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24 Cauchy’s integral theorem, Independence of path

24.1 Line integral

Under the assumption of continuous and smooth c, the line integral exist and value is inde-
pendent of the choice of subdivisions and intermediate points ζm

First Method : Indefinite Integration and Substitution of Limits.

Theorem 1 (Indefinite integration of analytic functions)
Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite integral
of f(z) in the domain D, and for all paths in D joining two points z0 in D we have

∫ z1

z0

f(z)dz = F (z1)− F (z0) [F ′(z) = f(z)]

Simple connectedness is quit essential in Theorem 1.

Example 1
∫ 1+i

0
z2dz =

1
3
z3|1+i

0 =
1
3
(1− 1 + 2i)(1 + i) =

1
3
(−2 + 2i) = −2

3
+

2
3
i

Example 2 ∫ πi

πi
cos zdz = sin z|πi

−πi = 2 sinπi = 2i sinhπ = 23.097i

(∵ sin iz = i sinh z)

Example 3 ∫ 8−3πi

8+πi
ez/2dz = ez/2|8−3πi

8+πi = 2(e4−3πi/2 − e4+πi/2) = 0

since ez is periodic with period 2πi
Example 4 ∫ i

−i

dz

z
= Ln i− Ln (−i) = i

π

2
− (−i

π

2
) = iπ.

D : simply connected Ln z : 0 &, negative real axis are omitted in definition.

Second Method : Use of a Representation of the path.

Theorem 2 (Integration by the use of the path).
Let c be a piecewise smooth path, represented by z = z(t), where a ≤ t ≤ b. Let f(z) be a
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continuous function on c. Then,
(1) ∫

c
f(z)dz =

∫ b

a
f [z(t)]ż(t)dt (ż = dz/dt)

proof)

L.H.S of(1) =
∫

c
f(z)dz =

∫

c
udx−

∫

c
vdy + i[

∫

c
udy +

∫

c
vdx] −−1)

z = x + iy ⇒ ż = ẋ + iẏ

f = u + iv

(dx = ẋdt, dy = ẏdt)

R.H.S. of(1) =
∫ b

a
f [z(t)]ż(t) =

∫ b

a
(u + iv)(ẋ + iẏ)dt

=
∫

c
[udx− vdy + i(udy + vdx)]

=
∫

c
(udx− vdy) + i

∫

c
(udy + vdx) −−2)

steps in applying Theorem 2
(a) Represent the path c in the form z(t) (a ≤ t ≤ b)
(b) Calculate the derivative ż(t) = dz/dt.
(c) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
(d) Integrate f [z(t)]ż(t) over t from a to b.

Example 5 A basic result : Integral of 1/z around the unit circle.
∮

c

dz

z
= 2πi (c the unit circle, ccw)

Solution)
z(t) = cos t + i sin t = eit (0 ≤ t ≤ 2π)

ż(t) = ieit, f [z(t)] = 1/z(t) = e−it

∮

c

dz

z
=

∫ 2π

0
e−it · i · eitdt = i

∫ 2π

0
dt = 2πi

Example 6 Integral of integer powers.
Let f(z) = (z − z0)m where m is an integer and z0 a constant.
Sol)

C : z(t) = z0 + ρ(cos t + i sin t) = z0 + ρeit (0 ≤ t ≤ 2π)

(z − z0)m = ρmeimt, dz = iρeitdt
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∮

c
(z − z0)mdz =

∫ 2π

0
ρmeimtiρeitdt = iρm+1

∫ 2π

0
ei(m+1)tdt

by the Euler formula

iρm+1[
∫ 2π

0
cos(m + 1)tdt + i

∫ 2π

0
sin(m + 1)tdt]

If m = −1, ρm+1 = 1, cos 0 = 1, sin 0 = 0. ∴ 2πi
For m 6= 1,

∮

c
(z − z0)mdz =

{
2πi (m = −1)
0 (m 6= −1and integer)

Dependence on path : a complex line integral depends not only on the endpoints of the
path but in general also on the path itself.

Example 7 Integral of a nonanalytic function. Dependence on path.

f(z) = Re z = x from 0 to 1 + 2i.

(a) along c∗ (b) along c consisting of c1 and c2

Solution)
(a)

c∗ : z(t) = t + 2it(0 ≤ t ≤ 1)

ż(t) = 1 + 2i&f [z(t)] = x(t) = t
∫

c∗
Re zdz =

∫ 1

0
t(1 + 2i)dt =

1
2
(1 + 2i) =

1
2

+ i

(b)
c1 : z(t) = t, ż(t) = 1, f [z(t)] = x(t) = t (0 ≤ t ≤ 1)
c2 : z(t) = 1 + it, ż(t) = i, f [z(t)] = x(t) = 1 (0 ≤ t ≤ 2)

∫

c
Re zdz =

∫

c1

Re zdz +
∫

c2

Re zdz =
∫ 1

0
tdt +

∫ 2

0
1 · idt =

1
2

+ 2i

24.2 Bound for Absolute Value of Integrals.

∣∣∣∣
∫

c
f(z)dz

∣∣∣∣ ≤ ML (ML− inequality);

L : the length of C, |f(z)| ≤ M everywhere on C

proof)

|Sn| =
∣∣∣∣∣

n∑

m=1

f(ζm)∆zm

∣∣∣∣∣ ≤
n∑

m=1

|f(ζm)||∆zm| ≤ M
n∑

m=1

|∆zm|
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n∑

m=1

|∆zm| approaches the length L of the Curve C if n approaches infinity.

∴
∣∣∣∣
∫

0
f(z)dz

∣∣∣∣ ≤ ML.

Example 8 Estimation of an integral. (upper bound)
∫

c
z2dz.C : straight-line from 0 to 1 + i.

Solution)
L =

√
2 and |f(z)| = |z2| ≤ 2 on C.

∣∣∣∣
∫

c
z2dz

∣∣∣∣ ≤ 2
√

2 = 2.8284

24.3 Cauchy’s Integral Theorem

1. A simple closed path is a closed path that does not intersect or touch itself.

2. A simple connected domain D in the complex plane is a domain such that every simple
closed path in D encloses only points of D. A domain that is not simply connected is called
multiply connected.

Theorem 1 Cauchy’s integral theorem.
If f(z) is analytic in a simply connected domain D, then for every simple closed path C in
D,
(1) ∮

c
f(z)dz = 0

Example 1 No singularities (Entire function)
∮

c
ezdz = 0,

∮

c
cos zdz = 0,

∮

c
zndz = 0 (n = 0, 1, · · · )
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for any closed path, since these function are entire (analytic for all z)

Example 2 Singularities outside contour.
∮

c
sec zdz = 0,

∮

c

dz

z2 + 4
= 0

where C is the unit circle, sec z = 1/ cos z is not analytic at z = ±π/2,±3π/2, · · · , but all
these points lie outside C ; none lies on C or inside C. Similarly for the second integral,
whose integral, whose integrand is not analytic at z = ±2i outside C.

Example 3 Nonanalytic function.
∮

c
zdz =

∫ 2π

0
e−it · i · eitdt = 2πi

where C : z(t) = eit is the unit circle. f(z) = z : is not analytic
sol)

on C x = cos t, y = sin t, z = x + iy = cos t + i sin t = eit

ż(t) = ieit, z = x− iy = cos t− i sin t = e−it

Example 4 Analyticity sufficient, not necessary
∮

c

dz

z2
= 0 where C is the unit circle

unit circle z = eit dz = ieitdt z−2 = e−2it

∮

c

dz

z2
=

∫ 2π

0
e−it · i · eitdt = i

∫ 2π

0
e−itdt = −e−it|2π

0 = e−it|02π

= (cos 0− i sin 0)− (cos 2π − i sin 2π) = 0

This result does not follow from Cauchy’s theorem, because f(z) = 1/z2 is not analytic at
z = 0. Hence the condition that f be analytic in D is sufficient rather than necessary for∮
c f(z)dz = 0 to be true

Example 5 Simple connectedness essential.
∮

c

dz

z
= 2πi for ccw integration around the unit circle.

C. lies the annulus 1/2 < |z| < 3/2 where 1/z is analytic, but this domain is not simply
connected, so that Cauchy’s theorem cannot be applied. Hence the condition that the domain
D be simply connected is quite essential.
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