation:

- The price of the material that goes into a chip is a minute 
fraction of the device fabrication cost.

- The annual sales of electrical steel, used for 
electromotors and similar devices, reach the millions 
of tons

Other large-scale production items

- Permanent magnets for loudspeakers

- Magnetic recording materials

Introduction



Electrical steels
(Soft Magnetic Materials)

1.Core Losses
The core loss is the energy that is dissipated in the form of 
heat within the core of electromagnetic devices
Several types of losses : eddy current loss, hysteresis loss
Typical core losses are between 0.3 and 3 W/kg (Table 17.1)



Electrical steels
(Soft Magnetic Materials)

Eddy current loss (Fig. 17.1)
An current in the primary coil causes an alternating magnetic 
flux in core induces in the secondary coil an alternating Ve ,

see (14.7) and (15.9)

This emf gives rise to the eddy current, Ie (Fig.17.1(a))
Larger eddy current the larger      (                      ) the larger 
conductivity       of core material the higher the applied 
frequency the larger the cross-section A

Skin effect
At high frequency, the eddy current shields the interior of the 

core from the magnetic field, so that only a thin exterior  layer 
of the core contributes to the flux multiplication.

dt
dBA

dt
dVe −=−∝
φ

μ HB ⋅= μμ 0σ

(17.1)



Electrical steels
(Soft Magnetic Materials)

To minimize eddy current
Decreasing        

Ferrite core
Insulating coated Fe core

-The decrease in     is a large 
decrease  in

Decreasing lamination 
thickness . (Fig. 17.1(b))

The cross-section (A) is 
reduced, Decrease Ve

additionally reduces 
losses (skin effect)

These losses, however, less 
than 1% of the total energy 
transferred.

σ

μ
σ



Electrical steels
(Soft Magnetic Materials)

Hysteresis loss

Hysteresis losses are encountered when the magnetic 
core is subjected to a complete hysteresis cycle (Fig. 15.6) 

The work thus dissipated into heat is proportional to the 
area enclosed by a B/H loop.

Proper materials selection and rolling of the materials with 
subsequent heat treatment greatly reduces the area of a 
hysteresis loop.



Electrical steels
(Soft Magnetic Materials)

2. Grain Orientation
The permeability of electrical 
steel can be increased and 
hysteresis losses can be 
decreased by making use of 
favorable grain orientations in 
the material.

Magnetic anisotropy
- Magnetic properties depend on  
the crystallographic direction in 
which an external field is applied. 

- Magnetization curves of iron 
(Fig.17.2(a) )

Easy direction : Saturated direction is achieved with the smallest 
possible field strength. (Nickel easy direction<111>, hard direction 
<100>)

The spontaneous orientation of the spin magnetic moments in the 
demagnetized state.

They are aligned in the easy directions.



Electrical steels
(Soft Magnetic Materials)

Grain-oriented electrical steel Process-Iron (Fig. 15.9)

①In pure iron the spins are aligned along the <100> directions.
②External field is applied parallel to an easy direction.
③The domains already having favorable alignment grow.
④The crystal contains one single domain.

The energy consumed during this process is used to move the 
domain walls through the crystal.

⑤Metal sheets possess a texture. a preferred orientation of the 
grain.

⑥In    -iron and    -iron alloys the <100> direction is parallel to the 
rolling direction.

⑦ Utilizing electrical steel.
⑧During the rolling, the grains are elongated and their orientation is  

altered.
⑨The sheets are recrystallized, whereby some crystals grow in size 

at the expense of others.
Summary

The magnetic properties of grain-oriented steels are best in the 
direction parallel to the direction of rolling.

α α



Electrical steels
(Soft Magnetic Materials)

3. Composition of Core Materials

Low carbon steel (0.05%C)
Low     , high core losses (Table 17.1)
Low cost
Purification of iron ↑,       (eddy current)↑, cost ↑

μ

μ σ



Electrical steels
(Soft Magnetic Materials)

3. Composition of Core Materials
Iron-silicon alloys (1.4-3.5%Si)

Higher     , lower     (than low carbon steel)

- loop (phase diagram)
The core losses decrease with increasing silicon content
For silicon concentrations above 4 or 5 wt%, material becomes 
too brittle to allow rolling.
Other contents in Iron-silicon alloy

Al, Mn (less than 1%) influence on the grain structure 
reduce hysteresis losses.

Grain-oriented silicon “steel”

Highly efficient-high flux multiplying core applications.
Multi-component Ni-based alloys

Highest permeability

Permalloy, Supermalloy, Mumetal (Table 17.1)
Shield electronic equipment

μ σ
γ



Electrical steels
(Soft Magnetic Materials)

4. Amorphous Ferromagnets
Amorphous metals

Consisting of Fe, Ni, or Co with B, Si, or phosphorus metals.

A higher     and a lower Hc than grain-oriented silicon-iron (Table 
17.1)
A large electrical resistivity.

Small eddy current losses.
Low saturation induction.
Core losses increase rapidly at higher flux densities (above 1.4T).

The application of metallic glasses
Small flux densities (low currents)

Transformers.
Magnetic sensors.
Magnetostrictive transducers.    

μ



Permanent Magnets
(Hard Magnetic Materials)

Hard magnetic materials    
A large remanence Br (or Mr).
A relatively large coercivity Hc.
A large area within the hysteresis 
loop.

Demagnetization curve
A part of a hysteresis loop.
B times H is zero at the intercepts of 
the demagnetization curve.

Maximum energy product (BH)max

the area within the hysteresis loop.
the energy product peaks 
somewhere between these extreme 
values.

Depending on the shape and size of the 
hysteresis curve (Fig. 17.3)



Permanent Magnets
(Hard Magnetic Materials)

Hard magnetic materials
the values of Br, Hc, and (BH)max for some materials which are used as

permanent magnets are listed in Table 17.2



Permanent Magnets
(Hard Magnetic Materials)

Hard magnetic materials
The remanence Br : the maximal 
residual induction.

Demagnetizing field
All permanent magnets need to have 
exposed poles.

The exposed poles create a 
demagnetizing field, Hd reduces 
the Br

The demagnetizing field depends on the 
shape, size, and gap length of magnet.

A reduced value for the residual 
induction Bd (Fig. 17.3)

Fringing and leakage (fig. 17.4)



Permanent Magnets
(Hard Magnetic Materials)

Alnico alloys (Table 17.2)
Based on Co-addition to Fe2NiAl 
(minor constituents such as Cu and Ti).

Improvement 
Alnico 2 : homogenization at 1250℃, fast cooling, and 
tempering at 600℃
Alnico 5 : cooling the alloys in a magnetic field.
Alnico 5-DG : A preferred orientation

-long columnar grains with a preferred<100>axis (heat flow)
-a magnetic field parallel to the <100> yields
-shape anisotropy:  parallel to the <100> directions

Neodymium-boron-iron
A superior coercivity, a larger (BH)max

Disadvantage : low curie temperature of about 300 ℃



Permanent Magnets
(Hard Magnetic Materials)

Ceramic ferrite magnets
BaO ·6Fe2O3 or SrO · 6Fe2O3(MO · 6Fe2O3)
Brittle and relatively inexpensive.

Crystallized plates of  hexagonal c-axis (easy axis) perpendicular 
to the plates

The flat plates arrange parallel during pressing and sintering 
Some preferred orientation

Application  : in the gaskets of refrigerator doors

High carbon steel magnets
With or without Co, W, or Cr are only of historic interest.
The permanent magnetization of quenched steel stems from the 
martensite-induced internal stress, which impedes the domain 
walls from moving through the crystal.



Permanent Magnets
(Hard Magnetic Materials)

The goal of research on permanent magnetic materials
To improve corrosion resistance, price, remanence, corecivity, 
magnetic ordering temperature, and processing procedures.

Carbon and nitrogen are increasingly used as the metalloid in 
iron/rare earth magnets such as in Fe-Nd-C or in Fe17Sm2Nx. 

Nitrogen treatment of sintered Fe14Nd2B raises the Tc by more 
than 100K.

Corrosion of the Fe-Nd-B sintered magnets is a serious problem.

The corrosion resistance can be improved by utilizing inter-
metallic compounds such as Fe-Nd-Al or Fe-Nd-Ga, or by applying 
a moisture-impervious coating.



Magnetic Recording and 
Magnetic Memories

Magnetic recording tapes, disks, drums, or magnetic strips on credit 
cards consist of small, needlelike oxide particles about 0.1Ⅹ0.5 ㎛.

The particles are too small to sustain a domain wall

a single magnetic domain which is magnetized to saturation along the 
major axis (shape anisotropy).

The elongated particles are aligned by field during manufacturing.
Ferrimagnetic -Fe2O3 : Hc= 20-28 kA/m(250-350Oe), Tc =600℃

Ferromagnetic  CrO2 : Hc =40-80kA/m(500-1000Oe), Tc =128 ℃

High Hc and high Br  prevent self-demagnetization and accidental erasure.

provide strong signals, and permit thinner coatings.
A high Hc – tape duplication by “contact  printing”

Video tape (Co-doped     -Fe2O3) : higher Tc and a Hc of 48kA/m(600 Oe).
Most recently, iron particles have been utilized (Hc =120kA/m).

γ

γ



Recording head
The recording head of a tape machine consist of a laminated 
electromagnet made of permalloy or soft ferrite (Table 17.1) which has 
air gap about 0.3㎛ wide (Fig. 17.5)

The tape is passed along this electromagnet, whose fringing field 
redirects the spin moments of the particles in a certain pattern
proportional to the current.

This leaves permanent 
record of the signal.
the moving tape induces 
an alternating emf in the coil
The  emf -
amplified, filterd, and fed to 
a loudspeaker. 

Magnetic Recording and 
Magnetic Memories



Magnetic Recording and 
Magnetic Memories

Recording head
Senust : gap surfaces are coated with a micrometer-thick metal 
layer composed of Al, Fe, and Si.

Metal-in-gap (M-I-G) technology
the superior high-frequency behavior and good wear properties 

of ferrites with the higher coercivity of ferromagnetic metals.
Thus, high fields are necessary to record efficiently on high 
density media.

For ultrahigh recording densities (extremely small bit sizes) the 
signal strength produced in the reading heads diminishes.

The lastest head technology a thin magneto-resistive element.
senses the slight variation in resistance (about 2%) that occurs

as the angle of magnetization is changed when the magnetized 
data bits pass beneath the head. 1.8Mbits/mm2

Inductive head :  low-speed applications (credit cards)



Magnetic Recording and 
Magnetic Memories

Magneto-resistance
In magnetic field a conductor is perpendicular to an electric field, 
the Lorentz force causes the paths of the drifting electrons to 
bend in near circular form. (Hall effect)
This bending leads to a decrease of the electron mobility, 

Conductivity,        , decreases and the resistivity,      , increases. 
(Ne is the free electron concentration and e is the charge of an 
electron). The relative change in resistivity,

is proportional to the square of the variation in magnetic field 
strength, 
The magneto-resistive head senses this change in magnetic field  
strength and thus, yields a  resistance change. 

0
0

1
ρ

μσ =⋅⋅= eN ee (17.2)

0σ 0ρ

eμ

2

0

)( Be Δ=
Δ μ
ρ
ρ

(17.3)
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Magnetic Recording and 
Magnetic Memories

GMR (MnFe, MnNi, NiO)
Giant magneto-resistive materials
A resistance response of about 20%

CMR (lanthanum manganate , etc.)
Colossal magneto-resistive materials
50% resistance changes, allowing a further increase in areal 
densities.

Ferrite-core memories
The dominant devices for random-access storage in computers.
A nearly square-shaped hysteresis loop and a low coercivity, is 
threaded with a wire (Fig. 17.6(a))

A sufficiently high current pulse the core becomes magnetically 
saturated. 

An opposite-directed current pulse magnetizes the ferrite core 
counterclockwise. 



Magnetic Recording and 
Magnetic Memories

Ferrite-core memories
Two magnetization directions constitute the two possible values
(0 and 1) in the binary system.

Memory system (Fig.17.6(c))
switch the X3/Y2 core from 0 to 1.

a current ∝ Hs/2
current is sent through each of the
X1 and the Y2 wire (Fig.17.6(b)).

the X3/Y2 core with the necessary
field for switching.

Requirement
high weight / bit ratio



Magnetic Recording and 
Magnetic Memories

Bubble domain memory
Form in thin crystals of “canted” anti-ferromagnetic oxides, 
amorphous alloyed films, or in ferri-magnetic materials.
The domains can be visibly observed and optically read by the way in 
which they rotate the plane of polarization of polarized light( Faraday 
effect, or Kerr effect).
Each such domain constitutes one bit of stored information.

Thin magnetic films
Consisting of Co-Ni-Pt or Co-Cr-Ta or Co75-Cr13-Pt12 in hard-disk 
devices.

Hc : 60-120kA/m (750-1500Oe)
Easily fabricated –vapor deposition, sputtering, electroplating.
Switched rapidly, a small unit size.

A density of 1.8 Mbits/mm2 with a track separation of 3㎛ and a bit 
length of 150nm.



Magnetic Recording and 
Magnetic Memories

Magneto-optical memories
No mechanical contact between 
medium and beam.
A polycarbonate disk is covered by a 
certain magnetic material.

Their spins are initially vertically 
aligned ,see Fig. 17.7(a).

Laser beam heat cooling in 
magnetic field delivers the 
information to be stored

the spins in the magnetic domain re-
orient according to the strength and 
direction of magnetic field.

The newly oriented magnetic domain 
has been rotated (Fig. 17.7(b))

Spin up is a “one” and spin down is a 
“zero”.



Magnetic Recording and 
Magnetic Memories

Magneto-optical memories
Magneto-optical disks have a one thousand times larger storage 
density than common floppy disks and a ten times faster access 
time.

Magnetic disks (for random access) or tapes (mainly for music 
recordings, etc.) are the choices for long-term, large-scale 
information storage, particularly since no electric energy is needed 
to retain the information.

Tapes and floppy disks make direct contact with the recording (and 
playback) head.

Hard drive system utilize a “flying head” that hovers a few 
micrometers or less above the recording medium on an air cushion, 
caused by the high speed of the disk.
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Introduction

Thermal conductivity

Phonons: lattice vibration quanta which are thought to be created in large 
numbers in the hot part of a solid and partially eliminated in the cold part

Specific heat capacity

Molar heat capacity



Fundamental Concepts and Definitions
- heat, work, energy
1st law of thermodynamics
Unit: joule (J) in SI, 1 cal = 4.184 J (1J = 0.239 cal)

- heat capacity, C’, [J/K]:
The amount of heat, dQ, which needs to be transferred to a 

substance to raise its temperature by a certain temperature 
interval, dT

- heat capacity at constant volume, 
heat capacity at constant pressure,

E Q W

Heat Capacity

Δ = +

'
VC

'
PC

'
V

V V

dQ EC
dT T

∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
'
P

P P
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∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
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Heat Capacity

Fundamental concepts and definitions
- specific heat capacity- materials constant

temperature dependent

- without work

'
 [J/g K]C

m
c = ⋅

VE Q m TcΔ = = Δ



Heat Capacity
Fundamental concepts and definitions

- molar heat capacity

- CV~ 25 J/mol K (6 cal/mol K) for most solids
Dulong Petit law

'

: molar mass,    : Avogadro's number

  [J/mol K]  

    , A
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V
V V
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n

NM n NN

C c M

=
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Heat Capacity

Classical theory of heat capacity
- interpret Dulong and Petit law using atomistic concept
- atom- harmonic oscillator

average energy of the oscillator:
in 3-D, average energy per atom:
based on kinetic theory of gases 
kinetic energy:                       potential energy:

- total internal energy per mole

- molar heat capacity

BE k T=
3 BE k T=

3
2kin BE k T= 3

2pot BE k T=

32 32 B BE k T k T= ⋅ =

3 A BE N k T=

3 3V A B
V

EC N k R
T
∂⎛ ⎞= = =⎜ ⎟∂⎝ ⎠



Heat Capacity

Quantum mechanical- Einstein model
- overcome of shortcoming in Dulong and Petit law
- energies of classical oscillator quantized

only certain vibrational modes are allowed
lattice vibration quanta- phonons

- phonon- particle-wave duality

elastic wave (longitudinal and/or transverse)
acoustic and optical bands
density of vibrational modes, D(w) 

,    pE w k= =
r r

h h



Heat Capacity

Phonon

w: vibrational frequency

2

2 3

:  sound velocity

density of vibration mode, ( )
3( )
2

  s

s

v

D w
VwD w

vπ
=

Kittel, Introduction to Solid State Physics



Heat Capacity

Quantum mechanical- Einstein model
- assumption: independent oscillator (one frequency)

allowed energies of a single oscillator

- phonon- not conserved 
follow Bose and Einstein statistics

average number of phonons,         

nE n w= h

1

exp( ) 1
ph w

kT

N
−

=
h



Heat Capacity

Quantum mechanical- Einstein model
- average energy of an isolated oscillator

- total energy of a solid

- molar heat capacity
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Omar, Elementary Solid State Physics



Heat Capacity

Quantum mechanical- Einstein model

- in high temp limit

- in low temp range

approaches zero exponentially
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Heat Capacity

Quantum mechanical- Einstein model

- one adjustable parameter:  (  )E Eor wθ

13 1

For Cu, 240K
/ 2.5 10   infrared region
E

E Ek s
θ

ω θ −

=

= = ×h

Omar, Elementary Solid State Physics



Heat Capacity

Quantum mechanical- Debye model

- assumption
i) collective lattice modes (oscillate interdependently)

ii) continuous medium

lower limit:

upper limit (Debye frequency, wD) – total number of
modes included are equal to the number of 
degrees of freedom for the entire solid (3NA)

0 Dω ω< <

/ :  constantsv w k=

0w =

3

2 3 /
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Heat Capacity

Quantum mechanical- Debye model
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Heat Capacity

Quantum mechanical- Debye model

Omar, Elementary Solid State Physics

- Debye model’s limitations 
- continuous medium-linear dispersion relation
- optical mode
-

- actual density of states of the lattice

( )D D Tθ θ=

Omar, Elementary Solid State Physics



Heat Capacity

Electronic contribution to heat capacity
- electron contribution - small compared to that of the

phonons
- metal and alloys- free electrons
only those electrons which lie within an energy interval
kBT of the Fermi energy contribute (dN=N(EF)kBT)

- excited electron behaves like a monoatomic gas
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kin B B F B
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Heat Capacity

Electronic contribution to heat capacity
*

* 2 2 * 2 2
*

2 2 2

*
 # of electron whose energy less than EF
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- CV~T dependence
- at room temp: less than 1%
- appreciable contributions:   at low temp

above Debye temp



Heat Capacity

Electronic contribution to heat capacity
3 2
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Thermal Conduction
Thermal conductivity, K

- transfer of thermal energy
- heat flux ~ temp. gradient

 : mean free path between two consecutive collision

-  temperature gradient in -direction, 

- consider the volume of unit area and length of 2
  l

dTx dx
l

1

1

- the energy E ,  per unit time and unit area, of the electrons that
  dirft from the left into the sample volume
  = number of electrons, , times the energy of the electrons
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Thermal Expansion

αΔ
= ΔL

L T
L

Coefficient of linear expansion, αL

- the amount by which each unit length of a material changes 
when the temperature of the material changes by one degree

α

αΔ
= Δ

Vvolume expansion coefficient, 

v
o

V T
V

Temperature dependence of αL

- similar to the temperature dependence of CV=f(T)

- for dielectric materials
αL approaches a constant value for T > θD

vanishes as T3 for T 0

- for metals, 
αL~T at very low temp
αL~ depends on the sum of heat capacities of phonon

and electron in other temperature regions

3α α≈ for isotropic 
             solid
v l
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