Ch 2. Fickian Diffusion

Chapter 2 Fickian Diffusion

@ fluid at rest — diffusion

moving fluid — diffusion + advection
- molecular diffusion - only important in microscopic scale; not much important
in environmental problems

@ turbulent diffusion and dispersion process

- analogous to molecular diffusion

2.1 Fick's Law of Diffusion
2.1.1 Diffusion Equation

@ Fourier's law of heat flow (1822)

- time rate of heat per unit area in a given direction is proportional to the

temperature gradient in direction.

Fourier Fick
heat mass
temp. conc.

1. Fick's law (1855)
- flux of solute mass, that 1s, the mass of a solute crossing a unit area per unit
time in a given direction, is proportional to the gradient of solute concentration

in that direction.
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goc =
OX
q:—Dgg .1

q = solute mass flux
C = mass concentration of dispersing solute
D = coefficient of proportionality

= diffusion coefficient (m?/s), molecular diffusivity

- Minus sign indicates transport is from high to low concentrations

== Fick’s law in 3D

C = concentration = scalar

q=-DVC (2.1a)
a =qu + ]qy + qu — vector
v=il, il ikl
oXx "oy oz
VC = Ti+]i+ﬁi C
OX oy 0z
-0C -=0C +0C
=i—+ j—+Kk —vector
OX oy 0z

e gradient of scalar — vector
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2. Conservation of Mass

1-D transport process

\I___—-_-_

UNIT AREA PERPENDICULAR
TO X AXIS

—

9499 Ax
ax

=¥

1) time rate of change of mass in the volume = % (AXx-1)

i1) net change of mass in the volume = {( flux), —( flux),,}xunit area

oC oq

S — AX=——AX
ot OX

x€__a

ot OX

3. Diffusion Equation

Combine Eq.(2.1) and (2.2)

oq
=0 - — AX
a-(a+ 31 ax]

(2.2)
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ot ox\ o ox
2

aa—? =D g Cz: = Diffusion Equation (Heat Equation)
X

Diffusion Equation = Fick's law of diffusion + Conservation of mass

Differentiate Eq. (2.2) w.r.t. X

g(@j_ﬁ_q
ox\ ot ox*
2] £ 8] L
ot\ ox ot\ D D ot
_1oq_ g
D ot ox*

== Conservation of mass in 3D

. 0
ot oXx oy oz

§9+vﬁ:o (i)

ot

Then consider ( by various transport mechanisms

- molecular diffusion (Fickian diffusion) a =-DVC
- advection by ambient current E] =Cu
.. q=Cu-DVC (i
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Ch 2. Fickian Diffusion

Substitute (i1) into (1)

§+v.(cﬁ - DVC): 0
ot

@+v-(cﬁ):Dv2C
ot (iif)
V-(Cu)=(VC)u+C(Vu)

ou. Ou, ou

Viu=—%+—Y4+ =0 <« Continuity
ox oy oz

.. V(Cu)=VCu

| S S T (T u, k)
ox oy 0z

Thus, (ii1) becomes

§+VC-U=DVZC
ot

+Uu +Uu +U —
ox- oy~ oz

oC oC oC 8C_D 0’C o°C o0°C
ot “ox ey ‘oz

— 3D advection-diffusion equation

For molecular diffusion only

€ _pyic
ot
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aC_D[azc 0°C azc]

+ +
ot ox* oy> oz’

- linear, 2nd order PDE
&€ Vector notation of conservation of mass

fixed volume V with surface area S

total mass in the volume = L C(%,t)dV

mass flux = a(;(,t)

Conservation of mass
Qj C(x,t)dV +j q(x,t)-ndS =0
at V M N b

N = unit vector normal to surface element dS

Green's theorem

L q-ndS =jvv-adv
IV (%+V-ﬁ}dv =0

§E+Vﬁ:0
ot
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2.1.2 Diffusion Process

diffusion = process by which matter is transported from one part of a system to

another as a result of random molecular motions

1. Random Walk Model

w - N P miztwe of ink and water
ater - _/
1444 At e e o
T TT  [——>| *e =
- " . . -
- -li['.ll-{- * : L] -e—
-- . -l. e e
- -. ---. - = - L]

(1) Watch individual molecules of ink

— Motion of each molecule 1s a random one.

— Each molecule of ink behaves independently of the others.

— Each molecule of ink is constantly undergoing collision with other.

— As a result of collisions, if moves sometimes towards a region of higher,

sometimes of lower concentrations, having no preferred direction of motion.

— The motion of a single molecule is described in terms of random walk model

— It is possible to calculate the mean-square distance travelled in given interval

of time. It is not possible to say in what direction a given molecule will move in

that time.
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(11) Transfer of ink molecules from the region of higher to that of lower

concentration 1s observed.

(i11)) On the average some fraction of the molecules in the lower element of

volume will cross the interface from below, and the same fraction of molecule

in the upper element will cross the interface from above in a given time.

(iv) Thus, simply because there are more ink molecules in the lower element

than in the upper one, there is a net transfer from the lower to the upper side of

the section as a result of random molecular motions.

2. Molecular Diffusion

(1) Fick’s First Law:

Rate of mass transport of material or flux through the liquid, by molecula
diffusion is proportional to the concentration gradient of the material in the
liquid.

Diffusive mass flux, = _DZ_S(: (1)

(negative sign arises because diffusion occurs in the direct opposite to that of

increasing concentration)

Cah

r=xn

W
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(11) Fick’s Second Law:

2
Conservation of mass + Fick’s First Law — % =D (Z Cz:
X

e Assumption for Fick’s Law
Fick’s First Law is consistent only for an isotropic medium, whose structure and
diffusion properties in the neighbourhood of any point are the same relative to

all directions.

In molecular diffusion: b,=D,=D,=D
In turbulent diffusion: ExsEyrE,
In shear flow dispersion: K ,K ,K,

[Cf] anisotropic medium — diffusion properties depend on the direction in which

they are measured

c |/ o«
| £
3. ody /| | ¥
|
|
D ! D
By o oy,
4&?)}&32(%——” S B B P —= ddydz| g + =Zdx
o g L =3 o
4
2dz s
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(1) Rate at which diffusing substance enters the element through the face ABCD

in the X direction

Influx = 4dydz (qx - %dxj
OX

In which g, = rate of transfer through unit area of the corresponding plane

through P

(i1) Rate of loss of diffusing substance through the face A’B’C’D’

Outflux = 4dydz (qx + %y dxj
OX

(i11) Contribution to the rate of increase of diffusing substance in the element

from these two faces

Netflux = 4dydz(qX _ % dxj — 4dydz(qX +

aq, dxj = —8dxdydz%
OX OX

OX

(iv) Similarly from the other faces we obtain

0
—8dxdydz& and
oy

—8dxdydz aq,
0z
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(v) Rate at which the amount of diffusing substance in the element increases

%(mass) = %(volume x conc.)

= 8dxdydz@
ot

(vi) Combine (ii1), (iv), and (v)

0
8dxdydz@ = —8dxdydz o, + % + o,
ot ox oy oz

0
%_i_aqx_i_ qy+aqz:0

(vii) Substitute Fick’s law into Eq.(2)

%Z_E(_Dﬁj_i p& _2(_D§]:£[D§j+i D +£(D£)
ot OX ox ) oy oy ) oz 0z ox\. ox) oy\ oy ) oz 0z

Remember D is isotropic for molecular diffusion.

For homogeneous medium; D # f, (X,y,2)

oC o°C 0o°'C o°C
=Dl +t—5+—3
ot ox~ oy oz

For 1-dimensional system
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2
X _poc

- — Fick’s Second Law of Diffusion
ot OX
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4@ Vector Operations

Vectors = magnitude + direction
~ velocity, force
Scalar = magnitude

~ pressure, density, temperature, concentration

<P |
D

,€,,€, = unit vectors

F., F,,F, =projections of the magnitude of F ontheX, Yy, z axes

x> yo

(1) Magnitude of F

1/2

F=|F|=(F2+F +F)

(2) Dot product = Scalar product
S=FG-= ‘E‘ ‘a‘cowﬁ

(3) Vector product = Cross product

VZEXG — vector

magnitude of \7:’\7‘:‘EH6‘sin¢

direction of V = perpendicular to the plane of Fand G

— right hand rule
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(4) Derivatives of vectors

oF —
63

oF, —
0S

oF R o,
os o0s

(5) Gradient of F (Scalar) — vector

OF —~ oF — oF

grad F=VF = e, +

— vector

8xX Yooy

z

[V]: pronounced as ‘del’ or ‘nabla’

0
e —
OX;

V=

[Re] grad(scalar) — vector

grad(vector) — tensor

(6) Divergence of E(VGC'[OI') — scalar

divE =vF =| Lg e_ 35 :
ox 8y 0z
= ieX j F e, + F,
OX
a y o
= cos O+—e e c0s90° +
8x OX

2-14

grad(F+G)=gradF+grad G

grad CF=c grad F

F
e +Fe)

o, e_xe_zcos 90°
OX
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+8_F€‘Fyey‘coso+ gg‘erz‘coso
oy 0z
oF,  oF, OF,
_ + + — scalar
oXx oy oz
i j ok
7 culV=vxv=|L & 2
OX OX OX
Vl V2 V3

(8)  div(grad F)=V-VF =V’F = Laplacian of F

o’F, O°F, O°F,
=72 T2 T2
OX oy 0z

[Pf]
div(grad F)=div GF§+8F§+‘9F€
OX oy 0z
a(aFj 0 | oF a(GF)
= — [+ =—| — |+=—| —
oXx\ ox ) oy\oy ) oz\ oz

o’F, OF, &'F,
2 + 2 + 2
OX oy 0z

vov=[il 7Lkl iL+72 k2
ox "oy oz)\ ox "oy oz
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2.1.3 Analytical Solution of Diffusion Equation

e Consider diffusion of an initial slug of mass M introduced instantaneously at

time zero at the x origin
[Cf] Continuous input — initial concentration specified as a function of time
1) Governing equation:

2
o _poC
ot OX

(2.3)

i1) Initial & Boundary conditions:
-Spreading of an initial slug of mass M introduced instantaneously at time zero

at the x origin

C(x=0,t=0)=Mo(x)
C(x=z00,t)=0

111) Solution by dimensional analysis

C(x,t)= f(M,xt, D)

M X
C= f 2.4
J4zDt (\/4Dt j @4

X

7= JaDt

set

(2.5)

Substitute Eq. (2.4) and Eq. (2.5) into Eq. (2.3)
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Eq. (2.4):

M X M
= J4zDt f(\/4Dt]: J47Dt f(r)

on_ 1

X on _ n

= —> R =
T=Jabt ot 2t ox  Japr
c__M ﬂ+( M Ljyf— ﬂa—77+C (—i)f
ot JarDt ot \J4zD Wt Pop ot P ot

= cpﬂ(—l}cp(—ij f

oC of of on o 1
— =C,—=C, =C,
OX OX on ox on 4Dt
2 2
0 Cz: :Cp 0 EL (b)
OX on~ 4Dt

Substitute (a) and (b) into Eq. (2.3)

2
C ﬂ(—i}c (—ijf _pc. 2 ‘;L
Pon\ 2t P2t *on® 4Dt

2
Znﬂ+2f +6 E:O
on on

0 o> f
— (2nf
677( nf)+

=0
on’

Integrate once w.r.t. 7

ant+ 9o (2.6)
dn

Separation of variables
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gz —2ndn

Integrate both sides

Inf=-n"+C

2

f=e"C=C, e (2.7)

Total mass, M

[ cdx=M (2.8)

Substituting Eq.(2.4) and Eq.(2.7) into Eq.(2.8) yields Cy =1
Then, (2.4) becomes

M NG
C(x,t)= mexp[—ﬂ)t] (2.9)
- —4'3 —:-‘2_—/ —:| S ) 2 _=3 =x\

Figure 2.3 The reduction of the Gaussian distribution [Eq. (2.14)] to a **spike™ as r decreases.
The illustration uses the values M = 1, D = }.
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[Re] Analytical Solution by Separation of Variables

2
x_poc
ot OX
C(x,t=0)=Mo(x) (2.11a)

(2.10)

C(X = +o0,t) =0 (2.11b)

M =1lim [ f(x)dx (2.11¢)

e>0d-¢
Separation of Variables
C(x,t)=F(x)G(1) (2.12)
Substitute Eq.(2.12) into Eq.(2.10)

0°F
OX?

oG
F(xX)—=DG(t
()~ (t)
FG'=DGF"
16 _F"
DG F

where k=const. # f (x or t)

) k>0
k =
lGl F" )
——=—=w
DG F
—>F"-@’F=0 (2.13a)
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G'-Dw’G=0

Solution of (2.13a)is F=Ce™ +C,e™ @
Substituting (2.11b) into (a) yields C, =0

Then
F=Ce™

Solution of (2.13b) is G =C,e'°*
Substituting B.C. (2.11b) gives C, =0

This means that C = F-G = 0 at all points, which is not true.
— k<0

i) k=0
F'=0 > F=ax+b— a=0 ..F=b
G'=0 > G=k

..C=FG =Dbk = const. — not true

— k<0

i) k <0
k=-p’
16 _F'__
DG F
F'+ p°F =0
G'+Dp’G=0

2-20
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Assume solution of Eq. (2.13c) as F =¢*
Substitute this into Eq. (2.13c) and derive characteristic equation (2.14)

A+p’=0
S A=+pi
s F=Ce™+Ce™
= C,(cos px + isin px) + C,(cos px—isin pX)
= Acos pX + Bsin px

(2.14)

Assume solution of Eq. (2.13d) as and G =e™
Substitute this into Eq. (2.13d) and derive characteristic equation

A+Dp*=0
- A=-Dp’
..G=Ce ™" (2.15)

Substitute Eq. (2.14) and (2.15) into Eq. (2.12)
C(x,t) = F(x)G(t) = (Acos px+Bsin px)e ™" (2.16)

Use Fourier integral for nonperiodic function.

Assume A,B=f (p)
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C(x.t; p) = {A(p)cos px + B(p)sin px}(-Dp’t) (2.17)
C(x,t):j:C(x,t; p)dp

=["{A(p)cos px+B( p)sin px}exp(~Dp’t)dp (2.18)

Since Eq. (2.10) is linear and homogeneous, integral of Eq. (2.18) exists
I.C. Eq. (2.11a) and Eq. (2.11c¢)

C(x,t =0) :jow{A( p)cos px+ B(p)sin px}dp = f ()

f(x)= Fourier integral

E%j:{cos pxj(:o f (v)cos( pv)dv +sin pXj_Z f (v)sin ( pV)dV} dp
A(p) = %J‘Z f (V)cos( pv)dv

B(p) :—jjo f (v)sin( pv)dv
Use Trigonometric rule

C(x,0) :%I:{J.Z f (V)cos pxsin pvdv+j: f (V)sin pxsin pvdv;dp

1 o0 o0
= ;IO {LO f (v)cos(px — pv)dv} dp (2.19)
Substitute Eq. (2.19) into Eq. (2.18)

C(x,t):ljw{r f (V) cos(px — pv)exp(—Dp°t)dv}dp
T 0 —00
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Switch order of integral

Coxt)=— j - f(v){ j " exp(=Dp’t)cos(px — pv)dv!dp (2.20)
o — )

(®

Let (e) = J? exp(—Dp°t) cos(px — pv)dp

Use residue theorem to get integral of (e)

J': e~ cos2bsds = —“Zy e (2.21)
X —V
Set s = p«/Dt , b=
P 2./Dt

Then 2bs=(x-v)p, ds= \/D_tdp

.".(e) becomes

. ) = (x=v)’
jo exp(—Dp’t)cos( px — pv)dp = 7or exp{— o } (2.22)

Substitute Eq. (2.22) into Eq. (2.20)

(2.23)
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2.2 The Random Walk and Molecular Diffusion
2.2.1 The Random Walk

1) Think motion of a tracer molecule consists of a series of random steps

— whether the step is forward or backward is entirely random

e Central limit theorem: in the limit of many steps probability of the particle

being MAX between and (m+1)AXx — normal distribution

mcan: Zz<Cro

2
variance : azzt(AX)
At
normal distribution: P(x,t)dx = 1 exp| — X
. ’ o2 207
= ! exp| — X dx
JazDt P 4Dt
2.15)

2
t(AX) Dt

where o’ =

11)Now think whole group of particles
C(xt) = [ p(x,tydxdn

C(x,t) =

M exp| - X’
N4z Dt 4Dt

— same as Eq. (2.14)

— random walk process leads to the same result that an slug of tracer diffuses

according to the diffusion equation, Eq. (2.4)
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2.2.2 The Gradient-Flux Relationship

- Think random motion of large number of molecules at the same time.

— probability of a molecule passing through the surface is proportional to the
average number of molecule near the surface

- differences in mean concentration are, on the average, always reduced, never

increased.

@ flux of material across the bounding surface

| | | | e
qﬁ‘.'-:.i- -.'i' -!I. .i * :
;-.._. : ... i~ : e I. _| ] l__
. ! -2 = i I +1 I i+?I I
(o)
L] : L] o ®
e ® i:' -. ® e
ee e © E.-.-.‘ ®
© e e ©

8"x" MOLECULES 2 "x" MOLECULES
4"y" MOLECULES 16 "y" MOLECULES
t= At

(b)

g, =kM, - flux of material from left to right
g, = kM, - flux of material from right to left

where k = transfer probability [1/t]

M, = mass of the tracer in the left-hand box

M, = mass of the tracer in the right-hand box
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Ch 2. Fickian Diffusion

o q = net flux = net rate at which tracer mass is exchange per unit time and per

unit area
q=k(M,~M,) @
Define
M
C =—- b
T A (b)
C, = M,
AX (c)

M, = average masses in the left-hand box

M, = average masses in the right-hand box

Combine (b) and (¢)

M, —M, =Ax(C,-C))

o] 55

~(Ax)’ [—aa—ﬂif AX issmall  (d)

Substitute (d) into (a)

q=—k(axy &=
OX
OX

D =k(Ax)*> = diffusion coefficient (constant)
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2.3 Some Mathematics of the Diffusion Equation

2.3.1 Concentration Distribution
i) G.E.

2
ot OX

11) Initial condition for instantaneous point source
C(x,0)=Mo(x) (2.18)

M = initial slugs of mass introduced at time zero at the origin
: : 1
6 = Dirac delta function (=—)
AX

- representing a unit mass of tracer concentrated into an infinitely small space
with an infinitely large conc.
— spike distribution

[Ex] bucket of concentrated dye dumped into a large river

i11) Solution

C(x.t)=

exp (— 4X;tj (2.14)

M
N4 Dt

— Gaussian distribution (Normal if M = 1)

[Re] Normal distribution ~ N(x, o°)

_ 1 _(x=py’
f(X)—Gm exp{ =

}, — < X<
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E(X)=u
Var(x) =o"
— u=0,0=+2Dt

2.3.2 Moments of Concentration Distribution

1. Moments

Zerothmoment= M, :j_iC(X,t)dX

First moment= M, = _[:C (x,t)xdx

2" moment= M, = I_OO C(x,t)x*dx

Pth moment= M = jic(x,t)xpdx

1) Mass M =M,
i)Mean x4 = M,/M,

" (x= @)’ C(x,t)dx
iii) Variance o’ = L’O () M, _ 7

1v) Skewness S, =

- measure of skew

- for normal dist. S, =0

@ For a normal distribution M = 1
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Ch 2. Fickian Diffusion

1 X’
C(X’t):me"p(umj

M, =1
u = 0 — location of centroid of concentration distribution

o’ = 2Dt — measure of the spread of the distribution

2. Diffusion coefficient

b o/

The normal distribution

@ Measure of spread of dispersing tracer

o=,2Dt = standard deviation (see Table 2.1)

40 = 4+/2Dt = estimate of the width of a dispersing cloud
= include 95% of the total mass

[Cf] 60 =6+/2Dt = include 99.5% of the total mass
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Ch 2. Fickian Diffusion

& Calculation of diffusion coefficient

2
D_ldo

=5 dt (2.22)

— Change of moment method

1)Normal distribution: it is obvious

11)Eq. (2.22) can be also true for any distribution, provided that it is dispersing

in accord with the Fickian diffusion equation.

[P1]

Start with Fickian diffusion equation

2
oC _,o'C

I a
ot ox? @)

Multiply each side by x°

& _ py o°C
ot ox’

Integrate fromto —o0 and +oo w.r.tx

0°C
ox?

’ ﬁxzdx = Iw Dx?
- ot =

dx

Apply integration by parts into right hand side
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9 “Cx¥dx=D {xzﬁ} - w2x§dx
ot o= oxX |, ‘™ oX

:—2Dij§dx @} ~0
= OX X ..,

= —2D{[XC]O_OOO = _ZCdx}

:ZDI_OO Cdx (~CT. ~0)

00

91" cxdx QMQ 5 (M
)p = _at :_[_2}
Cdx M, ot M,
_1o(m, o
20t M,

By the way, multiply each side of Eq. (a) by x

B x—d
—0 { :|_ J.—oo ax }
=-D ﬁd Xx=-D[C]", =0
- OX
Q " Cxdx =0
8‘t —©
gl\/l =0
ot

0 0
—(M,/M,)=— =0
at( 1 0) at(lu)
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Ch 2. Fickian Diffusion

— p is independent of time.

By the way,
o’ = m—z — i’
Combine Eq.(a) and Eq.(c)
D= % 8;2 (2.25)

— Variance of a finite distribution increases at the rate 2D no matter what its
shape.
— Property of the Fickian diffusion equation

— Any finite initial distribution eventually decays into Gaussian distribution.

@ Change of moment method

- Calculate diffusion coefficient from concentration curves

From Eq.(2.25)
o’ =2Dt+C
c,”=2Dt, +C (1)
o’ =2Dt +C (2)
Subtract (1) from (2)
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Ch 2. Fickian Diffusion

o,” -0 =2D(t, -t)

D10 ~0" (2.26)

o,”= variance of conc. distr. at t =t,

2 . .
o, = variance of conc. distr. at t=t,

® C(Concentration curves - more than 2 curves

— D =l(slope of o’ Vst curve)
2

[Re] Normal Gaussian distribution
- often obtained in practice

- bell-formed distribution occur around a mean value

'\ (x—p)?
f(X) fix) = 1275 e 20°
| | >
0 1 2 "

(t-p)’
. . . . X
Distribution function: — e 27 (t

> oN2T
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Homework #2-1
Due: 1 week from Today

Taking care to create as little disturbance as possible, a small sample of salt

solution is released at the center of the large tank of motionless fluid.

(a) After 24 hours have elapsed a conductivity probe is used to measure the
concentration distribution around the release location. It is found to be Gaussian
with a variance of 1.53 centimeters squared. The experiment is repeated after a
further 24 hours have elapsed and the variance is found to be 3.25 centimeters

squared. Determine the diffusion coefficient indicated by the experimental data.

(b) Explain how the measured peak concentration at 24 hours and 48 hours

could be used to check the result in (a).

(c) Must the distribution be Gaussian for the method used in (a) to apply?
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2.4 Solutions of the Diffusion Equation

2
ot OX

2.31)

2.4.1 An Initial Spatial Distribution C(x, 0)
(1) Mass M released at time t=0 at the point x=¢&

IC. C(x,0)=Md&(x—&)
BC. C(zoo,t)=0

Set X =x-¢&

Then, I.C. becomes

C(X,0)=Ms(X)

Solution 1s

C(X,t)=

M X
JazDt | 4Dt

C(x,t)=

M —(x=¢)’
N exp{ D } (2.28)
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(2) Distributed source at time t=0

f(x)

f(€)

M.

—

f(x) =

I.C.: C(x,0)=f(X), —w<X<©

arbitrary function

i1s composed from a distributed series of separate slugs, which all diffuse

independently

motion of individual particles is independent of the concentration of

other particles

_f(5ds (x=¢)’
dC(X,t)—mexp{ 1Dt }
(&) ~(x=¢)’

couh=[" =X { Dt }df

—  superposition integral

2-36
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(3) Distributed source with step function

4 C
c, | INITIAL STEP FUNCTION—
c% [1+erf( :m)]
-3 -2 -1 0 2 3 1
o
0 X<0
I.C. C(x,0)=
C, X>0
According to (2.30)

o[

o Co
i v

_(x=4)
Set u—m
X
== T
E=00: U=—00
du=—9% 4z _JaDtdu
J4Dt

Substitute (b) into (a)
2-37
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C(x,t):% Fe‘“zdu

Cy| 2 ¢o

2 2 X 2
= —| e'du+—=|V4Pte™"du
2 |:\/7Z' - \/ﬂ'J‘O }
_1 + iJ'V“X'Dt e du
/72- 0

C, | X
i (—_m ﬂ (2.33)

2 0 2
[Re] ——| e du=erf(-w0)=1

=

m Error function

exp(—£?)dEé — Table 2.1

Y
erf z= ﬁjo

m Normal distribution
- Most important distribution in statistical application since many measurements
have approximate Normal distributions.

- The random variable X has a Normal distribution if its p.d.f. is defined by
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f(x)= ! exp{—w}, —00 < X <0

oN2xw

* Integral of Normal distribution

= J'w ! exp{—M} dx

- o'\/% 20‘2
Let z=2_* (dz:—dxj
O O

O(z)=P(—o<z<2)= I_ZOO \/;_7; exp(-inW

D (0) =1
O(-2)=1-D(2)
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(4) Distributed source with step function C, for x<0

C,, x<0
IL.C. C(x,0)=
0, x>0

By line source of C,0&
B 2
dco G | (x=9) }

Jazbt | 4Dt
C, (x=¢)’
C(x,t
D= ot [ ex 1{ 4Dt }5
X—¢&
Set =
- 7 4Dt
Then dn——d—éj and T _)nzoox
/4Dt =0 o=
° 7 V4Dt

C(x,t)= \/_J exp )(—d?]):%ﬁmexp(—nz)dn
C,[ 2 ¢~ )
_T(ﬁjx/mexp(—n )dU]

{H ol Jon =72,

:%@_e%ﬂ

= &erfc( X j complementary error function
2 V4Dt

— summing the effect of a series of line sources,

each yielding an exponential of distribution
2-40
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2.4.2 Concentration Specified as a Function of Time C(0, t)

(1) Continuous input with step function C,=C,(t)

Co(x)

Co(®)
 §

I’y @x=0

Co Co t>0

W,

Continuous step input at x = 0

I.C. C(xt=0)=0
BC. C(x=0,t>0)=C,

@ Solution by dimensional analysis

= 1 X 1
:———:——77
2t Dt 2t
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They OC_0Con _ 1 dC

ot _dp ot 2t'dpy

o’C _1.d°C [”azc_dzcasz

o tdpr | o dip? ox

Substitute these into Eq. (2.31) to obtain O.D.E.

—2f"pf'=0 (a)

Solution of this 1s

X X
C=C,|1-erf =C_ erfc x>0
{ (x/4Dt ﬂ ‘ (\/4Dt]

[Re] Laplace transformation
(1) For ODE

- transform ODE into algebraic problem

(2) For PDE
- transform PDE into ODE

1) inverse transform
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C(xt)=L"(F)

i1) linearity of Laplace transformation

L{af (t)+bg(t)} =aL{f(t)+bL{g(t)}

111) integration of f(t)

t 1
L{jo f(z-)dr} :EL{ f(t)
iv) use Laplace transformation("operational calculus")

F (x,s)=L(C)= j: e S C(x,)ydt =C
L(C") =sL(C)-C(x,0) = sC —C(x,0)
L(C") =s>L(C) - SC(x,0) — C(x,0)

[Re] Analytical Solution

2
oc + U oc =D g C23 Advection-Diffusion Equation
ot OX OX

B.C. & I.C.
C(x=0,t>0)=C, (a)
C(x=0,t=0)=0 (b)
C(Xx=100,t20)=0 (c)
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0

&*C_,C _aC _

D 2
OX oX ot

Apply Laplace transformation
= _
a?—uég_sé—cazmzo
OX OX

Ct=0)=0 fromI.C.

D

= _
7y _sc=0

D
ox? OX

_ -
Set €'=22 =25
OX OX

Then

6"—26'—

S E=0
D~ D

Assume C =e**

Derive characteristic equation as

229, 5
D D

Solution 1s
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(1

U ++U?+4sD U -+U?+4sD
=C,(s)exp X+ C,(s)exp D

2D

Laplace transformation of B.C. Eq. (¢)

limC(x,s) = lim jo‘” e S C(x,t)dt

X—»o0

_ j:{e—st limC(x,t)dt} =0

X—>00

If we apply this to Eq. (1)

2D

U ++U?4sD XH

limC(x,s) = 1im[c1 (S)exp{

=0

U ++U?4sD XH

+ lim[CZ(S) exp{ D

. C,(s) should be zero

U-+U? +4sD X}
2D

. C= Cz(s)exp{

Apply B.C.Eq. (a)

Laplace transformation

6(0,3):100
S
C,(s)=C,/s
= C, U-+U?+4sD
C :?exp 2D X
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Ux )1 X [U?
=Coexp| 3p )5 P “/oVap

Get inverse Laplace transformation using Laplace transform table

2 1 a a
Zexpi-a(s+b*)? < e‘aberfc(——b\/fj+eaberfc(—+b\/fj
s p{ ( )} PN PN

In case U=0
X X
C erfc + erfc
{ ( 4Dtj [\/4 tj}
Cerfc[ X (2.37)
J4Dt '
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where erfc = complementary error function

erfc(z)=1-erf (z)

t increasing

C/C,

Y
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(2) Concentration specified as a function of time at fixed point

C(x,t=0)=0

C(x=0,t>0)=C,(7) — time variable concentration

{

e
o =
i
" (3C,/9T)(8T)
e

Y
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2.4.3 Input of mass specified as a function of time

(1) Continuous injection of mass at the rate M, —o <t <

X

M@ X
c _Lﬂ\/mexl{ 4D(t —r)}dr

where M (7)= rate of input mass at time 7 and may vary with time

= [ML™t"]

(2) Continuous injection of mass of constant strength M att>0

M o1 X’
C00 = T Jt_fexp{‘m}df

Set  u=PU=7)
X

- du=—"Pg;
X
2

dr = -2 du
4D

y 4Dt 1
Then C(x,t)= Mx Ixz u 2exp(—l)du
u

4D %
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(3) Distributed source of mass m(x,t)

m = mass per unit length per unit time= [ML>t"]

_fte . M(S,7) _(x=¢y
C(X,t)—jw_[w\/mexp{ —4D(t_7)}d§dr

— superposition in space and then in time
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Homework #2-2

Due: 1 week from today

v

a) Derive analytical solution

2
€ _poc
ot ox>

G.E.:
LC: C(xt=0)=0
B.C. C(x=0,0<t<7,)=C,,
C(x=0, 7,<t<7,)=Cy
C(x=0, 7,<t<7,)=C,,
C(x=0, 7,<t)=0
b) Plot C vs x for various time t with assumed C,;s, for example C, =C,/2;

Coz :Co; Co3 :_Co-

c) Plot C vst for various distance X.
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2.4.4 Solution Accounting for Boundaries

- Spreading restricted by the presence of boundaries

* Principle of superposition

— If the equation and boundary conditions are linear it is possible to
superimpose any number of individual solutions of the equation to obtain a new
solution.

The method of superposition for matching the boundary condition of zero

transport through the walls (single boundary)

(1) Mass input at x = 0 with nondiffusive boundary at x = -L
I.C.: unit mass of solute at x=0 at t=0

B.C.: wall through which concentration cannot diffuse located at x = -L

ac

o ,..=0  — Neumann type B.C.

q‘x:—L :_D

— Concentration gradient must be zero at the wall.

— zero transport through the wall

=¥

N
LY
—— _..__._._1__.___

IMAGE REA
SOURCE BOUNDARY  gQURCE
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* This condition would be met if an additional unit mass of solute (image

source) was concentrated at the point x = -2
* Solution with the real boundary = sum of the solutions for real plus the image

source w/o the boundary

C= 1 exp| — X + exp —M
47Dt 4Dt 4Dt

(2) Mass input x = 0 with nondiffusive boundariesatx =-Landatx =+ L

— put image slugs at -2L, +2L, 4L, -6L, 8L, ......
(" slug at x = -2L causes a positive gradient at the boundary at +L , which must

be counteracted by another slug located at x = +4L, and so on)

=1 —(X++2nL)?
C(xt)=
(x.) n;w\m;th P { 4Dt }

—-n=-2,-1,0,+1,=2

|
|
|
/’r‘
|
|
|
1
|

|

X=-2L ; X s
' xT=-|. T )TL T
IMAGE REAL IMAGE
SOURCE BOUNDARY  onpcg BOUNDARY  onrcE
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(3) Zero concentration at x= +L

— C(x=%xL, t)=0 — Dirichlet type B.C.

— negative image slugs at X ==22L

positive image slugs at X =14L etc.

(X+4nL) ~[x+@n-2)L]
Cl:D= mz{ {—Dt }P[ D }

(4) Mass input x = 0 with nondiffusive boundaries at x =0

— Solution for negative x is reflected in the plane x=0 and superposed on the
original distribution in the region x>0.
— reflection at a boundary x=0 means the adding of two solutions of the

diffusion equation

C= 1 exp| — X + exp —(X+O)2
47z Dt 4Dt 4Dt
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2.4.5 Solutions in Two and Three Dimensions
(1) 2-D Fluid
- A mass M [M/L] deposited at t=0 at x=0, y=0

oC 0°C 0°C

G.E.: =D +D a

oo tox* Yoy @)
molecular diffusion D, =D, =D
L.C.: C(X,y,0)=Mo(x)o(y)
* Product rule

C(X’ y’t) = Cl(xat)cz(yat)
where C, # f(y),C2 = f(x)

GC (CC )=C, oC, +C, oC,

R ot ot

2 2 2

0 C23 _0 8 (C C,)=C, 0°C,

OX ox’

82C 82 82C

( 1 2) B
oy*
(a) becomes
2 2
CIGCZ+C2aC DCac DCaci
ot ot ox’ oy
Rearrange
2 2
c, 6C1_DX8Ci1 +C 6C2_Dy@C22 0
ot OX ot oy
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Whole equation = 0 if

6C1 _ D 62(:1 -
X 2
A 8;( — 1-D diffusion equation
o, _, G,
at y 8y2 |
Jmo Cdx X2
C1: — exp| —
47D, t 4D, t
[ cdy [ y? J
C2 == exp| —
47Dt 4Dt
2 2
C:CICZZLCXP _ X . y (253)
4rt,/D,D, 4Dt 4Dt

where M =j_[_iC dxdy

— lines of constant concentration = set of concentric ellipses

= [soconcentration lines

X2 yZ
M [_40 t 4D t]
- — e

X y

x> y2 47t DXDyC M
RTINS =In
4Dt 4Dt M 4zt,/D,D,C




Fickian Diffusion

Ch 2.
X + y =A
2 2
(Vo) (Vo))
X + y =1

(2) 3-D fluid
- A mass M [M] deposited at t=0 at x=0, y=0, z=0

6c, _ oC, _ &C, _ &C,

t oz’

G.E.: =D +D +D

ot *ox? y

ay2
LC.: C(x,y,2,0)=M&(x)8(y)d(z) — point source

* Product rule
C(Xa ya Zat) = C](Xat)CZ(yat)C3(Zat)

oC 0 0(C,C,)
== =-2(CC,C,)=C, 2=
ot 8t( G4 =6 t

oC
+ C2C3 8_]:1
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e, icc o e
ot ot
0°’C o 0°C
o —W(C1C2C3)2C2C38721
2 2 2
af a (cc cy-cc, i
oy oy’
2 2 2
ch a(c:c:c:) CCaC

Substituting these relations into (b) yields

2 2 2
Clcz%wlc a; c:c:‘aaC DCC%E DccaC D,C.C, aaf
2 2 2
cc,| % p 2% e | D, 9Clce| % p TS o
ot oz ot oy ot OX
ICdx x>
C = exp| —
47D, t 4Dt
Cdy 2
C,= J. CXp| — y
47Dt 4Dt
ICdZ 72
C,= exp| —
47Dt 4D,t
M X2 yz 72
#C=066 =T leXp[_4Dt_4Dt_4Dt
(4zt)*(D,D,D, )’ * y ’

M = m Cdxdydz
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2.4.6 Advective Diffusion
(1) Governing Equation

Fluid moving with velocity U
0=ui +Vj +wk

 Advection = transport by the mean motion of the fluid
» Assumption
- transports by advection and by diffusion are separate and additive processes

— rate of mass transport through unit area (yz plane) by x the component of

velocity, q,
q, =ucC

[Re] advective flux
mass = volume - concentration
mass rate = volume rate - conc.
= discharge - conc.
= velocity - area - conc.

.. Advective flux = mass rate /area = velocity - conc.

Total rate of mass transport

g=uC + (—Daa—ij (2.55)

= advective flux + diffusive flux

Substitute (2.55) into mass conservation equation, (2.3)
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LCASNCLe B

ot ox

€. 9% wc-p% -0

ot ox OX

2
@ + i(uC) =D 0 g’ 1-D Advection-Diffusion Equation
ot ox OX
*In 3-D

1) Mass conservation equation

- 0
@:_v -q (a) (divergence — %, + & + . )
ot ox oy oz

1) Rate of mass transport

q=Cu-DVC (b) (gradient — 8CT+8C]+5CE)
OX oz

Substitute (b) into (a)

@w-(cﬁ— DVC):O

ot

aC - _ 2

E+V-(Cu)_DV C (2.57)
2™ term of LHS

v-(cﬁ):vc-ﬁ+cv-ﬁ
By the way

ol =0 (continuity)
0z

V-G:a—u+@+
ox oy

. V-(Cu)=vVCu
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| e S T (v k)
OX oy 0z

! oC oC oC

(2.57) becomes

%%+VC.G:Dv%: (2.58)

(2.59)

oC oC oC oC o’C o’C o°C
+U +V—+wWw—=D —t 5t
ot OX oy oz OX oy oz

(2) Analytical Solutions
1) Instantaneous mass input

Assume that u is constant and gradient in y-direction is small

2
GE.: oc +uaC :Da (2:
ot OX OX

1.C: C(x,0)=MJ(x)

B.C.: C(£oo,t)=0

C(X,t) = _MJ

M
——eX
47Dt p( 4Dt

2) Instantaneous concentration input over x<0
* Problem of pipe filled with one fluid being displaced at a mean velocity u by
another fluid with a tracer in concentration C,
I.C.: C(x,00=0, x>0
C(x,0)0=C,, x<0
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AR AR AT AL AL A AL A LA AAA AL T A A AL LA RA AR AR A A RA LA I A LA T A AR AR AR AR AR A A AL AR AR A AR AR AR A A AR AR AN RN Y
AL AL LA AL L L L AL AL L LA LA L AL A LA R AL AL AR LA AL A LA LA AR AR AR AR AR AR A LA AR AR AL AR AR AR LAY

Fluid 1 u
C=C,

ARAALLLAALLALAALAL AR LA R AR L AR AR AR AN
AARELLARLT LR AL AR LR AR AR AR RN

7
7z
e

* Transform coordinate system whose origin moves at velocity u
Let x'=x—ut, t=t

oX'
— — =
OX

352

oX'
—u

use chain rule

0

OX

X0 o o
OX OoX' oxot ox'

0 ox'o oo o O
= +

—= — =-u +
ot ot ox' otox' ox' ot

e

oC oC

ot

4_
ox' ot

Then G.E. becomes

oC o0*C
P (@)
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— Now, this problem is identical to distributed source with step function

C, for x<0 (p.2-40)

There, solution is

C(x',t):%{l—erf ( :I'Z)t }

C(x,t) :&{l—erf ( X_Utj

1 (2.63)

3) Lateral (Transverse) Diffusion Problem
- transverse mixing of two streams of different uniform concentrations flowing

side by side

Current
with
velocity u

C:O /
C=Co
C C

b

b

Start with 2-D advection-diffusion equation

oC oC oC 0’C o°C
+tU—+V—=D| —+—;
ot OX oy ox~ oy

Assumptions:

1) continous input — % —0
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. o . oC
i1) velocity in transverse direction is small -v——0

0°C

v —0

i11) advection in x-direction is bigger than diffusion — D

Then, G.E. becomes

2
N
OX oy

B.C.: C(0,y)=0 y>0
C(0,y)=C,, y<0

— Now, this problem is similar to Case 2) with t =x/u; X' =y

There, solution is
C y
nC=21l-erf| —— 2.64
2 { (\/4Dx/uﬂ (264

4) Continuous plane source

oC oC 0°C

G.E. +tU—=D—
ot OX OX

B.C.: C(0,t)=C, 0 <t <0 — steady continuous input
C(x,0)0=0 0<X<mo

— This problem is identical to continuous input with step function C, =C,(t)

(p. 2-41)
The solution is
C X — Ut X + ut ux
C(x,t)=—2|erfc +erfc exp| — 2.65
b 2{ ()=l e p[Dﬂ (269
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1 1

C(x,t) 1 P )2 1 P )2
— 2 =_—erfc = 1-t.) |+ —erfc € 1+t P
5 [4,[ j ( R) 5 [4'[ ( R) exp( e)

CO R R
where
ux
P,= Peclet number =-—
D
t ot
Ut
X X/u

* Advection-dominated case

For large u; P, >500; C£ ~ erfc( x—ut j

* Diffusion problem

u=0; £—erfc( X j
" C, 4Dt

Y O
NN

x=0 ut, ut, ut,

8 4

2-65



Ch 2. Fickian Diffusion

Homework Assignment #2-3

Due: Two Weeks from Today

a) Derive analytical solution for 1-D dispersion equation with continuous plane

source condition which is given as

C(0,t)=C,, O<t<o
C(xt=0)=0, 0<Xx<m
C(X=+m,t)=0, O<t<oo

C(x t):&{erfc(X_Utj+erfc(x+mjex (%H
T2 V4Dt 4Dt Pl

b) Plot C vs. x for various values Pe of and t.
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2.4.7 Maintained point source
(1) Constant point source in 3D
- mass input at the rate M at the origin (x, y, z,) in three-dimensional

flow

GE.:

oC oC 0°C o0°C 0°C
—+u—=D —t 5t
ot OX ox- oy oz

I.C.: C(XV,2,0)=Mo(X)o(y)o(2)

z | L
—_— y
Current
with X —
velocity
u D
—_—
Maintained L1 Two dimensional diffusion
Source M

of %:181 mass of tracer
in a stice of thickness 8x

* Reduction of a three-dimensional problem to two dimensions by
considering diffusion in a moving slice

— visualize the flow as consisting of a series of parallel slices of thickness

OX

— slices are being advected past the source, and during the passage each

one receives a slug of mass of amount M ot

: . OX
- time taken for slice to pass source; ot =—

u
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mass collected by slice at it passes source =Mdt=M ox
u

2-D solution < (2.53)

Substitute == and M =M
u OX

exp {—MJ (2.67)

C(x,y,2)=

47Dx 4Dx

Incase ut>>+2Dt or t>>2D/u’

— neglect diffusion in the direction of flow

(2) Maintained point source in 2D

y 2
C = M5x/uexp( y j

J47Dt 4Dt
Substitute t:5 and M :M
u OX

(2.68)

Coy) e M e[ -
’ uv4zDx/u 4Dx
M = strength of a line source in units of mass per unit length per unit time
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2.4.8 Solutions for Mixing in Rivers

(1) 2-D Instantaneous Input

y u— ° W%

Lox

Assume rapid vertical mixing

2 2
G.E. aC+uaC:D 8C+D oc

ot ox  ox’ Y oy’

oc
oy

I.C.: C(x,V,0) = Ms(X)5(Y)

B.C.:

y=0, w

1) Case A: Right-bank input
Use product rule C =C,(x,t)C,(y,t)

2 2
C, aC‘+uaC—DX8(§1 +C, 8CZ—DyaCj =0
ot OX OX ot oy

=0 — impermeable, non-diffusion boundary

TV RANES 2
C_ M exp _ (X=up) Z exp _(y+2nW)
47t /D,D, 4Dt .= 4Dt
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i) Case B: Centerline input

a) For axis at right bank

47Dt 4D,t
_ -
y+(2n—1)W}
C, = i M, exp| — 2
=TT 4Dt
_ -
: y+@n-no
M (xX—=ut)” | & 2
C=————c¢xp| - Z exp| —
47t,D,D, 4Dt )= 4Dt

[Re] Decaying substance

2 2
G.E.: aC+uaC:D 6C+D oc

ot ox  “ox* Yoy
C(x,y,t) =C(k =0)exp(—kt)

—kC
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(2) 3-D Instantaneous Input

y u —> e W d z

Lo o L.,

2 2 2
GE: L4u®_p ZC,p 2, p 2T
ot OX OX oy 0z

B.C.:
: oC : o -
1) water surface 2 =0 1mpermeable, non-diffusive
z z=d
i1) solid boundary o =0
8y y=0W
L
0z |,

I.C.: C(X,Y,2,0) = Mo (x)0(y)o(2)

1) Case A: Right-bank input — surface input
Use product rule C = C,(x,1)C, (y,t)C,(z,t)

c - M, exp (x—ut)’
L J4rDyt 4Dt

= M (y+2nW)*
C,= 2| expl -
=2 471Dt[ p{ 4Dt

& M, _(z+(@2n-Dd)’
G- 47Dt {eXp { 4D, H
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(X — ut)z]

M
~ (4nt)** [D,D,D, eXp[_ 4Dt
2 2nW)? 2n-1)d)?
.nzo{exp{—%}exp{_(ﬂzgyt) ) H

i) Case B: Right-bank input — mid-depth input

(2 +(2n—1)g)2

Z 4/ 7th 4Dt

B M exp| (X —ut)’
(4zt)*[D,D,D, 4Dt

d
Z exp T exps —
t 4Dt

iii) Case C: Right-bank input — bottom input

C:

M exp| - (X —ut)’
(4rt)? D.D,D, 4Dt

< _(y+2nw)? _(z+2nd)’
nZ:o{eXp { 4Dt }eXp { 4Dt H
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Ch 2. Fickian Diffusion

Iv) Case D: Centerline input — bottom input

W
=M (y+(2n—1)?)2
C,=), 2| exps—

47Dt 4D,t

M (z+2nd)’
C,=> ——2fexpl -t 8)
’ nZ;O\/47ZDZt|: p{ 4Dt H

C - M exp _(x—ut)’
(4rt)? D.D,D, 4Dt
W,
“~ 4Dt 4Dt
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Ch 2. Fickian Diffusion

(3) 2-D Analytical Solutions for continuous point injection

y u—>.B W di

* Governing Equation

oC oC 0°C 0°C
Uu—=D,—+D,—;
ot oc OX oy

Case I: side injection

=0, C(0,0,t)=C,

El

y=0,w

C(X,y,0)=0
Case II: centerline injection

ac
oy

C(x,y,0)=0

=0, C(O,w/2,t)=C,

y=0,w

* Product Rule
C=C,(xt)C,(y.t)
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Ch 2. Fickian Diffusion

Then, the governing equation will be modified as

2 2
6, %1%y, Ciipc PG pe PG
ot ot ox X oy’
2 2
B - e IR LA
o X ox ot oy

After that, we must to solve two equations

2
aCl+uaC‘—D8(E‘:O (A)
ot OX OX

and

%, _p, 2% g (B)
ot oy

1) Casel:

C X —ut ux X + ut
A C, =—2lerfc +exp| — |erfc
G 2{ (,/4Dxt) p(DJ [ 4DXtJ}
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Ch 2. Fickian Diffusion
y e y+2nw| & —(y-2nw)
C,,serfc + > erfc + ) erfc| ———~=
[ ’ { 4Dt Zl ( J4D,t } Z‘ { J4D,t
X —ut ux X + ut
erfc +exp| — |erfc
4Dt D, 4D, t
y e y+2nw | & —(y-2nw)
erfc + » erfc + » erfc| ——~
[ 4DytJ Z; [ ,/4Dyt ] Z; ( ,/4Dyt

1) Case II:

® C=Y Czuerfc( Yt 2”‘”}
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